Свет во тьме. Черные дыры, Вселенная и мы — страница 16 из 62

И точно так же, как горячие элементы в газах или на поверхности звезд испускают свет определенного цвета, то есть собственный уникальный “штрих-код”, излучение молекул в пылевых облаках также характеризуется соответствующими штрих-кодами[60]. Особенно много таких характеристических линий в высокочастотном излучении. Длины волн этого света составляют всего несколько миллиметров или даже меньше. В повседневной жизни мы встречаемся с такими волнами в основном благодаря современным сканерам в аэропорту, через которые нас заставляет пройти служба безопасности.

На Земле мы можем измерить излучение космических газовых облаков с помощью радиотелескопов. За последние 40 лет во всем мире было построено множество радиотелескопов для наблюдения за поведением таких молекул, находящихся в космосе. Самый большой в Северном полушарии радиоинтерферометр NOEMA Института миллиметровой радиоастрономии (IRAM) установлен на плато де Бюр во Французских Альпах, где на высоте 2 550 метров над уровнем моря вздымаются над заснеженным горным склоном сверкающие на солнце одиннадцать посеребренных 15‐метровых антенн телескопа. А крупнейшим в мире радиоинтерферометром такого типа является Атакамская большая миллиметровая антенная система (ALMA), находящаяся в Чили, то есть в Южном полушарии. Телескоп ALMA состоит из 66 тарелок, большинство из которых имеет диаметр 12 метров. Телескоп, управляемый совместно европейскими, американскими и японскими учеными, был построен на высоте 5 000 метров над уровнем моря – там, где воздух очень сухой и разреженный. (Влажная атмосфера на меньших высотах слишком сильно поглощала бы радиоволны с крошечной длиной волны.) Именно такие радиотелескопы сыграли решающую роль в получении изображения черной дыры.

Но вернемся в космос, туда, где рождаются звезды и газовые туманности. Те места в далеком-далеком мире кажутся нам заколдованными – ведь там внутри облака, словно по волшебству, образуются молодые звезды. Однако магия тут, разумеется, ни при чем и на самом деле в космосе действуют естественнонаучные законы. Газовые туманности состоят в подавляющем большинстве из водорода. Этот самый легкий из всех элементов – важнейший компонент, благодаря которому светится космос и образуются звезды. На Земле облака газа небольшие и быстро рассеиваются, а вот в космосе газа в одном месте собирается гораздо больше. Гравитация удерживает его внутри облаков, и они становятся все более плотными. Процессы в них, непосредственно предшествующие рождению звезды, описываются критерием Джинса (назван в честь британского астронома Джеймса Джинса). В облаке этого типа гравитация и давление газа всегда находятся в равновесии. Джинс понял, что нарушить этот баланс могут различные факторы; в частности, если масса облака превысит определенное значение, называемое массой Джинса, то облако сожмется, как бы “забеременев” и приготовившись к рождению новых звезд.

Иногда необходимо лишь небольшое сжатие, чтобы облако начало уплотняться под действием собственной гравитации. Постепенно температура в нем поднимается от –260 градусов до более чем 100 градусов по Цельсию и молекулы в облаке начинают излучать электромагнитные волны и отдавать энергию.

Как только температура газа достигает нескольких тысяч градусов, молекулы и атомы начинают распадаться, давление падает, и вся структура теряет устойчивость. Облако коллапсирует и распадается на мелкие фрагменты. По космическим меркам это происходит очень быстро: маленькой протозвезде требуется менее 30 000 лет, чтобы она осветила космос своими первыми лучами. Вначале она излучает теплый красноватый свет. Чтобы стать молодой звездой, ей нужно набраться терпения и подождать еще 30 миллионов лет. За это время из‐за огромного давления температура поднимется до нескольких миллионов градусов – и в какой‐то момент начнется ядерный синтез. Тогда водород начнет превращаться в гелий, в точности как в нашем Солнце. В конце концов родится новая звезда, похожая на тысячи звезд, сияющих сейчас на небе.

Комочки становятся планетами

В этих космических облаках образуются не только звезды. Исходя из данных наших сегодняшних наблюдений, мы также можем представить, как формировались и развивались целые планетные системы. Когда облака сжимаются, пыль собирается в большие диски, медленно вращающиеся вокруг звездного зародыша. Чем ближе к центру оказывается материя, тем быстрее она движется.

Мы все знакомы с этим эффектом по пируэту фигуристов: когда их руки вытянуты, спортсмены медленно вращаются на месте, а когда прижаты к телу, скорость вращения увеличивается. Физики описывают этот процесс в скучных научных терминах следующим образом: угловой момент равен произведению массы на радиус и на скорость, и он остается постоянным. Если радиус уменьшается, скорость должна увеличиться. То же самое и с пылевыми облаками в космосе, которые вращаются вокруг молодых звезд или даже полностью их обволакивают. Чем больше они сжимаются, тем быстрее вращаются, и тогда из материи начинают формироваться диски.

По сути, процесс, происходящий при образовании планет, точно такой же, как тот, что происходит при звездообразовании: внутри диска начинают формироваться небольшие комочки. Разница только в том, что теперь из комков пыли образуются не звезды, а планеты. Я бы сравнил этот процесс с приготовлением в сотейнике соуса из порошка: если, всыпав его в воду, вы перемешиваете смесь недостаточно быстро, то вместо загустевшей однородной массы – настоящего соуса – у вас получатся комочки, плавающие в жидкости. Эти протопланеты никогда не нагреваются настолько, чтобы внутри их ядер начался ядерный синтез, поскольку их масса слишком мала, а давление слишком низко. Планеты растут и, по мере движения по своим орбитам, всасывают пыль и проделывают борозды в пылевых дисках вокруг молодой звезды. На изображениях, полученных телескопом ALMA, вы можете увидеть такие диски с прорезанными вокруг протозвезд бороздами: они выглядят, как гигантские кольца Сатурна[61].

Вращение дисков также объясняет формирование орбит наших планет. Все планеты образовались внутри первичного пылевого диска, вращавшегося вокруг Солнца. Породила нашу планетную систему медленно нагревающаяся протозвезда, которая вначале была ледяной принцессой, а позже стала Солнцем.

На периферии нашей Солнечной системы все еще обнаруживаются куски льда, оставшиеся от ранней фазы этого процесса. Это кометы, которые образовались, когда вода, камни и пыль слипались в грязные глыбы льда. Не каждый маленький комочек во вращающемся пылевом диске становится маленькой протопланетой. Из некоторых в лучшем случае получаются карликовые планеты (такие как Плутон) или даже более мелкие каменные глыбы (такие как планетоиды и астероиды). Им не хватает гравитации, чтобы превратиться в объекты совершенной круглой формы.

В конечном счете строительный материал для зарождения жизни был занесен на Землю именно со звездной пылью. В результате этого процесса вода и множество органических молекул, очутившись на Земле, прижились там. Все элементы, из которых мы состоим, сначала были образованы внутри звезд, потом превратились в молекулы внутри облаков пыли, а затем, наконец, попали к нам на Землю во время ее рождения и младенчества. Мы, люди, существа космические, и наши тела в прямом смысле состоят из космической пыли[62].

Жизнь в космосе

При взгляде на эту пыль и на все эти планетарные диски мы начинаем задаваться вопросом: а не может ли жизнь существовать и еще где‐нибудь? Одиноки ли мы в космосе, или там есть другие формы жизни? Даже будучи маленьким ребенком, я спрашивал себя об этом, и подобные мысли должны возникать почти у любого человека, начинающего осознавать огромность Вселенной.

В середине 90-х годов, когда моя научная карьера только-только стартовала, за пределами нашей Солнечной системы была известна всего одна планета, и она, как ни странно, обращается вокруг мертвой звезды – пульсара PSR 1257+12. Ее в 1992 году открыли польский астроном Александр Вольщан и его американский коллега Дейл Фрайл. Тогда было высказано общее предположение, что среда на этой планете не особо пригодна для жизни. В 1995 году, вскоре после того, как я получил докторскую степень, Мишель Майор и его докторант Дидье Кело, работая в Обсерватории Верхнего Прованса, построенной недалеко от Марселя, открыли за пределами нашей Солнечной системы еще одну планету. Эти двое ученых получили за ее открытие Нобелевскую премию. Новая планета, которую позже назвали Димидий[63], находится в созвездии Пегас, в пятидесяти световых годах от нас. Она обращается вокруг звезды Гельвеций (51 Пегаса), очень похожей на наше Солнце.

К настоящему же моменту мы нашли свидетельства существования тысяч планет (их обычно называют экзопланетами) в других солнцеподобных системах. Но это почти ничто по сравнению с количеством планет, которые должны быть во всей галактике Млечный Путь. Согласно статистике, их может насчитываться до ста миллиардов, а то и намного больше. Но явных признаков жизни пока нигде не обнаружено. Тем не менее вполне вероятно, что в этом мире мы не одиноки. В настоящее время все больше и больше астрономов не только осмеливаются предполагать это вслух, но еще и рассуждают об инопланетянах.

Разумная жизнь могла бы обнаружить себя, отправляя в космос радиосигналы, и десять лет назад мы с моим аспирантом предприняли попытку найти сигналы от внеземных цивилизаций[64], просматривая данные с радиотелескопа LOFAR. (Из-за чего мои голландские коллеги начали бросать на меня странные взгляды.) Но позже, когда этот мой аспирант стал научным сотрудником в Калифорнийском университете в Беркли, последний получил от российского миллиардера Юрия Мильнера целых 100 миллионов долларов на финансирование проектов по поиску внеземных цивилизаций. Хотел бы я обзавестись такими финансами для сво