Таблица Менделеева. Элементы уже близко — страница 48 из 60

231Pa был выделен автором термина «изотопы» Фредериком Содди и его коллегой Джоном Крэнстоном (оба ученых работали в Университете Глазго).



Протактиний – радиоактивный и высокотоксичный элемент, который не находит практического применения, однако в некоторых аспектах интересен для ученых. Так, например, определение соотношения изотопов 231Pa и 230Th в океанских осадочных породах позволяет океанологам реконструировать перемещение вод в Северной Атлантике после таяния льдов последнего ледникового периода.

В 1961 году Управление по атомной энергии Великобритании, переработав 60 тонн радиоактивных отходов, выделило 125 граммов протактиния. Это и есть самый серьезный по массе мировой запас этого элемента. Создан он для научных нужд – лаборатории всего мира могут закупить протактиний, если он им нужен для экспериментов.

92. Уран

Уран относится к самым известным, наверное, печально известным химическим элементам. Это самый тяжелый из элементов, который можно найти в земной коре, более того – уран более распространен в земной коре, чем серебро. Уран относится к восьми химическим элементам, названным в часть небесных объектов. Блестящий чёрный порошок, который в 1789 году выделил из саксонской руды, названной впоследствии уранитом, Мартин Генрих Клапрот, был не металлическим ураном, а оксидом урана. Клапрот, не зная, что это оксид, назвал новый «элемент» ураном (этим он хотел поддержать предложение Иоганна Боде назвать новую планету «Уран» вместо «Звезда короля Георга», как предложил первооткрыватель этого небесного тела английский астроном Уильям Гершель). Только в 1841 году французский химик Эжен-Мельхиор Пелиго установил, что уран Клапрота – это диоксид UO2, превратил его в тетрахлорид урана UCl4 и восстановил хлорид урана калием до металлического урана. Металлический уран ничем не отличается от типичных металлов – вещество с серебристо-белым блеском. Уран быстро тускнеет на воздухе, окисляясь, а если его измельчить – самовозгорается.


Химические свойства урана разнообразны и удивительны. Большой заряд его ядра приводит к тому, что релятивистские эффекты (влияние ядра на электроны, которое можно интерпретировать с помощью специальной теории относительности Эйнштейна) приводят к тому, что электронная конфигурация урана и его производных значительно отличается от таковой неодима, свойства которого должны были бы совпадать со свойствами урана при формальном применении Периодической системы.

Характеризуя химические свойства урана, его называют «самым тяжёлым переходным металлом». Это не совсем метафора – к переходным мы относим металлы с частично заполненным d-электронным подуровнем, а благодаря релятивистским эффектам формула внешнего электронного слоя урана 5f36d17s2, так что его вполне можно относить к переходным металлам (хотя, как правило, при классификации его принято относить к f-элементам и не рассматривать как переходный металл). Приближает его к свойствам переходного металла и то, что он гораздо разнообразнее неодима и других лантаноидов по химическим свойствам и по окраске своих соединений. Тетрахлорид урана, с которым работал Пелиго, ярко-зелёного цвета, трийодид урана (UI3) – тёмно-синий. Бо`льшую часть соединений урана сложно получить и охарактеризовать, так как они легко взаимодействуют с кислородом и влагой воздуха, и в области химии урана еще достаточно белых пятен и перспектив для исследования. Конечно же, сейчас химики изучают свойства урана не ради соединений с яркими цветами, а из-за того, чтобы понять, как лучше разбираться с радиоактивными отходами – концентрировать уран и получать соединения, из которых он не мог бы попадать в окружающую среду. В земной коре же и в большинстве известных соединений уран присутствует в форме уранил-катиона UO22+, образующего хорошо растворимые соединения, которые нежелательно использовать для связывания урана из отработанного ядерного топлива (ОЯТ) – соли уранил-катиона могут медленно «вымываться» водой из захоронений отходов ядерной энергетики. На настоящий момент проблему ОЯТ решают, инкапсулируя соединения элементов из нераспавшегося ядерного топлива в прочную керамику, которая, однако, в тысячелетней и более перспективе может разрушаться из-за распада входящих в нее радиоактивных компонентов и нарушения структуры кристаллической решетки керамики.

Однако уран больше знаком большинству людей не по химическим свойствам и окрашенным соединениям, а как ядерное топливо. Если брать гражданскую сторону атомной энергетики (с военной всё ясно и так), отношение людей к атомным электростанциям неоднозначное. С одной стороны, рассуждая рационально, понятно, что атомные электростанции практически ничего не выбрасывают в окружающую среду, работая в замкнутом контуре, а с другой – печальный опыт аварий на Три-Майл-Айленде, в Чернобыле и Фукусиме не всегда позволяет рассуждать рационально. Для получения топлива для АЭС природный уран, который в основном представлен нуклидом 238U, обогащают – выделяют из него 235U, содержание которого в природном уране всего 0,7 %. Оставшийся после обогащения уран (так называемый обеднённый уран) содержит около 0,2 % 235U. Обеднённый уран на 40% менее радиоактивен, чем природный материал, и именно его применяют для химических экспериментов в лаборатории (химические свойства различных изотопов химических элементов не различаются, и «рецепты», полученные для 238U, можно будет использовать и для связывания 235U).

Высокая плотность урана позволяет применять его для деталей, которым нужна высокая прочность, например для изготовления киля морских судов, и наоборот – для бронебойных боеприпасов. Радиации от обеднённого урана, который распадается с выделением α-частиц, обладающих малой длиной пробега, следует опасаться, но ещё в большей степени опасна химическая токсичность урана, сравнимая с токсичностью ртути или свинца, – большей части ветеранов войн в Персидском заливе, имевших дело с боеприпасами из обеднённого урана и обратившихся к врачам в связи с ухудшением состояния здоровья, было продиагностировано не радиационное поражение, а химическое отравление.

Однако все же не стоит считать уран чем-то демоническим, несущим только тревогу и боль. Атомные электростанции вырабатывают около 17% мировой электроэнергии, согревая дома. Уран согревает и Землю – предполагается, что внутреннее тепло Земли, обеспечивающее существование расплавленной мантии, обеспечивается распадом урана и тория.

И еще одно, возможно, неожиданное для многих применение хрусталя – в конце XIX – начале XX века производители стекла получали особый «урановый хрусталь», добавляя к смеси для выплавки стекла неорганические производные урана, главным образом его оксиды.



При обычном дневном освещении урановый хрусталь и изделия из него выглядели желтовато-зелёными, а вот при облучении УФ-светом из-за способности производных урана к флуоресценции начинали светиться ярко-зеленым светом. Урана в стекло добавляли мало, посуда из уранового хрусталя считалась (и на самом деле являлась) не более опасной, чем посуда из хрусталя обычного (того, который со свинцом – сервировать и есть пищу можно, а вот использовать для ее длительного хранения – не стоит).

С 1943 года уран стал стратегическим сырьем, на такую ерунду, как посуда, тратить его было запрещено. К 1958 году стало понятно, что обедненный (не используемый для получения атомной энергии) уран точно так же можно использовать для получения не менее красивого стекла, но к тому времени популярность уранового хрусталя упала, а радиофобия возросла, поэтому такое стекло больше не производится, а изделия из него остались только в музеях и частных коллекциях. Единственное, когда может быть опасен урановый хрусталь, – когда его кусочки входят в состав браслета или бус – вот тут-то при длительном контакте такой красивой стекляшки с кожей поток α-частиц может стать причиной радиационного ожога.

93. Нептуний

Тем, кто хоть немного осведомлен об атомной энергетике, известны элементы уран и плутоний, названные в честь седьмой и девятой планет Солнечной системы (плутоний был открыт задолго до 2006 года, когда Плутон потерял статус планеты и полноценных планет у нас в системе осталось восемь). Восьмая планета Солнечной системы, располагающаяся между небесными телами Уран и Плутон, – планета Нептун, а между ураном и плутонием в клетке с номером 93 находится нептуний.


В июне 1940 года американские физики Эдвин Макмиллан и Филип Абельсон, работавшие в Радиационной лаборатории в Беркли, опубликовали статью, описывающую процессы, протекающие при бомбардировке урана нейтронами в циклотроне. Удивительно, но опубликованная в открытой печати статья учёных из Беркли говорила о том, как преодолеть главные препятствия на пути к созданию атомного оружия. Статья была опубликована, когда «урановую бомбу» пытались создать по обе стороны Атлантического океана.

В опубликованной статье описывалось, что поглощение нуклидом 238U медленного нейтрона в реакторе приводило к образованию неустойчивого 239U. Последний разрушался по схеме β-распада – превращение нейтрона в пару протон—электрон. Результатом реакции, обнаруженной Макмилланом и Абельсоном, являлось образование нового элемента, который ранее не наблюдался в природе, – он и получил название «нептуний». При этом 239Np тоже неустойчив и подвергается очередному этапу β-распада, в результате чего образуется ядро плутония 239Pu. Плутоний стал материалом для одной из первых в истории атомной бомбы.

Элемент, получившийся в результате экспериментов Макмиллана и Абельсона, на самом деле был уже третьей попыткой назвать элемент нептунием. В 1877 году немецкий химик Ганс Рудольф Герман посчитал, что обнаружил в руде танталита новый элемент и назвал его нептунием. В 1886 году еще один немецкий химик, Клеменс Винклер, открыв то, что мы сейчас называем германием, первоначально хотел назвать этот элемент нептунием, но тогда еще не было понятно, что Герман ошибся, и название было занято. К 1940 году стало понятно, что Герман ошибся, название вновь высвободилось, и нептуний занял свое окончательное место в Период