Круглые даты и числа всегда привлекали внимание людей, возможно, из-за того, что благодаря нашим пятипалым рукам наши далекие предки выбрали десятеричную систему счисления. Заметим, что круглых дат опасались не только в Средние века, ожидая конца времен от каждого года, кончавшегося двумя нулями, – если кто ещё помнит, в 1998–1999 годах ходили слухи о так называемой «проблеме-2000», которая идеологически была близка средневековым страданиям в ожидании скорого конца. Тем не менее заселение электронов по уровням и, следовательно, Периодический закон и Периодическая система индифферентны к числам, кратным десяти, благодаря чему элемент с номером 100 нельзя назвать каким-то особенным.
Фермий, как и стоящий на одну клеточку раньше эйнштейний, был впервые обнаружен в радиоактивных осадках, образовавшихся в результате испытания первого термоядерного устройства. Собственно, в статье, вышедшей спустя три года после испытания, на двух страницах сообщалось о двух элементах (Phys. Rev. 1955. 99 (3): 1048–1049). Причина образования фермия была такая же, как и эйнштейния, – уран, входивший в состав атомной бомбы-запала, поглощал большое количество нейтронов, и образующиеся при этом ядра за счет β-распада увеличивали число протонов, а значит – порядковый номер.
Исследователи, обнаружившие элемент №100, предложили назвать его фермием в честь Энрико Ферми, итальянского физика, получившего в 1938 году Нобелевскую премию по физике «…за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами…» и почти что сразу же после церемонии отправившегося со всей семьей из Стокгольма в эмиграцию в США (в Италию Ферми не стал возвращаться из-за несогласия с политикой Муссолини), где построил первый ядерный реактор, в котором протекала самоподдерживаемая ядерная реакция (все работы Ферми в Штатах с 1939 по 1945 год прямо или косвенно были посвящены созданию ядерного оружия).
Благодаря магии чисел фермий чуть было не назвали «центурием» – сотым. В 1953 году исследователи из Нобелевского института в Стокгольме получили фермий 250Fm, бомбардируя уран ядрами кислорода. Поскольку открытие элемента №100 американскими учеными было сделано в рамках работы над созданием нового оружия, то информация о нём была засекречена, но как только шведские физики выступили с заявлением об открытии элемента с номером сто, информацию о термоядерном устройстве (точнее, о последствиях испытания этого устройства) быстро рассекретили. Чуть позже команда Беркли не возражала против того, чтобы по инициативе шведских физиков назвать элемент №102 «нобелием», даже после того как их заявление о синтезе элемента 102 не воспроизвелось и было признано ошибочным. Возможно, такой ход должен был слегка подсластить пилюлю шведам, у которых элемент №100 увели из-под носа.
Фермий – очередной актиноид, самое главное значение которого, пожалуй, в том, что после него начинается настоящая кунсткамера искусственно синтезированных элементов – элементы с порядковым номером 101 и выше называют «трансфермиевыми». Кроме этого, фермий можно считать последним химическим элементом, для которого (хотя бы теоретически) можно предложить практическое применение.
Речь пока идет еще только о потенциальном применении – 250Fm интенсивно испускает α-лучи, а период его полураспада – около 20 часов. Такое сочетание очень привлекательно для радиотерапии – источник радиации подвергает интенсивному облучению опухоль, после чего быстро распадается, однако препятствием на пути применения сотого элемента в медицине лежит, как это бывает и с другими металлами, отсутствие быстрых методов «прививки» радиоактивного металла к органическому фрагменту, который поможет распознать опухолевые клетки и доставит средство борьбы с ними по адресу.
101. Менделевий
В 1932 году Альберт Эйнштейн посетил Калифорнийский университет в Лос-Анжелесе, где прочёл речь перед студентами, в которой, в частности, было сказано: «Наука как нечто существующее и полное является наиболее объективным и внеличным из всего, что известно человеку». Одним из его слушателей был выполнявший свою дипломную работу ещё в области «чистой химии» Глен Сиборг. Эйнштейн, будучи знакомым с одним из профессоров, обучавших Сиборга, нашел время встретиться и переговорить с подающим надежды молодым человеком, и Сиборг, позднее ставший, как и Эйнштейн, лауреатом Нобелевской премии, позднее писал, что был приятно поражен добротой и скромностью великого учёного по отношению к никому пока еще не известному студенту. Отношение Эйнштейна к вопросам войны и мира также позволило Сиборгу сформулировать собственное отношение к этим вопросам. Хотя десять лет спустя после встречи Глен Сиборг со своей группой играл одну из ключевых ролей в Манхэттенском проекте, помогая разделять уран и плутоний, он неоднократно заявлял о своём пацифизме и утверждал, что ядерная энергия должна применяться только в мирных целях.
Встреча с Альбертом Эйнштейном очень сильно повлияла и на научные предпочтения, да и на судьбу Сиборга – он заинтересовался физикой и после того, как в 1933 году получил степень бакалавра, остался в Университете Калифорнии ещё на один год, чтобы прослушать ряд курсов по физике, которые не посещал, обучаясь на химическом отделении университета. В Калифорнийском университете Лос-Анжелеса не было возможности выполнять исследования в области физической химии, он поступил в магистратуру Калифорнийского университета Беркли, начав работу с профессором физической химии Гилбертом Ньютоном Льюисом (его, вероятно, многие могут помнить по правилу устойчивости восьмиэлектронных оболочек «октетов Льюиса») и тоже молодым, но подающим надежды специалистом в ядерной физике Эрнестом Орландо Лоуренсом, который в начале 1930-х годов изобрёл циклотрон, за что в 1939 году стал лауреатом Нобелевской премии по физике. Сначала Сиборг занимался с Льюисом химией кислот и оснований, но постепенно отходил от «классической» химии всё дальше и дальше. В 1937 году Сиборг защитил диссертацию на тему «Взаимодействие быстрых нейтронов со свинцом» и далее занимался уже исключительно ядерной химией, отцом-основателем которой он и считается.
Связь Сиборга и Эйнштейна можно назвать даже в определённой степени мистической – в день смерти Альберта Эйнштейна, 18 апреля 1955 года, журнал American Physical Society получил рукопись статьи Сиборга, Альберта Гиорсо и их коллег, в которой сообщалось об открытии нового радиоактивного элемента №101, который Сиборг предложил назвать в честь Д.И. Менделеева – менделевий (Phys Revi., 1955, 98 (5): 1518–1519). Самым устойчивым из изотопов менделевия является атом с массой 258 – его период полураспада составляет чуть больше 51 суток. Химические свойства менделевия изучены только для его соединений в растворе. Доподлинно известно, что он может образовывать соединения со степенью окисления +3 или +2.
Менделевий был не первым элементом, полученным Сиборгом, и не самым важным его открытием (скажем так, что патент на способ получения элемента №95 – америция – принёс Сиборгу очень большие деньги благодаря применению америция в датчиках задымления), но элемент №101 все равно оказался первым в своём роде – первым из трансфермиевых элементов, элементов с порядковым номером большим, чем 100.
Менделевий был получен на установке, которая называлась просто «60-дюймовый циклотрон», она была спроектирована Эрнестом Орландо Лоуренсом и в 1939 году начала работать. Когда в 1962 году благодаря появлению других, более мощных ускорителей частиц, 60-дюймовый циклотрон был «отправлен на пенсию», в торжественной речи, посвященной этому событию, кто-то назвал его «…самым эффективным расщепителем атомов в истории…». Чтобы получить менделевий, Сиборг и Гиорсо бомбардировали мишень из эйнштейния α-частицами (следует уточнить: в статье для элемента 101 название «менделевий» предлагалось сразу, а вот эйнштейний ещё не получил официального названия, поэтому в тексте статьи упоминался только как «элемент №99»). Первоначально исследователи получили только 17 атомов менделевия, позднее он был получен в несколько больших количествах – достаточных для изучения его химических свойств, но всё же слишком маленьких для того, чтобы этот элемент мог найти практическое применение.
В статье в Physical Review, посвящённой открытию первого трансфермиевого элемента, Сиборг объяснил свой выбор названия: «Мы хотели бы предложить название менделевий … в знак признания пионерской роли великого русского химика Дмитрия Менделеева, который первым использовал периодическую систему элементов для предсказания химических свойств неоткрытых элементов». Следует отметить, что для решения назвать новый элемент именем русского ученого от Сиборга и Гиорсо требовались мужество и гражданская позиция: хотя пик периода политической реакции направленного против левых, либеральных и коммунистических деятелей и организаций, получившего в США название эпохи маккартизма, приходился на 1950–1954 годы, отдельные этапы «охоты на ведьм», антикоммунистические и антирусские настроения продолжались до 1957 года, однако авторитет Менделеева и Сиборга был столь велик, что никаких дискуссий о названии элемента №101 не было.
102. Нобелий
Если с менделевием дискуссий о названии не возникало, то следующему за ним трансфермиевому элементу так не повезло – около тридцати лет этот элемент был известен под двумя различными именами и окончательно стал нобелием только в 1997 году. Кроме этого временного «двуличия», вызванного вполне объяснимым отсутствием обменом информации физиков-ядерщиков в эпоху железного занавеса и холодной войны, нобелий, пожалуй, единственный искусственно полученный химический элемент, названный не в честь места, где его синтезировали, и не в честь ученого, хотя, конечно, в честь человека, оказавшего влияние на развитие науки в ХХ и XXI веке, – в честь Альфреда Бернхарда Нобеля.