Таблица Менделеева. Элементы уже близко — страница 60 из 60

118. Оганесон

Замыкающий в настоящее время Периодическую систему элемент №118 – оганессон – назван в честь академика РАН Юрия Цолаковича Оганесяна, научного руководителя Лаборатории ядерных реакций им. Г.Н. Флёрова в ОИЯИ. Оганесян присоединился к исследовательской группе Флёрова в 1958 году и с тех пор стал одним из ведущих специалистов мирового масштаба в области синтеза новых химических элементов. В 1970 году он первым опробовал технику холодного слияния ядер, которая привела к открытию элементов №107–113. В 1990–2000-х годах с помощью методики горячего слияния Оганесяну с коллегами удалось заполнить седьмой ряд Периодической системы, в том числе и получив элемент своего имени.


Впервые о синтезе элемента №118 сообщили физики из Беркли в 1999 году. Они планировали назвать его в честь своего любимого шефа Альберта Гиорсо «гиорсием» (Gh). Однако мечтам не дано было сбыться – синтез унуноктия по заявленной методике не удалось воспроизвести в нескольких центрах ядерных исследований – российском, немецком и американском, из-за чего это первое заявление было признано ошибочным (Physical Review Letters, 2002, 89, 3, 039901, doi: 10.1103/PhysRevLett.83.1104).



Внутреннее расследование, проведённое в Национальной лаборатории имени Лоуренса, показало, что речь идет не об ошибочной интерпретации, а о фальсификации результатов, которые были проделаны одним человеком – болгарским исследователем Виктором Ниновым. Внутренний комитет лаборатории пришел к выводу, что Нинов был единственным человеком в проекте, который переводил исходные данные эксперимента в удобочитаемый для человека формат и использовал эту возможность для ввода ложных данных (Nature. 2002. 420 (6917): 728–729). Повторный анализ исходных данных не показывал событий, которые первоначально сообщал анализ Нинова. Для всех руководителей совместных проектов (и даже просто для «шефов» небольших исследовательских групп) отсюда мораль: людям, конечно, лучше доверять, но черновые результаты исследований стоит просматривать, особенно в том случае, если подчинённые сообщают вам об экстраординарных результатах, которые они получили под вашим чутким руководством.

В конце концов №118 получили ученые из ОИЯИ и Ливерморской национальной лаборатории. При получении этого элемента мишенью для луча из ядер кальция 48Са стал калифорний 249Cf (Physical Review C», 2006, 74, 4, 044602). При этом калифорний не был использован специально – он образовывался в результате β-распада берклия, применявшегося для получения московия, и эксперимент по получению элемента №117 позволил поймать сразу двух «зайцев». Среднее время жизни элемента №118 составляло 0,2 секунды, он последовательно распадался с образованием ливермория, флеровия и коперниция.

28 ноября 2016 года ИЮПАК утвердил название «оганесон». Название с суффиксом «-он» обусловлено тем, что элемент №118 входит в группу Периодической системы, заполненную инертными газами, названия которых (за исключением гелия) оканчиваются на «-он». Таким образом, оганесон стал вторым после сиборгия химическим элементом, названным в честь живущего человека. В 2017 году Армения выпустила почтовую марку с изображением Юрия Цолаковича Оганесяна тиражом 40 000 экземпляров. На ней представлены символы сверхтяжелых элементов: оганесона, названного в честь самого ученого, и продуктов распада оганесона, благодаря которым удалось доказать получение этого элемента.

Формально оганесон можно считать самым тяжелым инертным газом. Именно формально: получено достаточно данных в пользу того, что характер заполнения электронной оболочки сверхтяжелых элементов совершенно не таков, как у легких. Дело в том, что из-за большого заряда тяжелых атомных ядер электроны в сверхтяжелых элементах разгоняются до такой скорости, при которой пренебрегать теорией относительности уже нельзя. Конечно же, время жизни оганесона слишком мало, и определить экспериментально, будет ли элемент №118 проявлять свойства инертного газа, невозможно. Тем не менее исследователи из Новой Зеландии и США провели квантово-химические расчеты, результаты которых позволяют считать оганесон уникальным атомом (Phys. Rev. Lett., 2018, 120, 053001): результаты расчётов предсказывают, что распределение электронов, вращающихся вокруг столь большого ядра, в большей степени теряет свою оболочечную структуру, размываясь в «электронный газ».

Исследователи отмечают, что для оганесона проявление релятивистских эффектов очень существенно – они обусловливают так называемое спин-орбитальное сочетание, то есть взаимосвязь спинового состояния электрона и характеристик его перемещения по орбиталям. При значительном спин-орбитальном сочетании заселенность электронов по уровням со строго определенными энергетическими характеристиками размывается, и электроны, находящиеся около ядра, распределяются практически равномерно, образуя облако электронного газа, или Ферми-газа.

Эффект размывания электронных оболочек постепенно увеличивается вместе с ростом заряда ядра. Согласно расчетам оганесон существенно отличается от инертных газов, расположенных в той же группе Периодической системы. Состояние электронов в его атоме должно быть очень близким к предельной их делокализации – Ферми-газу. В таком «размазанном» состоянии электроны легко поляризуются, а значит, атомы оганесона будут связываться друг с другом прочными вандерваальсовыми взаимодействиями, и, наиболее вероятно, при комнатной температуре это будет не газ, а твердое вещество. Кроме того, коль скоро внешняя оболочка оганесона – неустойчивый октет, элемент №118 будет гораздо реакционноспособнее по сравнению с его соседями – инертными газами.

Вместо эпилога

Незадолго до стопятидесятилетия, которое отмечалось в 2019 году, седьмой ряд Периодической системы оказался полностью заполнен, и она стала выглядеть завершённой. Тем не менее точку ставить рано, и сейчас исследователи пытаются выяснить, есть ли границы у Периодической системы и сколько химических элементов может еще существовать. Свои ответы на эти вопросы предлагает профессор Университета Мичигана Витек Назаревич.


Работа Назаревича предсказывает, что атомные ядра, в которых протоны и нейтроны будут связаны сильными взаимодействиями, могут существовать до элемента номер 172, ядро которого будет содержать 172 протона. Сильные взаимодействия смогут стабилизировать такое ядро и не дать ему распасться, но стабилизация будет продолжаться лишь доли секунды. Системы, содержащие более 172 протонов, просто не смогут быть стабилизированы сильными взаимодействиями, то есть на основании предсказаний можно говорить о том, что у Периодической системы все же есть граница.

Расчёты Назаревича дают и ещё один необычный прогноз – по его словам, ядра ряда сверхтяжёлых элементов будут существовать столь короткий промежуток времени, что просто не успеют притянуть к себе хоть какое-то количество электронов и всю свою короткую жизнь будут существовать в виде «голых» комбинаций протонов и нейтронов. Если эти теоретические предсказания когда-то удастся подтвердить эмпирически, учёным придется каким-то образом адаптировать понятие «атом» под новые объекты, которые уже не будут электронейтральными частицами, состоящими из ядра и связанных с ним носителей заряда, противоположного заряду ядра. Правда, удастся ли когда-то получить такие комбинации протонов и нейтронов, а также могут ли они сформироваться где-то естественным путём, остается загадкой.

Исследователи медленно, но верно углубляются в область сверхтяжёлых ядер, синтезируя элемент за элементом, зачастую не представляя, как будет выглядеть результат синтеза. Сейчас попытки синтезировать элемент №119 предпринимаются сразу несколькими исследовательскими центрами, но, увы, теория строения атомного ядра в настоящий момент не в силах предсказать оптимальные условия для синтеза новых ядер, поэтому пока в ядерной физике приходится идти путём проб и ошибок до победного исхода – с таким подходом равновероятно, что синтез элемента №119, открывающего восьмой ряд Периодической системы, может произойти и через пару месяцев, и затянуться на долгие годы.

Не менее интересен вопрос о том, могут ли сверхтяжёлые ядра образовываться в космосе. Предполагается, что слияние нейтронных звёзд, процесс, протекающий с колоссальным выбросом энергии, может обеспечить формирование ядер, содержащих большее число протонов, чем самый тяжёлый элемент, полученный в лаборатории, – оганесон. Более того, в космическом пространстве около нейтронных звезд концентрация нейтронов высока, и теоретически возникает возможность самопроизвольного синтеза изотопов уже полученных в лабораториях элементов, но более тяжёлых, содержащих большее количество нейтронов. Однако такое может и не происходить – ядра сверхтяжёлых элементов могут успеть распасться еще до того, как в их состав войдут нейтроны и образуются более тяжёлые изотопы того же оганесона. Возможно, новые, более точные расчетные модели позволят определить не только, насколько велики шансы образования сверхтяжелых элементов в космических процессах, но и предсказать цепочки распада сверхтяжелых ядер, облегчив физикам-ядерщикам интерпретацию результатов своих экспериментов.