Таинственные явления природы и Вселенной — страница 12 из 21

Удивительная наука космология

Мы живем на осколках Большого взрыва. Это событие вселенского масштаба случилось около 14 млрд лет назад. Все пространство превратилось в горячий, быстро расширяющийся огненный шар из вещества и излучения. По мере расширения он остывал, его свечение постепенно слабело, Вселенная медленно делалась темной. Так пролетел примерно миллиард лет. Но постепенно благодаря гравитации сформировались галактики. В них образовалось несметное количество звезд, и Вселенная вновь стала светлой. Поблизости звезд образовались планеты, то есть «земли» — так это переводится с ученой латыни. Вследствие той же гравитации они стали обращаться вокруг некоторых звезд. На немногих из планет, которые вращаются вокруг некоторых звезд, возникла жизнь, и даже разумная жизнь. Некоторые разумные существа, которые жили на некоторых планетах, которые вращаются вокруг некоторых звезд, стали космологами и поняли, что Вселенная началась с Большого взрыва.

Сама Вселенная накладывает определенные ограничения на жизнь и деятельность своих порождений, и в том числе ученых-космологов. Например, хотя мы можем проследить историю космоса до моментов, менее чем на секунду отстоящих от Большого Взрыва, сам он остается окруженным тайной. Почему он произошел? Был ли он в подлинном смысле началом мира? А если нет, то что же тогда было раньше?! Может быть, «в начале было Слово, и Слово было у Бога, и Слово было Бог» — так ведь написано в Библии?

Только в 1992 году Ватикан официально признал, что Земля вращается вокруг Солнца.

Существует также фундаментальный предел того, что мы можем видеть в пространстве. Наше видение простирается максимум на расстояние, которое может пройти свет за время от Большого взрыва до настоящего момента. То, что находится дальше, принципиально нельзя увидеть, ни прямо, ни косвенно, потому что свет из тех далеких мест находится еще в пути, и еще не добрался до наших глаз, даже если они самые пытливые и внимательные. Есть абсолютный горизонт зрения. Каковы области за этим горизонтом? Что в них происходит? Простирается ли Вселенная до бесконечности или она замкнута, подобно поверхности земного шара? Нам остается только писать по этому поводу фантастические рассказы.

Конечно, космология — дисциплина, хоть и вполне научная, но совсем не практическая. Вряд ли человечеству в ближайшем, да, по-видимому, и в очень отдаленном будущем удастся с какой-нибудь практической пользой употребить космологические знания. Но этого и нельзя требовать от космологии, поскольку не в этом ее цель и задача. Главное очарование этой науки в извечной притягательности звезд. Оно коренится в постоянном интересе к пределам и основам, в интересе, который представляет, может быть, главную, определяющую черту человеческого существа. Космология принимает вызов предельных вопросов, на которые вряд ли можно окончательно ответить. А принимать подобные вызовы — не в этом ли состоит чудо человека?

Пути познания

Все в мире относительно

Альберт Эйнштейн создал две поразительно красивые теории, которые навсегда изменили наши представления о пространстве, времени и гравитации. Первая из них получила название специальной теории относительности.

Слово «специальная» в названии теории относительности указывает на то, что она применима только к особым условиям, когда сила гравитации не принимается во внимание. Это ограничение сняла другая работа Эйнштейна — общая теория относительности, которая, по сути, является теорией гравитации.

Согласно СТО (так в научной среде принято называть специальную теорию относительности) выходило, что отрезки пространства и промежутки времени сами по себе не имеют абсолютного смысла, но зависят от состояния движения наблюдателя, который их измеряет. Если вы и ваш приятель движетесь друг относительно друга, каждый из вас обнаружит, что часы второго тикают медленнее, чем его собственные. Одновременность тоже относительна. События, которые одновременны для одного наблюдателя, для другого могут происходить в разное время. Конечно, в повседневной жизни мы не замечаем таких эффектов, поскольку при обычных скоростях они совершенно ничтожны. Но если относительное движение наблюдателей происходит со скоростью, близкой к скорости света, результаты их измерений могут очень сильно разниться.

Но все же существует одна вещь, по поводу которой вы, ваш приятель и все наблюдатели всегда сойдутся между собой: свет всегда распространяется с одной и той же скоростью — примерно 300 тыс. км/с. Скорость света — это абсолютный предел скорости во Вселенной. Когда вы прикладываете силу к физическому объекту, он ускоряется. Его скорость растет, и если вы будете продолжать прикладывать силу, он, в конце концов, подойдет к скорости света. Эйнштейн доказал, что по мере приближения к световой скорости для ускорения этого объекта требовалось бы все больше и больше энергии, так что скорости света ему все равно не достигнуть.

Из СТО следует одна формула, которая очень важна в физике, но которая также является, наверное, самой известной и, осмелимся сказать, любимой «в народе» физической формулой. Конечно, вы догадались: это формула Е = тс2.

Скорость света зависит от среды его распространения. В вакууме, понятно, это 300 тыс. км/с. А в охлажденном до –269 °C натрии — менее 60 км/ч.

Если нагреть предмет, его тепловая энергия возрастет, а значит, его вес тоже должен увеличиться. Это может навести на мысль, что перед взвешиванием лучше принять холодный душ. Но такая хитрость, скорее всего, уменьшит наш вес не больше, чем на несколько миллионных долей грамма. Если пользоваться привычными единицами измерения, такими как метры и секунды, коэффициент с2 для перевода энергии в массу оказывается очень большим, и, чтобы существенно изменить массу макроскопического тела, требуется громадное количество энергии.

Есть еще одна вещь, как выражаются ученые, инвариант, относительно которой будут согласны все наблюдатели, движущиеся с самыми разными скоростями. Эту вещь очень изящно сумел выразить профессор Герман Минковский, чьи лекции по математике слушал Эйнштейн и который, кстати, считал последнего (впрочем, тогда не без оснований) большим лентяем и полагал, что из него не выйдет ничего путного. Минковский предложил (и математически очень красиво обосновал свое предложение) описывать пространство и время в СТО не отдельно, а как общую сущность — пространство-время. Точки в нем были названы событиями. Пространство-время четырехмерно (а не трехмерно, как обычное пространство). История каждой частицы представляется линией в пространстве-времени, которая называется мировой линией этой частицы. Эту линию будут видеть одинаково все наблюдатели. Получается, что в СТО такие линии как раз и не являются относительными: с их формой согласны все.

Общая теория относительности (ОТО) выросла из простого наблюдения: движение тел под действием гравитации не зависит от их массы, формы и любых других свойств. Эта идея не давала Эйнштейну покоя. И вот в один счастливый для всей науки день Эйнштейн понял: гравитация есть особая, единственная в своем роде сила. Она является физическим следствием природы самого пространства-времени! Соответственно, движение тела под действием гравитации не является свойством этого тела, а относится исключительно к пространству и времени.

Теперь вспомним снова о мировых линиях. Равномерное движение частиц в отсутствие гравитации представляется прямыми мировыми линиями в пространстве-времени. Но гравитация заставляет частицы отклоняться от этих простых траекторий, так что мировые линии перестают быть прямыми.

Гравитация — это не сила, которая действует внутри пространства-времени и делает прямые траектории искривленными. Гравитация — это в известном смысле само пространство-время, которое искривлено, и поэтому находящимся в нем массам некуда деваться — они вынуждены идти по кривым траекториям. Но в искривленном пространстве-времени эти мировые линии — самые что ни на есть короткие пути! Допустим, вы держите путь по горной тропе. Вы хотите найти самый короткий путь. Но будет ли он прямой линией? Конечно, нет! Он будет очень-очень кривой линией! А почему? Потому что вы в горах, и самый короткий путь пролегает по самому крутому склону. И далее. Если вы все-таки решились идти этим наикратчайшим путем, что заставляет вас двигаться по очень-очень крутой кривой? Разве траекторию вашего движения искривляет какая-то специальная сила? Да нет, это сама гора ведет вас так, и тут ничего нельзя сделать, ибо крыльев у вас нет!

Это привело Альберта Эйнштейна к поистине удивительной гипотезе. Пространство-время и физические тела не существуют отдельно друг от друга, сами по себе. Они составляют одно динамическое целое. Массы, находящиеся в пространстве-времени, искривляют его. Чем больше масса тела, тем сильнее искривление пространства-времени вблизи этого тела. А искривленное пространство-время, в свою очередь, принуждает массивные тела двигаться по кривым путям. Это принуждение и проявляется как гравитация. Такой вот космический круговорот имени Эйнштейна!

Получается, что гравитация — это как бы реакция пространства-времени на присутствие в нем массивных тел, а не таинственная сила, заключенная в самих телах. Когда пространство-время плоское, то и никакой гравитации нет. Но плоским оно может быть только в том случае, если внутри нет никаких объектов, обладающих массой. Если хотя бы один такой объект появляется, пространство-время искривляется, и при помещении в него еще какой-нибудь массы дело будет выглядеть так, как будто два массивных тела притягиваются друг к другу взаимным гравитационным притяжением.

Искажение геометрии пространства-времени массивным телом часто объясняют на одном классическом примере: представьте себе тяжелый предмет, лежащий на горизонтально натянутом мягком резиновом коврике. Поверхность резины искривляется вблизи предмета. Так и пространство-время искривляется вокруг массивного тела. Если вы попробуете сыграть в бильярд на этом резиновом поле, то обнаружите, что шары отклоняются на искривленной поверхности, особенно когда проходят вблизи больших масс. Важно заметить, что данная аналогия не идеальна: она иллюстрирует искривление только пространства, а не пространства-времени. Но суть идеи она передает хорошо.

Уравнения ОТО связывают геометрию пространства-времени и материальное наполнение Вселенной. В случае медленных движений и не очень сильных гравитационных полей эта теория повторяет закон тяготения Ньютона, который мы более или менее успешно изучаем в средней школе.

Из ОТО выводится много следствий, которые блестяще подтверждаются в ходе экспериментов. Однако, может быть, самая замечательная черта этой теории — то, как мало она требует экспериментальных предпосылок. Ключевой факт, который Эйнштейн положил в ее основу, — то, что движение тел под действием гравитации не зависит от их массы, — был известен уже Галилею. На этой скромной основе он построил теорию, которая в соответствующем предельном случае воспроизводила закон всемирного тяготения Ньютона и объясняла отклонения от этого закона. При этом ОТО не оставляет свободы выбора: представление гравитации как кривизны пространства-времени с неизбежностью ведет к уравнениям Эйнштейна. В этом смысле теория относительности не описывает, а объясняет гравитацию.

Логика теории была столь убедительна, а ее математическая структура столь изящна, что она просто обязана была оказаться верной. Выходило, что новая теория есть, по существу, самое убедительное доказательство самой себя. Обращаясь к своему старшему коллеге Арнольду Зоммерфельду, Эйнштейн писал: «Вы будете убеждены в правильности общей теории относительности, как только изучите ее. Так что я не собираюсь защищать ее ни единым словом».

Так что же такое Вселенная?

Альберт Эйнштейн был великим физиком. Великий физик отличается от обычного физика не просто эрудицией или компетентностью в математике (Эйнштейн, кстати, не был отличным математиком), а каким-то особым ви́дением и вкусом к глобальным, «общевселенским» вопросам. Эйнштейна мало интересовали «мелкие подробности» вроде положения и движения планет. Его теория гравитации — ОТО — дает возможность впервые в истории человеческого познания вести вполне научный разговор о Вселенной в целом! Можно сказать, что в рамках общей теории относительности открывается новый невиданный объект: «Вселенная как целое»! До сих пор в науке можно было рассматривать устройство тех или иных более или менее локальных областей мира. Но вопросы о мире как целом всегда отдавались на откуп философии, теологии или мифотворчества. Так было во времена Ньютона, во времена Галилея и ранее. Так было до Эйнштейна.

Конструируя с помощью ОТО теорию Вселенной в целом, Эйнштейн сделал три допущения. Первым было предположение о том, что материя распределена в космосе в среднем однородно. Конечно, во Вселенной существуют места, где концентрация звезд немного выше или ниже средней. Но в достаточно больших масштабах, как предполагал Эйнштейн, Вселенная с хорошей точностью может считаться однородной. Это, кстати, подразумевает, что наше положение в космосе ни в малейшей степени не является выделенным: все места во Вселенной более или менее одинаковы.

Эйнштейн также предположил, что Вселенная в среднем изотропна, то есть из любой точки она выглядит примерно одинаково во всех направлениях.

О третьем допущении нужно говорить особо. Оно состояло в том, что в среднем свойства Вселенной не меняются во времени. Иными словами, Вселенная статична или, как выражаются ученые, стационарна. Хотя у Эйнштейна не было наблюдательных подтверждений этого тезиса, картина вечной неизменной Вселенной казалась ему естественной и единственно возможной. Это было не физическое, а настоящее метафизическое допущение: просто представить дело как-нибудь иначе, что называется, «ум не поворачивался»! И в самом деле, какой же быть Вселенной в целом, как ни вечной, простирающейся без конца и края и неизменной?

Теперь Эйнштейн мог переходить к поиску тех решений уравнений своей космологической теории, которые описывали бы мир с определенными им характеристиками.

Однако он очень скоро выяснил нечто, что внушало ему сильное беспокойство: теория не допускает подобных решений. Причина была очень проста: массы, распределенные по Вселенной, отказывались оставаться в покое и отчаянно стремились друг к другу под действием собственного гравитирования.

Из постоянства скорости света вытекает знаменитый парадокс близнецов теории относительности. Время в быстро движущейся системе отсчета замедляет свой ход по сравнению с покоящейся системой. Из этого следует, что космонавт, совершивший полет с околосветовой скоростью, вернувшись на Землю, окажется моложе своего брата-близнеца, все время остававшегося на Земле.

Это обстоятельство сильно озадачивало и сбивало Эйнштейна с толку. Наконец он решил, что уравнения ОТО следует модифицировать так, чтобы они допускали существование статической Вселенной. Не нарушая общей структуры теории, Эйнштейн включил в свои уравнения дополнительный член, но не дал ему никакого особого названия и никак его не интерпретировал. Это добавление (которое по смыслу уравнений ОТО оказывалось неким «гравитационным отталкиванием») просто уравновешивало гравитационное притяжение масс так, чтобы Вселенная в целом оставалась стационарной. Из своих уравнений Эйнштейн вывел, что такой баланс достигается, когда новая постоянная равняется половине плотности энергии вещества во Вселенной.

Поразительным следствием модифицированных уравнений было то, что пространство статической вселенной должно быть искривленным и замыкаться само на себя подобно поверхности сферы. Космический корабль, движущийся прямо вперед в такой замкнутой вселенной, в конце концов, вернулся бы в исходную точку. Это замкнутое пространство называется трехмерной сферой. Ее объем конечен, хотя у нее нет границы.

Эйнштейн описал свою замкнутую модель Вселенной в статье, опубликованной в 1917 году. Он признавал, что у него нет наблюдательных подтверждений ненулевого значения космологической постоянной. Единственной целью ее введения было спасение статической картины мира.

Забегая немного вперед, скажем, что более десяти лет спустя, когда расширение Вселенной было уже открыто, Эйнштейн называл идею введения в уравнения ОТО новой постоянной величайшей ошибкой в свой жизни. Это странное гравитационное отталкивание почти на полвека исчезает с переднего края физических исследований, но возвращение его окажется поистине триумфальным.

О, этот Фридман!

«Ваша идея, конечно, безумна. Весь вопрос в том, достаточно ли она безумна, чтобы оказаться верной», — когда-то сказал еще один великий физик, датчанин Нильс Бор. Безумность как критерий истинности! Однако для того, чтобы генерировать, а тем более отстаивать подобные идеи, требуется немалая научная смелость и даже дерзость.

В 1913 году Александру Фридману было двадцать пять. Он работал ассистентом на кафедре математики в Институте корпуса инженеров путей сообщения (позднее — Санкт-Петербургский институт инженеров железнодорожного транспорта) и читал лекции в Горном институте. Большинство его работ имело прикладной характер. В одном из своих исследований по гидродинамике он применил тензорный анализ, и поэтому обратился к теории Эйнштейна, в которой использовался тот же метод.

Из статей Эйнштейна Фридман знал, что без космологической постоянной теория не имеет статических решений, однако заинтересовался тем, какие варианты решений все же возможны. И вот тут он совершил радикальный шаг, обессмертивший его имя. Вслед за Эйнштейном Фридман предположил, что Вселенная однородна, изотропна и замкнута, то есть имеет геометрию трехмерной сферы. Но при этом отбросил условие статичности: позволил Вселенной двигаться. Размеры пространства и плотность вещества, по его допущению, могли изменяться во времени. Как только этот вариант был просчитан, Фридман обнаружил, что уравнения Эйнштейна имеют решение. Это решение соответствует неплоской — сферической Вселенной, которая начинается с точки, расширяется до некоторого максимального размера, а потом вновь сжимается в точку! В начальный момент (который мы теперь называем Большим Взрывом) все вещество Вселенной упаковано в единственную точку, в которой плотность вещества бесконечна. Она убывает, пока Вселенная расширяется, и растет, когда та сжимается обратно, чтобы опять стать бесконечной в момент, когда Вселенная вновь становится точкой.

Из-за исчезающе малого размера и бесконечной плотности материи математические величины, фигурирующие в уравнениях Эйнштейна, становятся неопределенными, а пространство-время не может продолжаться за этими точками. Такие точки называют сингулярностями пространства-времени (слово «сингулярность», собственно, и означает особенность, инаковость).

Сферическую вселенную можно представлять расширяющимся и сжимающимся воздушным шаром. По мере расширения шара расстояния между любыми соседними точками или объектами на его поверхности (например, двумя галактиками) будут расти. Таким образом, наблюдатель в любой галактике видит, что остальные галактики разбегаются. Расширение постепенно замедляется гравитацией и, в конце концов, останавливается, сменяясь сжатием. В фазе сжатия расстояния между галактиками будут уменьшаться, и все наблюдатели увидят, что галактики приближаются к ним.

Заметим, что спрашивать, куда расширяется наш мир, просто не имеет смысла. Мы привязаны к поверхности шара и не представляем себе иного измерения (никакого «снаружи» и «внутри» сферы). Подобным образом для наблюдателя в замкнутой вселенной трехмерное сферическое пространство — это все существующее пространство, и вне его ничего нет.

Все это представлялось большинству ученых захватывающей и красивой, но все же чисто теоретической спекуляцией до тех пор, пока в 1929 году в далекой обсерватории Маунт-Вилсон в Америке, после нескольких лет напряженной работы, астроном Эдвин Хаббл не объявил свой потрясающий экспериментальный результат: Вселенная расширяется. Сами галактики не изменяются, но расстояние между ними линейно увеличивается со временем. Это означало, что галактики удаляются от нас, и чем дальше находится галактика, тем быстрее она удаляется. К 1931 году после тщательной проверки в этом больше не осталось сомнений: наблюдения Хаббла показали четкую зависимость между расстоянием до галактик и их скоростью.

Древние инки выделяли на небосводе и давали названия не только звездам и созвездиям, как это привычно нам. Они также именовали черные пятна в Млечном Пути. Среди названий таких межзвездных участков — Лама, Детеныш ламы, Пастух, Кондор, Куропатка, Жаба, Змея и Лиса.

Большой взрыв

Несмотря на изящество идеи Фридмана и высочайшую степень надежности ОТО, и даже невзирая на блестящее подтверждение факта разлета галактик Хабблом, физическое сообщество не торопилось принимать картину нестационарной, расширяющейся Вселенной, начавшейся в некоторой особой точке конечное время назад. Это притом, что против существования вечной и недвижной Вселенной в целом имелись весьма серьезные чисто физические аргументы, которые были известны давно. Но таковы уж были предписания самой классической системы мышления: движению и изменению могут быть подвержены отдельные вещи или даже части мира; однако мир как целое должен оставаться вечным и неизменным. Что можно еще сказать, если даже сам Эйнштейн, как мы уже знаем, стоял на подобных позициях!

Самой известной попыткой согласовать идею стационарной Вселенной с фридмановскими космологическими моделями была, без сомнений, теория стационарного состояния, выдвинутая в 1948 году в Кембриджском университете британским астрофизиком Фредом Хойлом и двумя австрийскими эмигрантами Германом Бонди и Томасом Голдом. Они настаивали, что в своих общих чертах Вселенная всегда остается неизменной, так что во всех местах и во все времена она выглядит более или менее одинаково. Но чтобы компенсировать расширение Вселенной (поскольку после открытия Хаббла в этом нельзя было сомневаться!), Хойл с коллегами постулировал, что вещество постоянно создается из вакуума. Это вещество заполняет пустоты, открывающиеся между удаляющимися галактиками, так что на их месте могут формироваться новые. Конечно, не было никаких подтверждений спонтанного рождения материи, и Хойл, Бонди и Голд это признавали. Однако требуемый теорией темп ее возникновения был всего несколько атомов на кубический сантиметр в столетие, так что не было и наблюдений, свидетельствующих об обратном. Защищая свою теорию, Хойл с коллегами говорили, что непрерывное возникновение материи ничуть не более сомнительно, чем одномоментное рождение всей материи в Большом взрыве.

Кстати, сам термин «Большой взрыв» был придуман именно Хойлом, когда он высмеивал конкурирующую теорию в популярном ток-шоу на радио «Би-би-си».

Между тем, ироническому термину Хойла было суждено стать обозначением одного из основных мотивов современной космологии. Как бы физики ни относились к моделям вселенной Фридмана, их эпохальное значение для науки, а может быть, и для человеческого познания вообще состоит в наличии в них начальной сингулярности, где перестает работать ОТО. В сингулярности вещество сжимается до бесконечной плотности, и становится невозможно распространить решение на более ранние моменты времени. Таким образом, если воспринимать все буквально, Большой взрыв должен рассматриваться как начало Вселенной. Возможно ли, чтобы вся Вселенная началась с единственного события, случившегося конечное время назад?

Многие специалисты считали сингулярность Большого взрыва чисто формальным следствием предположений о строгой однородности и изотропности, которые Фридман использовал для решения уравнений Эйнштейна. Если в коллапсирующей Вселенной все галактики приближаются к нам, то неудивительно, что они столкнутся в одном большом схлопывании. Но если движение галактик будет хоть немного отличаться от радиального, можно предположить, что они «промахнутся» друг мимо друга и начнут снова разлетаться. В таком случае сингулярности удастся избежать, а вслед за сжатием последует новое расширение. Была надежда, что таким способом удастся построить так называемую «осциллирующую» модель Вселенной без начала с чередующимися периодами расширения и сжатия.

Оказалось, однако, что притягивающая природа гравитации делает такой сценарий невозможным. Британские физики Роджер Пенроуз и Стивен Хокинг, тогда еще аспиранты, доказали серию теорем, показывающих, что в очень широком диапазоне условий космологической сингулярности избежать нельзя. Основные предположения, использованные в этих доказательствах, состоят в том, что ОТО Эйнштейна верна и что материя во всей Вселенной обладает положительной плотностью энергии, так что гравитация не может стать отталкивающей. Таким образом, пока мы держимся в рамках ОТО и не предполагаем существования экзотической гравитационно-отталкивающей материи, сингулярность будет неизбежной, а вопрос о начальных условиях останется неразрешенным.

7 января 1610 года Галилео Галилей впервые в истории человечества направил построенный им телескоп на небо.

Теория Большого взрыва, которая не описывает Большой взрыв

Так теория Большого взрыва стала основанием новой физической науки — космологии.

Самый сильный аргумент в пользу теории Большого взрыва — это расширение Вселенной, открытое в 1929 году Эдвином Хабблом. Он, как мы уже знаем, обнаружил, что далекие галактики стремительно разлетаются от нас. В таком случае выходит, что если проследить движение галактик назад во времени, то в некоторый момент в прошлом все они сливаются вместе, что и говорит о взрывном возникновении Вселенной.

Другим важным подтверждением Большого взрыва служит космическое микроволновое излучение. Космос заполнен электромагнитными волнами, примерно такими же, что и в привычных микроволновках. Интенсивность этого излучения снижается по мере расширения Вселенной, так что мы сейчас наблюдаем лишь слабый отсвет раскаленного первичного огненного шара.

Теория Большого взрыва помогает космологам в изучении того, как этот огненный шар расширялся и остывал, как возникали атомные ядра и как из бесформенных газовых облаков возникали грандиозные спирали галактик. Результаты этих исследований прекрасно согласовывались с астрономическими наблюдениями, и это практически не оставляло сомнений в том, что теория развивается в правильном направлении. Однако было одно занятное обстоятельство: теория Большого взрыва описывала только последствия Большого взрыва и ничего не говорила о нем самом!

Вдобавок ко всему при ближайшем рассмотрении Большой взрыв выглядит весьма странно. Дело в том, что окружающий нас огромный мир, полный звезд и галактик, образуется только при том условии, что энергия первичного состояния выверена с немыслимой точностью. Ничтожное отклонение приводит либо к тому, что огненный шар «схлопывается» под действием собственного тяготения, либо к тому, что Вселенная оказывается почти пустой.

Космология Большого взрыва просто постулирует, что Вселенная в начальном состоянии обладала требуемыми свойствами. Физическая наука в состоянии лишь описать, как развивалась Вселенная из заданной начальной конфигурации. Но попытки разобраться, почему все началось именно с этого конкретного состояния, выходят за рамки физики. Вот какой показательный случай описывает Стивен Хокинг, один из самых знаменитых ученых-космологов современности. В 1981 году Хокинг участвовал в конференции по космологии, организованной орденом иезуитов в Ватикане: «В конце конференции участники были удостоены аудиенции Папы. Он сказал, что эволюцию Вселенной после Большого взрыва изучать можно, но не следует вторгаться в сам Большой взрыв, потому что это был момент Сотворения и, следовательно, Божественный акт. Я был очень рад, что Папа не знал темы только что сделанного мной доклада о возможности того, что пространство-время… не имеет границ, то есть что оно не имеет начала, а значит, нет и момента Сотворения».

Попробуйте умножить 37 037 на любое число от 1 до 9, а затем умножьте полученный результат на 3. Сами увидите, что выйдет!

Горячая Вселенная

Идея первичного огненного шара родилась в голове Георгия Гамова, очень колоритного физика русского происхождения, работавшего во многих ведущих исследовательских лабораториях Европы и США. Его коллега Леон Розенфельд писал, что Гамов «был ярок во всем, даже в своей физике». Еще аспирантом Гамов прослушал курс лекций Фридмана по общей теории относительности, так что знал об идее расширяющейся Вселенной, можно сказать, из первых рук. Кроме того, за очень короткое время Гамов стал мировым авторитетом в области ядерной физики.

Гамов утверждал, что ранняя Вселенная была не только сверхплотной, но также и очень горячей. Причина в том, что газы разогреваются, когда их сжимают, и охлаждаются при расширении.

Представьте, что в большой ящик помещено много-много маленьких шариков. Шарики беспорядочно движутся и отскакивают от стенок ящика. Теперь представим себе, что стенки ящика раздвигаются в стороны. Если мы бросим в стену мяч, он отлетит к нам с такой же скоростью, с какой мы его бросили. Но если стена удаляется от мяча, его скорость будет меньше после столкновения с ней. Так же и молекулы в расширяющемся пространстве будут замедляться. Конечно, в расширяющейся Вселенной нет никаких стен! Но молекулы отталкиваются друг от друга, так что расширение влияет на скорость их движения аналогичным образом. А температура по определению не что иное, как мера энергии движения молекул. Ясно, что в расширяющемся пространстве она будет убывать, и Вселенная будет становиться все холоднее. Ну а если двигаться в прошлое, мы, наоборот, заметим, что Вселенная будет становиться все горячее, и, в конце концов, в точке космологической сингулярности — в момент Большого взрыва — окажется бесконечно горячей. Собственно, поэтому космологическую сингулярность и называют Большим взрывом.

Гамов также понял, что уравнения Фридмана можно использовать для определения температуры и плотности Вселенной в любой момент времени. Например, спустя секунду после Большого взрыва температура составляет 1010 °C (10 млрд), а плотность — около 1 т/см3. Самая насыщенная событиями часть истории горячей Вселенной, для которой характерна быстрая смена поколений экзотических частиц, приходится как раз на первую секунду ее существования. В течение нескольких следующих минут образуются простейшие атомные ядра: водород, дейтерий, тритий, гелий-3 и гелий-4 (цифры обозначают число нуклонов — протонов и нейтронов, частиц, из которых состоят все атомные ядра). Процесс образования гелия начинается примерно через три минуты после Большого взрыва и завершается менее чем за минуту. Вселенная продолжает расширяться в жутком темпе, а плотность и температура очень быстро падают. После насыщенных событиями первых 3–4 мин темп космической драмы замедляется. С частицами вещества мало что происходит. Но зато существенные изменения происходят с излучением, наполняющим огненный шар.

Как нам известно еще из школьного курса физики, на макроскопическом (то есть на «человеческом») уровне излучение можно представить состоящим из электромагнитных волн — колеблющихся сгустков электрической и магнитной энергии. Волны разной частоты вызывают разные физические эффекты, и мы знаем их под разными названиями. Видимому свету соответствует лишь узкая полоска во всем электромагнитном спектре. Волны с более высокой частотой называют рентгеновским излучением, а еще более высокочастотные — гамма-лучами. Двигаясь по частотам вниз, мы встретим микроволны, а за ними радиоволны. Все они распространяются со скоростью света.

По мере остывания огненного шара интенсивность излучения снижается, а его частота постепенно сдвигается от гамма-лучей к рентгеновскому диапазону и далее, к видимому свету. Через 300 тыс. лет после Большого взрыва температура становится достаточно низкой, и электроны и ядра объединяются в атомы. До этого электромагнитные волны часто рассеивались на заряженных электронах и ядрах. Однако с нейтральными атомами излучение взаимодействует очень мало, так что теперь волны начинают свободно распространяться по Вселенной, практически ни на чем не рассеиваясь. Свет и вещество разделяются. Другими словами, Вселенная вдруг становится прозрачной для света.

Что происходит дальше с космическим излучением? Ничего особенного. Частота электромагнитных волн и соответствующая ей температура продолжат уменьшаться по мере расширения Вселенной. В момент образования нейтральных атомов температура излучения составляла 4000 °C, приблизительно как на поверхности Солнца. Окажись мы там (правда, было бы немного жарковато), мы бы увидели Вселенную залитой ярко-оранжевым светом. К моменту около 600 тыс. лет после Большого взрыва цвет сменился бы на красный. Еще через 400 тыс. лет излучение уходит за пределы видимого диапазона, в инфракрасную часть спектра. Так что для нас Вселенная погрузилась бы в полную темноту. Частота волн продолжает медленно уменьшаться, и к настоящему времени — то есть приблизительно через 14 млрд лет после Большого взрыва — она опускается до микроволнового диапазона.

Это то самое космическое микроволновое излучение с температурой около 3–5 К (градусов Кельвина), которое было открыто двумя американскими радиоастрономами Арно Пензиасом и Рудольфом Вильсоном в 1965 году. Таким образом, теория Большого Взрыва (которую можно назвать космологией Фридмана — Гамова), предсказавшая это излучение, получила блестящее экспериментальное доказательство.

Эта история подтверждается многочисленными данными наблюдений, и нет особых оснований сомневаться в том, что в целом она верна.

Поистине удивительно, что мы можем наблюдать Вселенную такой, какой она была 14 млрд лет назад, и точно описывать события, происходившие спустя долю секунды после Большого Взрыва. Очень, очень близко к точке начала. Что в действительности случилось в тот момент, по-прежнему остается загадкой. Но мы все-таки рискнем пойти дальше, вооружившись самыми последними достижениями космологической теории.

В 1671 году Исаак Ньютон представил на суд Королевского общества телескоп нового типа — рефлектор.

Инфляция: в экономике — плохо, в космологии — хорошо!

Картину эволюции Вселенной, которую мы только что описали, можно называть классической космологической теорией. Это название будет вполне правомерным. Ведь до Эйнштейна, Фридмана и Гамова никто из физиков даже не пытался заговорить об эволюции Вселенной в целом. А если пытались, то только как агностики. Они просто замечали: физика этими вопросами заниматься не может и не должна, здесь начинаются территории философии и теологии. И это несмотря на то, что физика в строгом научном, «теоретико-экспериментально-математическом» виде существовала уже более трех веков!

Классическая теория эволюции Вселенной, как мы убедились, очень хороша. Но и она не универсальна.

Представьте себе, что вы получаете сообщение с далеких звезд: вашей тете нездоровится! Вы поворачиваетесь в разные стороны, еще и еще, и отовсюду получаете одно и то же сообщение. Как это можно объяснить? Одно из двух. Либо везде во Вселенной живут существа, которые почему-то очень беспокоятся о здоровье и самочувствии вашей тети. Довольно невероятно, не так ли? Либо все они как-то коммуницируют между собой. Иначе почему сообщения из разных, далеких областей Вселенной выглядят совершенно одинаковыми?

Как ни странно это звучит, но перед вами точное описание так называемой проблемы горизонта, которая возникает в классической космологии. Дело в том, что интенсивность микроволнового излучения, приходящего к нам со всех сторон, в высшей степени постоянна, а значит, распределение плотности и температуры Вселенной в те времена, когда испускалось это излучение, были исключительно однородными. Из этого наблюдения вытекает наличие определенного взаимодействия между излучающими областями, которое приводит к выравниванию плотностей и температур. Однако физические взаимодействия не могут распространяться быстрее света!

Со времени Большого взрыва электромагнитные волны (то есть, собственно, «свет») удалились от места, где они были испущены, на 40 млрд световых лет. Это так называемый радиус горизонта. Он ставит предел тому, как далеко мы можем видеть Вселенную, и задает максимальное расстояние, на котором могла бы быть установлена связь. Космическое излучение, которое мы наблюдаем, как раз и приходит к нам с расстояний, примерно равных радиусу горизонта.

Теперь пусть мы принимаем космические микроволны с двух противоположных направлений. Тогда области, где эти волны были испущены, находятся друг от друга на расстоянии двух радиусов горизонта. Но из этого следует, что они никак не могли бы взаимодействовать! Они не могли бы иметь одинаковую температуру, плотность и т. д. Тогда получается, что незадолго после Большого взрыва та часть Вселенной, которую мы сейчас наблюдаем, была разбита на тысячи маленьких областей, которые не могли сообщаться друг с другом. То есть никакой физический процесс не мог сделать огненный шар однородным, если бы он не был таким с самого начала.

Можно, конечно, сказать, что такой сделал Вселенную в самом ее начале Большой взрыв. Но мы знаем уже, теория Большого взрыва не определяет физических условий в самой точке взрыва. А раз никакой определенности нет, можно постулировать любые следствия. Поэтому здесь нет и никакого объяснения. В то, что Большой взрыв сам установил гармонию между множеством несвязанных областей Вселенной, можно только верить. Можно, например, заменить слова «Большой взрыв» словом «Бог» — и мало что изменится.

Точно так же трудно объяснить, что сила, которая после Большого взрыва заставляет частицы разлетаться, находится в тончайшей гармонии с гравитационным притяжением, замедляющим расширение огненного шара. Если бы плотность материи во Вселенной была больше, ее гравитационного притяжения хватило бы, чтобы остановить расширение и в итоге заставить Вселенную вновь сжаться до точечных размеров (сколлапсировать). Наоборот, при совсем не намного меньшей плотности Вселенная расширялась бы бесконечно и в ней не могли бы появиться какие бы то ни было неоднородности — звезды, галактики, планеты… Такая Вселенная оказалась бы заполненной только очень разреженным газом. Наблюдаемая плотность с точностью до нескольких процентов равна «критическому» значению, которое соответствует границе между этими двумя режимами. Чтобы спустя 14 млрд лет — то есть при нынешнем возрасте Вселенной — ее плотность оставалась почти равной критической, начальное состояние должно быть выверено с хирургической точностью. Вычисления показывают, что она не должна отличаться больше чем на одну десятитриллионную долю процента! Ясно, что таких совпадений по воле случая не бывает. Тогда почему это так?

Все это тесно соотносится с вопросом о геометрии Вселенной. Благодаря Александру Фридману мы знаем о связи между плотностью Вселенной и ее крупномасштабной геометрией. Вселенная будет замкнутой, если плотность выше критической, открытой — при более низкой плотности и плоской, если плотность в точности равна критической. Таким образом, вопрос, почему плотность Вселенной так близка к критической, можно заменить вопросом, почему геометрия пространства так близка к плоской. Физики так и поступили и стали говорить о проблеме плоской геометрии Вселенной.

Фактически и проблема горизонта, и проблема плоской геометрии ведут к одному и тому же фундаментальному и волнующему вопросу: что же в действительности произошло тогда, в момент Большого взрыва? Долгие десятилетия физикам даже не было понятно, как начать разговор на эту тему. Поэтому данные проблемы почти не обсуждались, пока на небосклоне космологической науки не появился похожий на студента-старшекурсника американский физик-теоретик Алан Гут.

Если на одну шахматную клетку положить 1 зернышко риса и далее на каждую следующую клетку класть удвоенное количество от того, что лежит на предыдущей (то есть на вторую — 1 × 2 = 2 зернышка, на третью 2 × 2 = 4 зернышка, на третью 4 × 2 = 8 зернышек и т. д.), то в итоге общий вес риса на шахматной доске составит более 460 млрд т. Это примерно в тысячу раз больше, чем годовой урожай риса на всей Земле.

Алан Гут в 1981 году просто подумал: а что если на ранних стадиях эволюции Вселенной существует некое космологическое гравитационное отталкивание? Ведь это как раз то, что нужно! Тогда Вселенная будет очень-очень быстро раздуваться, от размеров атома до размеров, во много раз превосходящих всю наблюдаемую ныне область! Этот этап эволюции Вселенной назвали инфляционной стадией, или просто инфляцией.

Однако если для Эйнштейна природа космологической постоянной оставалась совершенно неведомой, и «антигравитационный» член был просто формальным добавлением в уравнениях ОТО, то для объяснения природы инфляции к услугам Гута и его последователей была вся мощь современной теории элементарных частиц!

Мироздание не терпит пустоты