Актиний дает название семейству из 15 элементов-актиноидов, в это семейство входят элементы от актиния до лоуренсия (от номера 89 до номера 103). Предложение вынести актиноиды в отдельный блок высказал в 1945 году Глен Сиборг, опираясь на аналогии с блоком лантаноидов, появившимся в Периодической системе в 1921 году по инициативе Нильса Бора.
Наряду с работами в области ядерной химии Сиборг известен как пионер ядерной медицины – раздела медицины, в которой радиоактивные изотопы различных элементов применяются для диагностики или лечения заболеваний (некоторые примеры такого использования радионуклидов были описаны выше). Актиний тоже применяется для этого: нуклид 225Ac – это активный агент в направленной альфа-терапии – методике, нацеленной на ингибирование роста вторичных злокачественных образований за счет их облучения. Источником α-частиц в этом виде терапии часто является полученный из 225Ac нуклид 213Bi.
90. Торий
Ведущие казанской лаборатории интерактивных образовательных программ «Естественно, наука!» (Yesnauka), научным консультантом которой я являюсь, заканчивая программу для детей с цветными огнями и взрывами, должны обязательно сказать: «Только не пытайтесь повторить это дома». Однако были в истории химии люди, которые не прислушивались к таким предостережениям (а возможно, им никто это не говорил). Шведский химик Йёнс Якоб Берцелиус с коллегами совершил немало открытий на кухне своей квартиры, расположенной в Стокгольме на углу улиц Ниброгатан и Риддаргатан. Так, в 1815 году Берцелиус выделил новый элемент из образца минерала, присланного ему из шведского шахтёрского городка Фалун. Берцелиус назвал новый элемент торием в честь скандинавского бога грома Тора. Через несколько лет он понял, что поспешил с заявлением об открытии, после ряда анализов определив, что он получил не элемент, а фосфат иттрия. Берцелиус признал свою ошибку, но, похоже, гипотетическое название ему понравилось.
Позже, в 1828 году, когда Берцелиус уже стал непререкаемым авторитетом для большинства химиков, после того как он действительно стал первооткрывателем трёх химических элементов, он получил образец странного минерала от норвежского священника Ганса Эсмарка. В новой лаборатории, уже не на кухне, а в Шведской Королевской Академии наук, Берцелиус выделил свой четвёртый элемент, и, может, из-за того, что ему понравилось «невостребованное» название, а может, и из-за того, что норвежский минерал внешне был похож на тот, с которым он 13 лет испытал фиаско, он в очередной раз (на этот раз уже заслуженно) назвал элемент торием и дал ему символ Th.
Берцелиус описал много химических и физических свойств тория, однако главная его характеристика – радиоактивность – избежала внимания шведского химика. Впрочем, это неудивительно, стеклянные фотопластинки, которые в 1896 году помогли Беккерелю обнаружить явление радиации, появились только в 1847 году, за год до смерти Берцелиуса. Сейчас даже при беглом взгляде на Периодическую систему ни у кого не возникает сомнения в радиоактивности тория – его соседство с такими известными радиоактивными элементами, как радий, актиний, уран и плутоний, позволяет предположить, что торий тоже будет радиоактивным, даже не зная правил стабильности атомных ядер.
Годы после открытия торий и его соединения лежали на лабораторных полках невостребованными, однако в какой-то момент соединения этого элемента стали использовать в газовых фонарях уличного освещения. Такую необычную профессию торий получил по той причине, что его оксид ThO2 оказался самым тугоплавким из всех оксидов и не плавился в факеле газовой горелки, а раскалялся добела и светил петербуржцам, лондонцам, парижанам и другим жителям столиц и крупных городов.
Значение газового освещения улиц сейчас забыто, но, бесспорно, это было не меньшее достижение, чем впоследствии изобретение электрических ламп – газовые лампы впервые в истории человечества позволили сделать так, что сначала крупные, а потом и другие улицы после заката не погружались во тьму (раньше, если кому-то нужно было выйти за ворота в темную время суток, ему приходилось брать с собой персональный источник света – факел или фонарь). Первоначально в калильных сетках газовых фонарей применялись и другие оксиды, но, помимо проблем с температурой плавления, они давали свет не очень высокого качества, и в 1891 году австрийский химик Ауэр фон Велсбах, испытав возможность применения в газовом фонаре оксидов магния, лантана и иттрия, остановился на оксиде тория.
Кто-то может подумать, что это было сомнительное инженерное решение – что-то типа отравленной туники Несса, и люди, жившие на освещенных ториевыми газовыми горелками улицах (а это были представители высшего и среднего класса) годами подвергались радиационному воздействию от распадающихся атомов тория и заболевали. К счастью, это было не так – торий распадается, испуская α-частицы (ядра атомов 4Не), пробег которых невелик и которые могут быть легко остановлены стеклянным колпаком фонаря. Более того – оксид тория до сих пор применяется для изготовления горелок походных плиток, работающих от небольших газовых баллонов. Такие горелки абсолютно безопасны, если, конечно, их не облизывать или не размалывать в порошок, а потом вдыхать его. Правда, если вам все-таки не по себе от перспективы находиться рядом с диоксидом тория, покупая туристическое снаряжение, обращайте внимание на маркировку thorium free.
Итак, оксид тория безопасен, если его не есть, однако какое-то время люди принимали его внутрь – оксид тория использовался как рентгеновский контраст торотраст для рентгеноскопии в 1930–1940 годах – этому применению способствовала исключительная непрозрачность диоксида тория для рентгеновского излучения. Без сомнения, рентгенограммы, полученные с помощью диоксида тория, спасли немало жизней, а применение радиоактивного контраста рассматривалось как «приемлемый риск». К счастью, в конце 1940-х годов были разработаны менее опасные для здоровья контрасты для рентгеновской диагностики.
В наши дни торий применяется главным образом в энергетике. Содержание тория в земной коре в три раза больше содержания урана, при этом месторождения урана и месторождения тория далеко не всегда сопутствуют друг другу, и государства, обладающие запасами тория, необязательно обладают запасами урана и наоборот. Самый распространённый в земной коре нуклид тория – 232Th – неспособен делиться тепловыми нейтронами и быть ядерным горючим. Однако при захвате теплового нейтрона 232Th превращается в 233U, который способен к делению, подобно 233U и 239Pu, и применяется в качестве топлива реакторов на быстрых нейтронах.
91. Протактиний
В 1871 году Дмитрий Иванович Менделеев среди ряда других сделал следующее предсказание: «Между торием и ураном можно ожидать элемента с атомной массой около 235. Формула высшего оксида этого элемента X2O5, как у ниобия с танталом, которым он должен быть аналогичен».
Определенная в наше время атомная масса предсказанного элемента – протактиния – близка к 231. Хотя предсказание массы можно посчитать относительно точным, оно всё-таки не сбылось – предсказывая атомную массу протактиния, Менделеев не мог знать, что протактиний является членом одной из всего лишь четырёх пар «перевёртышей» – пар, в которых более тяжелый элемент располагается перед более лёгким (эти пары – аргон и калий; кобальт и никель; теллур и йод; торий и протактиний). Сейчас мы знаем, что существование таких пар объясняется тем, что периодичность изменения свойств элемента зависит не от массы, а от заряда ядра, но эта концепция была разработана Мозли и Бором уже после смерти Дмитрия Ивановича.
Другие же предсказания Менделеева про протактиний сбылись – свойства протактиния действительно воспроизводят свойства тантала – его высший и наиболее устойчивый оксид Pa2O5, хотя необходимо учесть, что протактиний демонстрирует горизонтальную аналогию свойств с торием и ураном, проявляя степень окисления +4, а вот горизонтальную аналогию свойств Дмитрий Иванович не принимал. Менделеев точно предсказал, что протактиний будет сопутствовать урану в руде ураните (также известной как урановая смолка).
Уран и торий были открыты в 1789 и 1828 годах соответственно, а вот открытие стоящего между ними протактиния пришлось ждать до ХХ века. Конечно, тут, как и во многих других случаях, нужно определиться, какой момент можно считать открытием элемента – осознание того, что руда содержит новый элемент, выделение соединения этого элемента из руды или получения нового элемента в виде простого вещества. В зависимости от того, что мы засчитаем за открытие, фактически для любого элемента можно назвать нескольких первооткрывателей. Для протактиния же ситуация еще сложнее.
В 1900 году английский химик и изобретатель сэр Уильям Крукс выяснил, что в некоторых урановых рудах содержится новое радиоактивное вещество, которое он назвал «уран-Х». Позднее оказалось, что уран-Х представляет собой два разных вещества, получившие название UX-1 и UX-2. Второе из них – UX-2 – впервые было выделено польским химиком Казимиром Фаянсом в 1913 году. Это был короткоживущий нуклид 234Pa, период полураспада которого был чуть больше минуты. Из-за малого времени жизни Фаянс назвал открытый элемент бревием.
В 1917 году немецкий физик Лиза Мейтнер выделила более устойчивый нуклид этого элемента – 231Pa, который отличался большим временем жизни – его период полураспада составлял около 33 000 лет. В связи с этим Фаянс отказался от названия «бревий», поскольку правила обязывали учёных называть элемент, опираясь на свойства самого долгоживущего из изотопов. Мейтнер предложила несколько громоздкое название «протоактиний», которое потом редуцировалось до привычного протактиния. Выбор названия был продиктован тем, что α-распад протактиния приводит к образованию актиния, элемента №89. В том же году нуклид