Однако теперь нам грозит другая напасть. Избыточное, регулярное и слишком распространенное применение антибиотиков, прежде всего в кормах для скота, привело к попаданию их большого количества в сточные воды, так как биологически активные медикаменты не до конца распадаются в организмах людей и животных. Оттуда антибиотики попадают в Мировой океан, где мы обнаруживаем их в организмах рыб и других живых существ. Бактерии приняли этот вызов и начали вырабатывать у себя устойчивость к антибиотикам. Это врожденная способность бактерий, которую они развили у себя для защиты и адаптации к экстремальным условиям внешней среды.
Так, например, стрептомицеты (род Streptomycetes), обитающие в почве бактерии, резистентны не только в отношении многих токсинов окружающей среды, но и практически ко всем, применяемым в настоящее время антибиотикам. Как правило, они устойчивы и в отношении веществ, которые вырабатывают сами. Но что это означает для нас с вами? В настоящее время исходят из того, что из-за неэффективности примененных антибиотиков каждый год в Европе умирают 25 000 человек. Другие источники указывают, что уже в 2005 году три миллиона европейцев были инфицированы бактериями, резистентными ко всем известным антибиотикам. Открытое нобелевским лауреатом Флемингом чудо-лекарство обратилось против тех, кому должно было помочь. Бактерии защищаются, уже 90 лет ведя с нами биологическую войну. Банальные заболевания, побежденные, как нам казалось, антибиотиками, теперь снова могут заканчиваться фатально. Нам может грозить отступление медицины на сто лет назад.
Не придут ли нам снова на помощь грибы? [6] Такое вполне может случиться, ибо число активных веществ, содержащихся в грибах, поистине не поддается подсчету. Один вид гриба может содержать более 1000 веществ, а мы уже знаем, что на Земле существуют около 1,5 миллиона видов грибов.
Смогут ли грибы стать воплощением «медицинского чуда» и почему в Европейском союзе они больше не считаются лекарствами, мы рассмотрим в отдельной главе.
Грибы франкенштейны: как грибы-паразиты превращают насекомых в зомби
Здесь я расскажу еще одну страшную сказку из сырого леса, которая покажет, что гриб не всегда бывает нашим другом. Муравей-древоточец из рода Camponotus бродит по джунглям в поисках пропитания. Под одним листком он застывает как вкопанный. Если бы это был фильм ужасов, то объектив камеры поднялся бы под углом кверху. На нижней поверхности листа висит высосанный остов сестры нашего муравья, которая проходила здесь пару дней назад – тоже в поисках пропитания.
Несчастная была коварно и незаметно инфицирована микроскопически малыми спорами грибов из рода Ophiocordyceps, а два дня спустя покинула свою колонию в кроне леса. Мышцы жертвы уже ослабли, у нее начались судороги, и поэтому она смогла лишь спуститься вниз, но взобраться назад, в крону, под защиту семьи, была уже не в состоянии. Гриб завладел мозгом муравья и вынудил его взбираться только на низкие растения, чтобы вгрызться в лист на высоте около 25 сантиметров. Из этого места муравей уйти уже не сможет, потому что оно оптимально для обитания и размножения «зомбирующих грибов». Гриб вводит в тело муравья ядовитый коктейль, от которого насекомое погибает спустя шесть часов. При температуре от 20 до 30 °C и при влажности 95 % нити гриба начинают прорастать в ножки муравьиного трупика, чтобы он не упал с нижней поверхности листа. В ходе этого процесса из головы мертвого муравья прорастает длинная ножка с плодовым телом на конце. Целую неделю гриб питается внутренними органами животного, а панцирь использует для своей защиты. Вновь образованное плодовое тело рассыпает споры на ищущих пищу муравьев, которых отныне тоже ожидает судьба зомби.
Коварные грибы встречаются и в наших широтах
Чтобы наблюдать за работой таких грибов-разбойников, нам не обязательно ехать в джунгли. Даже в наших родных лесах грибы-убийцы применяют разнообразные охотничьи приемы и механизмы ловли, достойные запечатления в фильме ужасов. Гриб Polyphagus euglenae «нападает» на эвглену и высасывает ее. Грибы плавают по поверхности воды и длинными тонкими гифами захватывают другие одноклеточные организмы. В воде ли, в почве ли, процесс выглядит, в принципе, одинаково: такие мелкие организмы, как филярии (нематоды) и амебы, повисают, захваченные клейким веществом, выделяемым мицелием. Особенно причудливо выглядит применение лассо: гриб Zoophagus tentaculum образует из гифы маленькие петли, которыми ловит нематод. От прикосновения происходит раздражение рецепторов гифы, и петля затягивается, прочно захватывая добычу. После этого гриб медленно врастает в жертву и переваривает ее с помощью специальных ферментов.
Необычный способ питания этих грибов – старое изобретение эволюции, что доказывают находки, зафиксированные в янтаре, где запечатлелись этапы доисторической драмы: в янтаре застыл живший 100 миллионов лет назад гриб – пожиратель нематод – нематофаг.
Между прочим, и наш хороший знакомый – белый навозник, который осенью массово появляется практически везде, являясь самым распространенным городским грибом, тоже не лишен коварства (если даже отвлечься от того, что в сочетании с алкоголем он становится просто ядовитым). Собственно, этот гриб – сапрофит, то есть он питается мертвыми органическими остатками, но при этом не брезгует и нематодами. Под землей навозник образует мелкие шаровидные структуры с колючими выростами, ядовитый секрет которых обездвиживает червяков, а затем навозник в течение нескольких дней их переваривает.
В этом грибы мало отличаются от растений, плотоядные виды которых часто появляются на бедных азотом почвах. Потребляя мертвую и живую плоть, они возмещают недостаток азота в своем меню. Науке уже известно более 160 видов плотоядных, так называемых хищных грибов, и наверняка это далеко не полный список – есть еще и не открытые виды такого рода. Но грибы способны не только поставлять сюжеты для фильмов ужасов.
Гениальные градостроители: какую пользу получают автомагистрали от грибов слизевиков
Когда смотришь на карту с нанесенными на нее шоссейными, железными дорогами и трубопроводами, на первый взгляд картина представляется весьма хаотичной, но затем начинаешь находить в ней определенную логику. Как правило, она заключается в том, чтобы проложить магистраль между двумя населенными пунктами по кратчайшему пути. При этом следует учитывать условия местности и другие факторы, включая исторические, влияющие на конфигурацию прокладываемых дорожных сетей. Результат поиска решения не всегда бывает оптимальным. Грибы слизевики (которые, правда, в настоящее время уже не относят к грибам) могут в данной ситуации выступить планировщиками инфраструктуры.
В поисках оптимального планирования дорожного строительства специалисты используют ландшафтные модели, изготовленные из плодородной почвы, расставляют в нужных местах кусочки древесины, «зараженные» грибами, и создают условия для их роста. Теперь можно спокойно откинуться на спинку стула, скрестить руки на груди и ждать. Таинственные микроорганизмы выбрасывают во всех направлениях нити, прощупывают почву, и, если результат оказывается неудовлетворительным, нить втягивается назад и поиск пути начинается сначала. У этих микроорганизмов давний опыт – он насчитывает сотни миллионов лет, – а это большое преимущество перед инженерным искусством, у которого за плечами в лучшем случае 100–150 лет. Слизевики решают поставленную перед ними задачу в течение сорока восьми часов.
Особенно прилежным помощником выступает физарум многоголовый (Physarum polycephalum). Этот легко культивируемый модельный организм с крупными клетками, который используется для исследований подвижности, роста и дифференцировки клеток. Самый крупный экземпляр этого вида является одновременно самым крупным одноклеточным существом в мире: в 1987 году боннские ученые вырастили физарум размером 5,54 квадратного метра. Уже на рубеже нового тысячелетия ученые доказали, что этот гриб умеет находить кратчайший путь между двумя точками садового лабиринта, выказывая способность уравновешивать избыточность и эффективность. Ученые одного японского и одного английского университета даже ухитрились создать шестиногого робота, которым управлял этот гриб слизевик!
Британские ученые построили британскую дорожную сеть с помощью слизевых грибов и одновременно сделали поразительное открытие: очень часто это таинственное, не поддающееся классификации существо, образно говоря, принимает такие же решения, как и его коллеги-инженеры, принадлежащие к роду человеческому. Часто гриб находит логически обоснованный кратчайший путь между двумя точками, при этом весьма разумно соединяя перемычками главные магистрали. Если главная магистраль разрушается, то движение расстраивается лишь частично. Биологические системы, таким образом, учат нас, какая избыточность необходима, например, в строительстве дорожных сетей для того, чтобы в критической ситуации не наступил транспортный коллапс.
Биомелиорация: грибы очищают отравленную почву
Грибы не только способны планировать строительство дорог, но могут выступать и в роли специалистов по повторной утилизации. На территории заброшенных промышленных предприятий и автозаправочных станций никогда не будут благоухать цветы, если не предпринять нужных мер. В почве таких территорий накапливается больше ядов, чем на местах разлития нефти, и среди этих веществ – чрезвычайно ядовитые продукты переработки нефти, полициклические ароматические углеводороды (ПАУ).
Однако здесь на передний план выступают наши друзья: древесные опилки смешивают со специально отобранными грибами и в большом количестве распыляют на пораженные участки почвы. Грибы невозбранно вытягивают во всех направлениях свои нити, распространяются глубоко в почву. Помимо опилок, грибы начинают пожирать и сложные углеводороды. Год спустя в этом месте обнаруживаются дождевые черви и начинает расти трава. Очень скоро возвращаются и цветы. Волшебными словами здесь выступают биологическая санация или биологическая мелиорация. Слово «мелиорация» происходит от латинского слова