d-электронные подуровни. Исходя из этих рассуждений, правильные ряды, каждый из которых содержит по четырнадцать лантаноидов или актиноидов, должны выглядеть так: церий – лютеций и торий – лоуренсий (J. Chem. Educ., 2009, 86 (10), p 1187).
В 2016 году финский химик-расчётчик Пекка Пююккё с помощью релятивистской квантовой химии предложил свою интерпретацию реакционных свойств лютеция и лоуренсия, определив, что они практически идентичны между собой, но при этом отличаются от свойств других элементов третьей группы, в которую планировали разместить эти элементы Йенсен и его последователи. Пююкке предложил расширить списки лантаноидов и актиноидов до 15 элементов от La до Lu и от Ac до Lr (Phys. Chem. Chem. Phys., 2016,18, 17351-17355), включив туда все элементы с конфигурацией внешнего уровня от f0 до f14, и это предложение было принято ИЮПАК, который 28 декабря 2016 года официально принял версию Периодической системы с рядами, содержащими по пятнадцать f-элементов.
Однако это решение устроило далеко не всех химиков-теоретиков, многие из которых заявляли, что элемент с электронной конфигурацией внешнего слоя f0, то есть не содержащий электронов на f-подуровне, не может относиться к f-элементам. Таким образом, вопрос о положении лантана, лютеция, актиния и лоуренсия в Периодической системе обсуждается до сих пор, и моделирование электронной конфигурации и свойств этих элементов продолжается с привлечением разных моделей квантово-химических расчетов. К сожалению, разные допущения, которые неизбежны при применении отличающихся друг от друга расчетных методов, могут значительно влиять на их результаты и объяснения, базирующиеся на этих результатах, поэтому поиск идеальной квантово-химической модели, описывающей поведение и положение лантаноидов и актиноидов в Периодической системе, продолжается до сих пор (Physical Chemistry Chemical Physics. 2018. DOI: 10.1039/c8cp01056k).
104. Резерфордий
В 1960-е годы дискуссии о положении элемента №103 в Периодической системе ещё не велись, методы квантовой химии стали применяться к объектам, содержащим такое большое количество электронов, позже, поэтому в то время лоуренсий-резерфордий (в номенклатуре США и СССР) соответственно однозначно был последним из актиноидов, завершая очередной блок Периодической системы. Конечно же, и у советских, и у американских специалистов по трансфермиевым элементам тут же возникло желание смело идти туда, где не ступала нога человека, и началась гонка за элементом №104 – соперничество СССР и США шло по всем направлениям. Методология обеих групп была одинаковой – мишени из тяжёлых (зачастую не просто тяжелых и радиоактивных, но и короткоживущих атомов) обстреливали ионами или ядрами более лёгких атомов. Легкие «ядерные пули» нужно было направлять в мишень с такой энергией, чтобы они смогли преодолеть возникающие между ядрами силы электростатического отталкивания и сблизиться настолько, чтобы «заработали» ультракороткодействующие сильные внутриядерные взаимодействия и два ядра слились бы в одно, более тяжёлое. При одинаковой методологии советских и американских физиков мишени и ядра, летящие в них, различались.
Впервые элемент №104 был синтезирован в 1964 году учёными ОИЯИ под руководством академика Флёрова. В качестве мишени дубнинские ученые выбрали плутоний 242Pu, который бомбардировали ядрами неона 22Ne. Продукты слияния ядер немедленно хлорировали, и хлориды направляли к детекторам. Новый элемент был получен, хотя самые первые эксперименты не позволяли определить ни массу полученных ядер элемента №104, ни период его полураспада.
Три года спустя исследователи из Национальной лаборатории имени Лоуренса в Беркли, не будучи в состоянии воспроизвести эксперимент советских коллег-конкурентов, поставили свой эксперимент – они бомбардировали ядра калифорния 249Cf ядрами углерода 12С и были уверены, что получили элемент №104 с атомной массой 257, который при α-распаде превращался в нобелий 253No, эти результаты были подтверждены в 1973 году другой американской группой. Элемент №104 также был получен в 1985 году физиками из Дармштадта, облучавшими более лёгкую мишень более тяжёлыми «снарядами» – на фольгу из свинца 208Pb направляли ядра титана 50Ti.
Так как какое-то время обе группы были на 100% уверены в своём первенстве, каждая из них назвала элемент по-своему: американские физики выбрали название «резерфордий» (Rf) в честь Эрнеста Резерфорда, советские – «курчатовий» (Ku) – в честь Игоря Васильевича Курчатова, советского физика, «отца» советской атомной бомбы, создателя первой в мире атомной электростанции (Обнинская АЭС, запуск 26 июня 1954 года), трижды Героя Социалистического Труда и академика АН СССР.
В 1992 году рабочая группа ИЮПАК по трансфермиевым элементам оценила заявки об открытии элемента 104 из Дубны и Беркли, сделав в результате вывод о том, что обе группы привели достаточные доказательства его синтеза и честь открытия должна быть разделена между ними. Физики из США обиделись и ответили на выводы комиссии, что она придаёт слишком большое значение результатам группы Объединённого института ядерных исследований. В частности, они указали, что за 20 лет советские учёные несколько раз изменяли детали их заявлений о свойствах резерфордия, что, впрочем, наши физики-ядерщики и не отрицали. В ИЮПАК ответили, что это не имеет значения и что они учли все возражения, приведённые американской группой, и заявили, что не находят причин для пересмотра их заключения о приоритете открытия. В конце концов, дискуссия была завершена только в 1997 году, когда ИЮПАК рекомендовал использовать название, предложенное американцами.
Несколько изотопов резерфордия характеризуются периодами полураспада порядка несколько секунд, что позволяет исследовать их химические свойства до разрушения. Периоды полураспада 261Rf, 263Rf и 267Rf составляют минуту, 10 и 30 минут соответственно, но эксперименты обычно проводят с 261Rf – этот нуклид хоть и отличается небольшим временем жизни, его проще получить. Резерфордий является тем трансфермиевым элементом, о химических свойствах которого еще можно рассуждать (да, в химической литературе можно найти информацию о химических свойствах и более тяжелых элементов, полученную с помощью обобщения и расширения экспериментов, проведенных для десятков или даже единиц атомов, но насколько точно можно переносить полученную таким образом информацию на процессы, в которых участвует количество частиц, превышающее миллиарды, – именно с этого момента можно говорить о статистической значимости результатов, – не совсем понятно).
Для резерфордия известно, что его химические свойства более похожи на свойства циркония и гафния, а не актиноидов, проявляющих в своих соединениях степень окисления +3. Это, в свою очередь, позволяет сделать вывод о том, что резерфордий относится к той же группе Периодической системы, где находятся Zr и Hf, и его нельзя считать «суперактиноидом». Формула хлорида резерфордия RfCl4, это вещество возгоняется при 220 °C, подобно тетрахлориду циркония, проявляя при этом летучесть большую, чем тетрахлорид гафния, и гораздо большую, чем тетрахлориды актиноидов. Все это говорит о том, что и у самого края известной на настоящий момент Периодической системы правила периодической изменчивости свойств элементов продолжают работать.
105. Дубний
Соперничество групп Георгия Николаевича Флёрова из ОИЯИ и Альберта Гиорсо из Национальной лаборатории имени Лоуренса в Беркли (бывшей Радиационной лаборатории Калифорнийского университета Беркли) продолжалось. Такие были времена: в нашей стране лозунг «Догоним и перегоним Америку!» применялся во всем – в космической гонке, в соперничестве на зимних и летних олимпиадах, ну и в том, кто быстрее будет продвигаться в заполнении пустых ячеек Периодической системы (я перечислил те примеры соперничества, которые в любом случае двигали человечество вперёд, однако основное соревнование двух сверхдержав называлось «гонка вооружений»).
В апреле 1968 года исследователи из группы Г.Н. Флёрова бомбардировали мишень из америция 243Am ядрами неона 22Ne и заявили, что получили изотопы элемента №105 с атомными массами 260 (период полураспада 1,5 секунды) и 261 (период полураспада 1,8 секунды). В 1970 году учёные из Дубны представили еще больше данных, подтверждающих свое открытие, и предложили назвать элемент нильсборием (Ns) в честь датского физика Нильса Бора, лауреата Нобелевской премии по физике 1922 года «…за заслуги в изучении строения атома…». В 1970 году Гиорсо с коллегами также получили нуклид элемента №105 с атомной массой 260, используя реакцию калифорния 249Cf с ядрами азота 15N. В своём сообщении американские учёные также сообщили, что элемент №105 распадается по схеме α-распада, превращаясь в лоуренсий. В группе Беркли назвали новый элемент ганием (На) в честь лауреата Нобелевской премии по химии 1944 года Отто Гана, получившего её за «…за открытие расщепления тяжёлых атомных ядер…». Соавтор Отто Гана, Лиза Мейтнер, теоретически предсказавшая возможность расщепления тяжёлых ядер, даже не была упомянута в сообщении Нобелевского комитета, но об этом речь пойдёт позже. В СССР продолжили изучать нильсборий, в США – ганий, и оказалось, что элемент №105 по свойствам напоминает ниобий и тантал, являясь представителем d-элементов с заполняющимся шестым уровнем.
В 1986 году ИЮПАК, который уже стали порядком раздражать «трансфермиевые войны» США и СССР, вспомнил, наконец, что согласно его же собственному решению аж от 1947 года первооткрыватели элемента уже не имели исключительного права давать ему название, а лишь могли предложить его комиссии ИЮПАК по номенклатуре неорганических соединений, а эта комиссия могла рекомендовать предложенное название Совету ИЮПАК для окончательного принятия (естественно, предварительно рабочая группа ИЮПАК по трансфермиевым элементам должна была установить, кто же был первооткрывателем). Чтобы избежать двойных названий, ИЮПАК предложил называть элементы со спорными именами незамысловато – порядковыми числительными на латинском языке. По рекомендациям ИЮПАК с 1986 года элемент №105