Вакуум
Мы привыкли считать и твердо уверены в том, что вакуум — это пустота. Вакуум — это когда мы «вытряхиваем» из пространства (из некоторой камеры или из всего пространства — не имеет значения) все частицы и все излучения. Что же остается? Ничего, пустое пространство, о котором нечего больше сказать. Так приучила нас думать классическая физика. Однако с точки зрения современной теории элементарных частиц вакуум — это особый физический объект. И главное заключается в том, что вакуум обладает ненулевой энергией.
Пойдем далее. Вакуум может находиться в разных состояниях — физики называют их просто «разными вакуумами». Типы элементарных частиц, их массы и взаимодействия определяются соответствующим вакуумом. Отношения частиц и вакуума чем-то напоминает круги на воде: круги — это частицы, вода — это вакуум. От материальных свойств воды во многом зависит, какие будут круги, как они будут расходиться и т. д.
Вакуум, которым заполнена Вселенная вокруг нас, находится в наинизшем энергетическом состоянии. Его называют «истинным вакуумом» — он, как бы это сказать… наиболее пуст. Физики собрали массу знаний о частицах, которые населяют этот тип вакуума, и силах, действующих между ними. К примеру, сильное ядерное взаимодействие связывает протоны и нейтроны в атомных ядрах. Электромагнитные силы удерживают электроны на их орбитах вокруг ядер. А слабое взаимодействие отвечает за поведение легчайших частиц, называемых нейтрино. В соответствии со своими именами эти три взаимодействия обладают очень разной силой, причем электромагнитное взаимодействие занимает промежуточное положение между сильным и слабым.
Свойства элементарных частиц в других вакуумах могут быть совершенно иными. Энергия (и, соответственно, масса) вакуума может быть невообразимо большой. Скажем, так называемый электрослабый вакуум, в котором электромагнитное и слабое взаимодействия проявляются как составляющие одной объединенной силы, имеет около 1019 т/см3 (десять миллионов триллионов тонн массы на один кубический сантиметр). Это примерно масса Луны.
Для вакуума так называемого Великого объединения (то есть когда объединяются три фундаментальных взаимодействия) плотность массы оказывается еще больше, причем чудовищно больше — в 1048 раз. Ясное дело, этот вакуум никогда не создавался в лаборатории: на это потребовалось бы много больше энергии, чем доступно при современных технологиях.
По сравнению с этими ошеломляющими величинами энергия обычного истинного вакуума ничтожна. Долгое время считалось, что она в точности равна нулю. Однако сегодня есть данные, которые свидетельствуют в пользу того, что вакуум может обладать очень-очень небольшой положительной энергией, которая эквивалентна массе трех атомов водорода на кубический метр.
Вакуумы, обладающие высокой энергией, называют «ложными». Это потому, что, в отличие от истинного вакуума, они нестабильны. Спустя очень короткое время (малые доли секунды) всякий ложный вакуум превращается в истинный, а его избыточная энергия высвобождается в виде огненного шара из элементарных частиц. Такое превращение в современной физике называется распадом вакуума.
Современные представления о вакууме — достояние теории элементарных частиц, теории «самого малого». Но идея инфляции удивительна тем, что она соединила, казалось бы, несоединимое: теорию «самого малого» и теорию «самого большого» — теорию Вселенной в целом, космологию.
У Эйнштейна не было никаких физических причин оставлять в уравнениях ОТО космологический член. Экспериментальные данные, которыми он располагал, не только не подтверждали, но и противоречили идее неизменной, неподвижной (стационарной) Вселенной. Некоторые существенные теоретические соображения также делали эту идею неправдоподобной.
Однако оставались сами уравнения. Удивительная вещь, но уравнения великой теории способны жить своей собственной жизнью, и, помимо представлений, гипотез и воли их создателя, их стрела пущена в будущее, в неизведанные дали.
По смыслу уравнений ОТО космологический член — не что иное, как энергия пустого пространства, отличная от нуля энергия самого вакуума. В каждом «кусочке» вакуума заключено некоторое строго определенное количество энергии. Эти же уравнения предписывают, что энергия вакуума — это что-то вроде энергии натянутой резиновой ленты: пока лента в натянутом состоянии, в квадратном сантиметре ее заключено некоторое фиксированное количество энергии. Чтобы представить себе пространство, заполненное вакуумом, хороша другая «резиновая» аналогия — оно будет походить на надутый воздушный шарик: натяжение вакуума стремится сжать, «схлопнуть» пространство, которое он заполняет.
С другой стороны, согласно ОТО, что угодно, обладающее энергией (а это значит, по формуле Е = mc2, и массой), вносит вклад в гравитацию. Однако энергия вакуума оказывается «гравитацией навыворот»: она дает отрицательный вклад в гравитацию. Иными словами, по отношению к гравитации это гравитационное отталкивание.
Тут Эйнштейн получал то, что ему было нужно: антигравитация, создаваемая энергией вакуума, оказывается намного больше, чем «схлопывающая» энергия его натяжения, и может уравновесить гравитационное стремление масс друг к другу. Этот баланс и дает в итоге стационарную Вселенную.
Но энергосодержащая пустота — это то, что нужно также и для инфляции! В самом деле, если Вселенная очень ранняя, в ней нет еще ничего, никаких частиц, полей, никаких масс. Есть только вакуум и его гравитационное отталкивание. Тогда пространство в один миг чудовищно раздувается и Вселенная из очень-очень маленькой станет очень, очень большой!
Темп такого расширения остается постоянным (так как плотность энергии вакуума — величина постоянная). По смыслу эта величина очень похожа на процентный годовой рост цен — на то, что называется инфляцией. Аналогично, постоянный темп расширения Вселенной означает, что есть постоянное время, за которое размер Вселенной увеличивается вдвое. Рост, который характеризуется постоянным временем удвоения, называют экспоненциальным. Он очень быстро приводит к гигантским числам. Скажем, если упаковка зубочисток сегодня стоит 1 грн, то через 10 интервалов удвоения ее цена будет 1024 грн, а через 330 циклов — 10100 грн, гугол гривен!
10 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000. Это — гугол. Как видите, его довольно трудно написать. Еще труднее писать его всякий раз, когда этого требует космология. Но дело не только в этом. Дело в том, что гугол — колоссальное число! Попробуем взять любую совокупность, любое знакомое нам множество предметов, и сопоставим с гуголом. Заметьте, совокупности можно брать, какие заблагорассудится — разрешено все, что только ни придет на ум, самые большие множества, которые мы знаем. Вот число песчинок на всех-всех пляжах мира. Его можно оценить как 1023. Нужно что-нибудь «помногочисленней». С давних времен мерой неисчислимости было число звезд на небе — как насчет этого? В нашей галактике где-то 100 млрд звезд. Это 1011 — очень мало по сравнению с гуголом! Хорошо. Видимая область Вселенной вплоть до горизонта содержит «всего-навсего» 1022 звезд. Идем дальше. Количество всех частиц в известной нам части Вселенной (а большего количества реальных объектов в ней просто не существует), согласно некоторым предположениям, составляет от 1079 до 1081. Все равно до гугола не дотягивает!
Время удвоения для Вселенной, заполненной ложным вакуумом, невероятно короткое. И чем выше энергия вакуума, тем оно короче. В случае электрослабого вакуума Вселенная расширится в гугол раз за 0,333 × 10–5 с (одна тридцатая микросекунды), а в случае вакуума Великого объединения это случится в 1026 раз быстрее.
Поскольку ложный вакуум нестабилен, он в конце концов распадается, и его энергия зажигает огненный шар из частиц. Это событие обозначает конец инфляции и начало классической космологической эволюции. Тем самым, из крошечного исходного зернышка мы получаем горячую расширяющуюся Вселенную громадных размеров.
А в качестве бонуса в инфляционном сценарии удивительным образом исчезают проблемы горизонта и плоской геометрии, характерные для классической космологии!
Во Вселенной с ложным вакуумом гравитация отталкивающая. Вместо того чтобы замедлять расширение, она очень сильно ускоряет его. А если расширение ускоряющееся, то те области, которые сейчас абсолютно не связаны, вначале могли взаимодействовать и, следовательно, могли быть равными по температуре и плотности. Проблемы горизонта просто не возникает!
Проблема плоского пространства разрешается столь же легко. Поскольку инфляция увеличивает Вселенную в колоссальное число раз, нам видна лишь крошечная ее часть. Эта наблюдаемая область выглядит плоской подобно Земле, которая тоже кажется плоской, если стоять на ее поверхности. Но это совсем не значит, что пространство всегда было плоским. Как раз наоборот!
Итак, короткий период инфляции делает Вселенную большой, горячей, однородной и плоской, создавая как раз такие начальные условия, которые требуются для классической или, как говорят ученые, стандартной космологии Большого взрыва. Правда, для того, чтобы инфляционная теория работала, нужен специальный тип ложного вакуума, и он должен распадаться особым образом. В противном случае инфляционное раздувание Вселенной никогда не могло бы закончиться. Эта проблема даже получила в кругах специалистов собственное имя: проблема изящного выхода. Но она была с успехом решена в 1982 году «универсальным солдатом» современной космологии Андреем Линде, который тогда еще работал в Москве, а не в Стэнфорде. Так инфляционная стадия заняла свое незаменимое и почетное место в летописи эволюции Вселенной.
Но и это еще не все! В стандартной модели понятия Большого взрыва и сингулярности означали, по существу, одно и то же. Теперь, с учетом инфляционной стадии, их можно терминологически строго различать. Под Большим взрывом теперь можно понимать просто саму инфляционную стадию; это действительно похоже на колоссальный взрыв: Вселенная молниеносно и очень-очень сильно увеличивается в размерах по отношению к начальному сверхплотному вакуумоподобному состоянию, затем вакуум распадается, и она становится очень горячей. Большой взрыв перестает быть таинственным, хотя не становится от этого менее удивительным и поражающим воображение событием. Что же касается космологической сингулярности — «нулевого» момента времени, когда пространство стягивается в точку, когда плотность энергии стремится к бесконечности и перестают работать законы физики этого мира, — ее тайна так и остается неразгаданной.
2520 — самое маленькое число, которое можно делить без остатка на любое число от 1 до 10.
Ни в сказке сказать…
До сих пор мы предполагали, что начальной точкой инфляции была маленькая замкнутая Вселенная в состоянии ложного вакуума. Но почему бы не начать с небольшого кусочка ложного вакуума в бесконечной Вселенной? Такое начало тоже приводит к инфляции. К инфляции, которая порождает удивительную картину Вселенной. Как говорится, ни в сказке сказать!
Ложный вакуум имеет огромное натяжение, которое вызывает его отталкивающую гравитацию. Если он заполняет все пространство, то натяжение повсюду одинаково и нет никаких физических проявлений, кроме гравитационных. Но если ложный вакуум окружен истинным вакуумом? Тогда натяжение внутри больше не уравновешивается никакой внешней силой и заставляет кусочек ложного вакуума сжиматься. Можно подумать, что натяжению противостоит отталкивающая гравитация, но на самом деле это не так.
С помощью все той же ОТО Эйнштейна можно показать, что гравитационное отталкивание является чисто «внутренним». Так что, если вы выложите на стол кусочек ложного вакуума, предметы не будут отталкиваться от него. Вместо этого они станут притягиваться. Иными словами, снаружи от ложного вакуума сила гравитации проявляется как обычное тяготение.
Общий результат зависит от размеров кусочка. Если он меньше некоторой критической величины, побеждает натяжение и кусочек съеживается, как растянутая резинка. Затем, после нескольких колебаний, он распадается на элементарные частицы. Если размер больше критического, побеждает отталкивающая гравитация, и тогда ложный вакуум начинает раздуваться. В ходе этого процесса он искривляет пространство наподобие воздушного шарика. Во Вселенной, заполненной истинным вакуумом, появляется «приросток»: быстро-быстро раздувающаяся область!
Расширяющийся шар соединен с внешним пространством узкой «кротовой норой». Снаружи она видна как черная дыра, и внешний наблюдатель никогда не сможет увидеть, что внутри этой черной дыры скрывается огромная раздувающаяся вселенная. Аналогично, наблюдатель, который находится внутри раздувающейся вселенной-пузыря, увидит только крошечную часть всего пространства и никогда не узнает, что его вселенная имеет границу, за которой имеется другая большая вселенная.
Судьба пузыря из ложного вакуума принципиально зависит от того, превышает ли его радиус критическое значение. Его, как всегда, определяет энергия вакуума: чем больше плотность энергии, тем меньше критический радиус. Для электрослабого вакуума он составляет около 1 мм, а для вакуума Великого объединения — в 10 трлн раз меньше.
А что же дальше? Когда пузырь достаточно раздуется, в нем станет возможным образование новых областей с разными типами ложных вакуумов. Некоторые из них «сожмутся», и их энергия превратится в вихрь элементарных частиц. Но в некоторых начнется процесс инфляции, и они превратятся в громадные вселенные. Однако извне пузыря никто, увы, не сможет их увидеть: они будут выглядеть как темная пасть черной дыры.
Делом управляют два конкурирующих процесса: распад ложного вакуума и его «воспроизведение» в результате расширения инфляционно раздувающихся областей. Эффективность распада можно охарактеризовать временем, в течение которого распадается половина ложного вакуума. Эффективность воспроизведения задается «временем удвоения» — периодом, за который объем расширяющегося пространства, заполненного ложным вакуумом, увеличивается в два раза. Объем ложного вакуума будет сокращаться, если период полураспада короче времени удвоения, и расти — если ситуация противоположна.
Но анализ показывает, что период полураспада много превышает время удвоения. А значит, во Вселенной в целом инфляция никогда не заканчивается и рост инфлирующих областей продолжается беспредельно! Прямо сейчас, когда вы читаете эти строки, далеко-далеко в мановение ока раздуваются миры, заполненные ложным вакуумом. Но вместе с этим постоянно формируются области, подобные нашей, где инфляция закончилась. Там начинается классическая эволюция, подобная той, которую описали Фридман и Гамов. Там из огненной кутерьмы элементарных частиц образуются ядра атомов, складывающиеся в элементы, звезды, галактики. Там вокруг звезд кружат планеты, и на некоторых из них кипит жизнь. И мысль. В этом описании нет никакой фантастики, как может показаться. Только строгая наука!
Здесь теория инфляции вносит еще одну поправку в классическую космологическую картину. Если Большой взрыв — это просто инфляционная стадия, то нам уже не надо считать его одномоментным событием в нашем прошлом. Множество больших взрывов отгремело до него в отдаленных частях Вселенной, и бессчетное число других еще произойдет повсюду в будущем. Поэтому становится довольно нелогичным обозначать нашу область как Вселенную — с прописной буквы. Множество таких классических вселенных продолжают свою эволюцию, окруженные бездной ложного вакуума. Но из-за инфляции пространство между этими локальными вселенными быстро расширяется, создавая место для рождения все новых, подобных им. И вот вся эта грандиозная бесконечная картина называется Вселенной — Вселенной с большой буквы, Вселенная в целом.
В 1997 году шведские и американские астрономы, изучая туманность Бумеранг с помощью крупного телескопа, установленного в Чили, обнаружили, что окраины этой туманности — самое холодное место во Вселенной. Температура газа составляет здесь менее 3 К, то есть ниже –270 °C. В земных лабораториях получены и более низкие температуры, но в природе большего холода не найдено. Туманность Бумеранг представляет собой облако газа и пыли, выбрасываемое умирающей звездой со скоростью более 150 км/с. Это облако охлаждается по тому же принципу, что и камера компрессионного холодильника — в результате быстрого расширения газа.
Начинается все с маленького участка ложного вакуума. Далее появляются первые островки истинного вакуума. Это — классические вселенные; самые «старые» классические области в пределах данного рассмотрения. По мере того как границы этих вселенных раздвигаются в море инфляции, они быстро увеличиваются в размерах. Однако беспрерывно инфлирующая область ложного вакуума расширяется еще быстрее, так что пространство между классическими вселенными становится все больше, а во вновь образованных областях возникают новые и новые классические вселенные. Математики называют такую структуру фрактальной — похоже на капусту романеско: старые классические миры окружаются подобными им меньшими, вокруг которых располагаются еще меньшие, и так далее. И в отличие от капусты, этому нет и никогда не будет конца.
Нашествие наших собственных «клонов»
Если бы каким-то образом нам удалось извне наблюдать бесконечную инфляцию Вселенной, что бы мы увидели? Множество вселенных, разбросанных по безбрежному морю ложного вакуума. Это похоже на Землю, как ее видят космонавты. Колоссальный шар с континентами и архипелагами, окруженными океаном (правда, трехмерный), расширяющийся с невообразимой скоростью. Континенты-вселенные, тоже увеличивающиеся, а между ними постоянно появляются очень-очень маленькие новые острова — и немедленно начинают расти. Количество вселенных быстро умножается и стремится к бесконечности в бесконечном будущем.
Но обитатели этих «карманных», как назвал их однажды Алан Гут, вселенных, подобно нам, видят совершенно иную картину. Их вселенная не воспринимается ими как конечного размера остров. Изнутри это бесконечная вселенная, единственная, уникальная, все, что есть. Граница между этой вселенной и инфляционной частью пространства-времени — это Большой взрыв, случившийся для ее обитателей в определенный момент в прошлом. Мы не можем добраться до инфляционного моря просто потому, что невозможно переместиться в прошлое. Дело просто в том, что понятие времени в «островных» вселенных отличается от «глобального» времени, которое надо использовать для описания пространства-времени в целом (иначе не получается!).
Идем дальше. Поскольку каждая островная вселенная бесконечна с точки зрения ее обитателей, она может быть разделена на бесконечное число областей. Для определенности положим, что каждая из этих областей такого же размера, как наблюдаемая часть нашей вселенной. Выходит бесконечное пространство, разделенное на куски размером по 80 млрд световых лет каждый.
Как и в любой конечной системе, количество различных состояний (или конфигураций материи) в каждой из таких областей ограничено. Можно, конечно, надеяться вносить в систему все более и более мелкие изменения, чтобы породить бесконечное количество вариантов. Но это не получится, поскольку изменения, мало различающиеся по величине, будут неразличимы даже теоретически из-за квантово-механической неопределенности. В классической ньютоновской механике состояние физической системы можно описать, указав положения и скорости всех составляющих ее частиц. В квантовом мире частицы по самой своей природе очень странные. Они как бы размытые, как на фото без резкости, и не могут быть локализованы точно. В таком случае четко определенными (и отличимыми от других) могут быть только те состояния системы, которые собраны из достаточно крупных «зерен». Это как фото, снятое в не слишком большом разрешении: если мы будем просматривать картинку, увеличивая и увеличивая разрешение, будет все менее и менее понятно, что же на ней изображено. В конце концов, оно превратится в бесформенное размытое пятно.
Теперь, если историей называть цепочку состояний в последовательные моменты времени, тогда то же самое можно сказать о различных историях выделенной области вселенной.
В квантовом мире будущее не определяется однозначно прошлым. Одни и те же начальные условия могут вести ко множеству разных исходов, и мы можем подсчитывать лишь вероятности. В результате диапазон возможностей значительно расширяется. Но квантовая неопределенность вновь не позволяет нам различить истории, которые слишком похожи одна на другую. История состоит из конечного количества шагов, и любая ограниченная во времени история должна состоять из конечного количества моментов. В каждый момент система может находиться лишь в конечном числе состояний, а значит, и число различных историй системы должно быть конечным.
Количество возможных историй такой области от Большого взрыва до наших дней, как и следовало ожидать, огромно, порядка 10150. Это фантастически огромное число. Только для того, чтобы его записать, не хватило бы не то что страниц этой книжки, но и всего тиража, и, вероятно, всех тиражей издательства «Клуб семейного досуга» за всю его историю! Впрочем, само количество не так уж важно. Важно, что оно конечно.
Что же выходит? Если, согласно естественным следствиям из теории инфляции, «вложенные» вселенные бесконечны с внутренней точки зрения и если, с другой стороны, согласно квантовой теории, для конечного региона не может быть реализовано бесконечное количество историй, тогда каждая конкретная история должна повторяться в каком-то из других подобных регионов. Повторяться бесконечное число раз!
Среди этих бесконечно повторяемых сценариев должны быть весьма странные истории. Например, планета, такая же, как наша Земля, может вдруг сколлапсировать в черную дыру. Или она может совершить скачок на другую орбиту, значительно ближе к центральной звезде. Такие происшествия чрезвычайно маловероятны, но это лишь означает, что придется перебрать очень много областей, прежде чем найдется такая, в которой это случилось.
Также должны существовать области, где истории довольно похожи на нашу, но все же имеют небольшие по космическим меркам и существенные для нас вариации. Скажем, должны существовать планеты, в точности такие же, как Земля, под таким же небом, со всеми океанами и материками, горами и равнинами, деревьями и животными. Эти земли вращаются вокруг точных копий звезды по имени Солнце, и каждое Солнце находится на окраине огромной спиральной галактики — точной копии Млечного Пути. Но в 1991 году Советский Союз здесь не развалился, потому что генеральный секретарь ЦК компартии, председатель Президиума Верховного совета СССР, товарищ Леонид Ильич Брежнев все еще жив и продолжает систематически произносить свои речи! Он уже семижды герой, а мы продолжаем ходить на демонстрации, ездить на картошку, гордиться нашими ракетами и балетом и наслаждаться лучшей в мире колбасой по 2 рубля 20 копеек.
Однако, наверное, самым волнующим следствием этой картины является существование бесконечного количества миров, полностью идентичных нашему. Да, дорогой читатель, множество ваших абсолютных двойников держат сейчас в руках эту книгу.
Как далеко находятся все эти земли, населенные нашими двойниками? Мы знаем, что материя, содержащаяся в видимой области нашей вселенной, может находиться в 10 в степени 1090 различных состояний. Тогда объем, содержащий, скажем, гуголплекс (10 в степени 10100) подобных областей, должен исчерпать все возможности. Такой объем будет иметь поперечник порядка гуголплекса световых лет. На больших расстояниях области, включая нашу, будут повторяться.
Все это, конечно, при банальном уточнении, что в этой картине должны существовать миры, которые очень сильно отличаются от нашего, и таких миров будет в огромное количество раз больше, чем точных и неточных повторений…
Какая-то чепуха! Почему мы должны всему этому верить?!! Ибо это выглядит не безобидно-фантастически, а весьма драматично. В самом деле, как же быть с нашей идентичностью, с нашей личной неповторимостью и ценностью, с нашей бессмертной душой? И согласились бы мы, чтобы так выглядело то, что называется бессмертием?
Но давайте придержим эмоции. Мы видели, что картина, которая была описана выше, возникает как следствие теории инфляции, согласно которой локальные вселенные бесконечны внутри и каждая из них содержит бесконечное множество конечных областей заданного размера. Она также опирается на квантовую механику, говорящую, что существует лишь конечное количество историй любой конечной области, а также что все сколько-нибудь вероятные истории обязательно реализуются в пределе бесконечного времени. Объединяя эти утверждения, мы с неизбежностью приходим к выводу, что каждая конкретная история должна повторяться бесконечное число раз.
Что этому может помешать? Прежде всего, есть вероятность, что теория инфляции неверна. Идея инфляции очень убедительна и подтверждается наблюдениями, но, конечно, далеко не в той мере, как, например, теория относительности Эйнштейна.
Далее, можно допустить, что даже если наша Вселенная является продуктом инфляции, сама инфляция не вечна. Это сразу же потребует довольно серьезных натяжек в теории. Чтобы избежать вечной инфляции, «энергетический ландшафт» соответствующего ложного вакуума должен быть специальным образом подогнан под наши требования.
Большая цена! Теория инфляции — это самое лучшее из имеющихся у нас объяснений Большого взрыва. Если мы не станем ее калечить, добавляя совершенно произвольные свойства, у нас не будет иного выбора, кроме как признать инфляцию вечной, со всеми вытекающими из этого последствиями, нравятся они нам или нет.
Ладно. Но не является ли банальностью, что в бесконечной Вселенной должно случиться абсолютно все? Нет, не является! Бесконечность пространства сама по себе не гарантирует, что реализуются все возможности. Например, по всему пространству могла бы бесконечно повторяться одна и та же галактика.
Существование наших копий в нашей вселенной, таким образом, не самоочевидно, а опирается на предположение о пространственной бесконечности и о квантовой обязательности осуществления всех мало-мальски возможных событий во Вселенной. Важно, что в случае бесконечной инфляции эти свойства не нужно вводить как дополнительные предположения. Из самой теории вытекает, что локальные вселенные бесконечны и что начальные условия в момент Большого взрыва задаются случайными квантовыми процессами во время инфляции. Существование клонов, таким образом, является неизбежным следствием физической теории.
Для оценки межзвездных расстояний применяют две единицы измерения: световой год и парсек. Световой год равен расстоянию, которое проходит свет за год, то есть приблизительно 9460 млрд км. Парсек определяется как такое расстояние, с которого радиус земной орбиты виден под углом в одну секунду дуги. Это очень маленький угол: под таким углом монета в одну копейку видна с расстояния в 3 км. Один парсек (пк) составляет около 3,26 светового года, то есть приблизительно 30 трлн км.
Пустота имеет вес
Теория инфляции объясняет, как видимая область нашей вселенной может получиться плоской (то есть пространство должно иметь всем нам хорошо знакомую из средней школы эвклидову геометрию). Если вы летите над Землей на очень большой высоте, вы видите, что Земля — шар. Но когда вы стоите на поверхности Земли, она представляется вам плоской, насколько глаз хватает, вплоть до горизонта, ведь Земля очень большая, и ее шарообразности с высоты человеческого роста не заметишь.
Теоретически «эвклидовость» пространства равнозначна тому, что плотность массы или энергии во вселенной с очень высокой точностью равняется некоторому критическому значению.
Из чего же складывается этот необходимый критический уровень энергии? Обычное вещество дает только несколько процентов! Есть, конечно, так называемая «темная материя». Название довольно зловещее, но оно никак не связано с «темными силами», «нечистым» и тому подобным «злом». Просто эту материю нельзя наблюдать непосредственно — она проявляется в гравитационном воздействии на наблюдаемые объекты: звездные скопления, галактики и т. д. Согласно современным данным, «темной материи» во вселенной примерно в 10 раз больше, чем обычного вещества. Однако если сложить плотность массы или энергии того и другого, получится всего лишь порядка 30 % нашего критического значения. 70 % не хватает!
В 1998 году две независимые исследовательские группы, измерявшие яркость взрывов сверхновых в далеких галактиках и с помощью этих данных уточнявшие темп космологического расширения, объявили о поразительном открытии. Оказалось, что вместо замедления под действием гравитации (звезды и галактики ведь притягиваются друг к другу!) скорость расширения в действительности возрастает. Это открытие говорило о том, что Вселенная заполнена некой гравитационно отталкивающей субстанцией. Проще всего было предположить, что истинный вакуум, в котором мы обитаем, имеет ненулевую плотность массы. (Как нам сообщил Эйнштейн, вакуум является гравитационно отталкивающим, и если плотность превышает половину плотности массы вещества, суммарным результатом будет отталкивание.)
Плотность массы истинного вакуума — это то, что Эйнштейн называл космологической постоянной, идея, которую он сам (мы помним) признал величайшей ошибкой своей жизни. Подчеркнем, речь идет об истинном, именно об истинном вакууме. Физика высокоэнергетичного ложного вакуума — дело сейчас довольно понятное, но совсем другое. А то, что абсолютная пустота обладает ненулевой энергией, было полным удивлением для научного сообщества. Но не для теории инфляции. Для инфляционной теории это был настоящий триумф! Ведь, согласно данным наблюдений, плотность массы пустого пространства оказалась в точности такой, какая необходима, чтобы оправдать недостающие 70 % критической плотности и тем самым объяснить предсказанную плоскую геометрию видимой области нашей вселенной. Конечно, вряд ли это могло быть простым совпадением.
Однако проблема была гораздо более серьезной. Дело в том, что вся теоретическая физика элементарных частиц базировалась на том условии, что энергия пустоты скомпенсирована некоторыми противоположными влияниями, так что в сумме строго должна равняться нулю. Из теории следовало, что на микроскопическом уровне флуктуации (то есть случайные всплески энергии) квантовых полей дают мощный вклад в энергию вакуума, но таким образом, что в сумме точно уравновешивают друг друга. Данные о ненулевом значении космологической постоянной рушили все здание физики элементарных частиц (а оно было очень недурно построено)! Более десяти лет напряженных поисков выхода ни к чему не привели. То обстоятельство, что эти же данные являются подтверждением какого-то там инфляционного сценария в космологии, никак не могло служить компенсацией. Дело доходило до того, что физики (причем физики «первого дивизиона») просто отказывались верить им и даже заключали пари с коллегами о том, что энергия вакуума — сплошное недоразумение и это очень скоро выяснится. Но время шло, пари проигрывались, и все мало-помалу понимали, что «ошибка» Эйнштейна превратилась в проблему. Ее назвали «проблема космологической постоянной». Однако мало кто ожидал, что космологическая постоянная очень скоро станет триумфом Эйнштейна!
Космическое радиоизлучение было открыто в декабре 1931 года американским физиком Карлом Янским, который изучал природу шумов, мешающих радиосвязи, а также причины помех в дальних телефонных линиях. С помощью 30-метровой антенны он неожиданно обнаружил радиоизлучение на волне 14,7 м, исходящее из обширной области в центре Млечного Пути. Астроном-любитель и радиолюбитель Грот Ребер, узнав о работах Янского, сконструировал параболическую антенну диаметром 9 м и открыл источники радиоизлучения в созвездиях Стрельца, Лебедя, Кассиопеи, Малого Пса, Кормы и Персея. Он же установил, что Солнце также является источником радиоволн. Так родилась радиоастрономия, позволившая открыть радиогалактики, пульсары, межзвездный газ и реликтовое излучение.
Из данных новых наблюдений выходило, что энергия вакуума, в котором мы живем, или космологическая постоянная не просто не равняется в точности нулю, но что она сравнима с плотностью вещества во Вселенной. А это выглядело очень странным! Всякому даже без физики понятно, что пустота — это одно, а материя — это совсем другое. И действительно, в процессе расширения Вселенной плотность энергии вакуума не должна изменяться, тогда как плотность вещества, конечно, падает (объем-то Вселенной растет). Причем диапазон изменения плотности материи оказывается ну очень большим. Приблизительные оценки говорят, что если сегодня две обсуждаемые плотности примерно равны, то через секунду после Большого взрыва плотность материи была в 1045 раз выше! С другой стороны, через триллион лет она будет в 1050 раз меньше. Сорок пять или пятьдесят нулей после десятки… Одна из величин постоянна, другая изменяется в таких «сумасшедших» пределах. Но мы наблюдаем Вселенную как раз в тот самый момент, когда эти величины одинаковы. Можно просто «не заметить» этого обстоятельства. Но для настоящего ученого это «точка остановки». Здесь нужно остановиться и думать, ибо таких совпадений не бывает! Здесь, скорее всего, зашифровано нечто важное и глубокое.
Фундаментальные постоянные, или Слава тебе, Господи!
Есть переменные величины, есть постоянные. Но существует особый класс величин, которые называют фундаментальными постоянными. Почему наука их выделяет? Потому что эти несколько чисел определяют, так сказать, «общую схему» всех возможных в природе явлений. К числу этих постоянных относятся массы некоторых элементарных частиц и параметры, характеризующие четыре фундаментальных взаимодействия — сильное, электромагнитное, слабое и гравитационное. Соотношение масс протона и электрона равно 1/1836 — ни больше, ни меньше. Нейтрон тяжелее протона на 0,14 %. Если мы возьмем два протона, то их взаимная гравитация будет в 1040 раз слабее их электрического отталкивания.
Можно ли считать список фундаментальных констант исчерпывающим? Нет, вряд ли. Значения некоторых неизвестны, хотя ясно, что они есть. Не исключено, что список изменится, если будут открыты новые элементарные частицы.
Однако гораздо более важным и волнующим является другое. Исследования в различных областях физики обнаружили, что многие существенные особенности нашей Вселенной чувствительны к точному значению некоторых чисел. Предположим, например, что нейтрон стал весить немного меньше протона. Тогда протоны окажутся нестабильными и станут распадаться на электроны и позитроны. Электроны на орбитах держать будет нечем, и атомы тоже распадутся. Свободные электроны начнут активно соединяться с позитронами и взаимоуничтожаться, испуская фейерверк фотонов. В итоге мы останемся в так называемом «нейтронном мире», состоящем из изолированных нейтронных ядер и излучения. В этом мире не будет химии, не будет сложных структур, не будет жизни.
Теперь, наоборот, чуть-чуть увеличим массу нейтрона. В таком случае нейтроны в атомных ядрах превратятся в протоны, ядра разорвутся из-за электрического отталкивания протонов, а свободные протоны «сольются» с электронами и образуют атомы водорода. Получится «водородный мир», в котором будет только водород, много-много водорода, но никаких других элементов. Довольно уныло!
Изменим силу слабого взаимодействия между частицами — и мы больше не увидим взрывов сверхновых. Ладно, скажете вы, сверхновые же очень далеко, это нас не касается. Касается! Без вспышек сверхновых тяжелые элементы оставались бы замурованными внутри звезд, и мы бы имели только легкие элементы, образовавшиеся во время Большого взрыва: водород, гелий, дейтерий и немножечко лития — жизнь из таких кубиков никак не образовать!
Из четырех фундаментальных взаимодействий гравитация намного слабее всех остальных. Так может быть, от величины гравитационной силы ничего не зависит? Зависит! Но влияние гравитации становится существенным, только если у вас есть то-то вроде звезд или галактик. Именно слабость гравитации делает звезды большими. Если сделать ее сильнее, звезды станут меньше и будут прогорать быстрее. Даже небольшого усиления гравитации довольно для того, чтобы сделать время жизни звезд много меньше тех нескольких миллиардов лет, которые, как ни крути, требуются для появления разумной жизни.
Примеры можно приводить и дальше. Впрочем, и так уже ясно: налицо тончайший баланс между всего лишь несколькими величинами — свойствами Вселенной, от которого зависит, будет ли кому написать и прочитать о ней хоть слово или она окажется «безвидная и пустая». Речь идет о нашем присутствии в мире. Может быть, это указание на существование Творца? Он не лепит людей из глины, но производит тонкую настройку мира, с тем, чтобы существование людей стало физически возможным событием. И если нет, существует ли другое объяснение?
Самые яркие объекты во Вселенной — квазары. Это ядра активных галактик.
Антропный принцип
Как сказал однажды Михаил Жванецкий, вначале было слово, но судя по тому, что случилось дальше, слово было непечатным.
Представьте обезьяну, молотящую по клавишам пишущей машинки. Конечно, произведения, вышедшие «из-под пера» такого писателя, вряд ли кто-нибудь захочет напечатать — никакого смысла, только беспорядочный набор букв. Но если обезьяна будет «трудиться» достаточно долго, есть вероятность, что среди этих никчемных текстов окажется «Я помню чудное мгновенье».
Может быть, Создатель ничего специально не настраивал и не подгонял? Может быть, Он не слишком-то и заботился о нас? Может быть, Он, подобно нашей обезьяне, в беспорядке «надувал» вселенную за вселенной, как надувают мыльные пузыри, в огромном количестве, с различными наборами фундаментальных постоянных, и следовательно, с различными наборами свойств и внутренних возможностей. Подавляющее большинство из них вышли весьма унылыми, мрачными и тоскливыми. Однако среди них встретились и такие, которые обладали набором параметров, удобных для возникновения и продолжения жизни. Слава Богу! Счастливый случай!
Но тогда нет никакого божественного чуда в том, что все разумные существа станут наблюдать вокруг себя миры с редкими, удивительно удачно подобранными и выверенными свойствами. Штука в том, что других миров они никогда не увидят просто потому, что их возникновение и существование в этих мирах будет решительно невозможным; эти вселенные некому будет наблюдать!
Этот ход рассуждений известен как антропный принцип. Название было придумано в 1974 году кембриджским астрофизиком Брэндоном Картером, который сформулировал его так: «…все наши ожидания в отношении возможных наблюдений должны быть ограничены условиями, необходимыми для нашего существования как наблюдателей».
Антропный принцип — это хороший критерий отбора физических теорий. Теории, которые не допускают существование в мире живых и разумных наблюдателей — это неудачные теории. Они противоречат сами себе, ибо если мир действительно таков, то их просто некому было бы придумать! Но физики антропную аргументацию очень не любят, прежде всего потому, что следствия из нее нелегко ни подтвердить, ни опровергнуть посредством эксперимента. Почему так? Да потому, что антропное предсказание требует существования того, что не так давно стали называть Мультиверсом.
Понятие Мультиверса было введено Мартином Рисом, английским королевским астрономом и, кстати сказать, бывшим одноклассником Брэндона Картера. «Universe» по-английски значит «вселенная», а «Multiverse» — «много вселенных». Это грандиозный ансамбль, который включает много, очень много или даже бесконечное множество различных «доменов» или «вселенных» с различными наборами фундаментальных постоянных и физических свойств. Рассматривают три вида мультиверсных ансамблей. Первый — это когда одно пространство-время, одна Вселенная разделена на множество регионов. Второй вид состоит из отдельных, не связанных и независимых вселенных. И третий — смешанный: множество вселенных, состоящих из множества регионов.
Мультиверс сам по себе похож на фантастический сюжет. До недавнего времени таковым он и оставался: даже надеяться на то, чтобы получить его в рамках научной теории, представлялось ненаучным. Но теория вечной инфляции описывает именно Мультиверс — вспомним «глобальную Вселенную», «Вселенную вселенных». Описывает научно, а не фантастически, хотя, как мы убедились на предыдущих страницах, иногда описание это выглядит совершенно фантастическим!
В 1910 году Земля прошла через хвост кометы Галлея, одной из составляющих которого является ядовитый газ циан. Один из ведущих астрономов того времени Камиль Фламмарион заранее предсказал, что этот газ отравит атмосферу и может убить все живое на планете. В связи с этим население усиленно покупало защитные маски, а также выпущенные предприимчивыми производителями противоциановые пилюли и зонты. В итоге оказалось, что ядовитый газ в хвосте кометы был очень разрежен и не оказывал никакого влияния на живых существ.
Применение антропного принципа — все еще крайняя мера в физике. Но если какая-то проблема и требовала применения крайних мер, то это проблема космологической постоянной. А теперь подумаем. Ведь у нас есть теория Мультиверса — это теория вечной инфляции. Квантовые процессы во время вечной инфляции неизбежно порождают огромные области со всеми возможными значениями фундаментальных постоянных. А это значит, что вечная инфляция естественным образом создает условия для применения антропного принципа! Если мы, исходя из теории инфляции, вычислим распределение значений космологической постоянной по разным вселенным, то, используя антропные соображения, сможем сделать проверяемые предсказания для значения этой постоянной у нас, в нашей вселенной.
Так мы убиваем сразу не двух, а трех «зайцев». Во-первых, мы можем объяснить, почему значение космологической постоянной у нас ненулевое. Во-вторых, если наши предсказания совпадут с наблюдениями (а так оно и выходит, пусть только статистически), теория вечной инфляции получает экспериментальное подтверждение. А это дорогого стоит, учитывая то, что речь идет о Мультиверсе, а не о булках и елках! И наконец, в-третьих, посредством теории инфляции мы переводим антропные аргументы из метафизических во вполне физические, в такие, на основе которых можно делать проверяемые в эксперименте предсказания.
Неужели Творцу, глядя на все это, и вправду доведется уйти на покой? Не уподобляться же Ему, в самом деле, пускающей мыльные пузыри обезьяне?
Последние пределы
Когда речь идет о предельных величинах и событиях, о самых последних пределах, теория самого большого требует согласования с теорией самого малого. Космология тогда ищет поддержки у теории элементарных частиц, а та, в свою очередь, использует результаты космологии. Согласованная теория всего — мечта физика: теория, одной математической структурой определяющая принципы всех физических явлений. В чем отличительные черты такого согласования? Это не только сложность и разнообразие параметров. Это в большей степени глубина и соединение несоединимого, выраженные с большим изяществом. Здесь трудно подобрать примеры…
Теория вечной инфляции открывает путь к прояснению проблемы космологической постоянной и тонкой настройки других фундаментальных констант. Но что же с физикой элементарных частиц?! Она по-прежнему предсказывает, что космологическая постоянная точно равна нулю. Вычисленные на основе так называемой Стандартной модели вклады в плотность энергии вакуума (между прочим, вычисленные на основании тончайших измерений фундаментальных констант) как будто сговорились компенсировать друг друга с высочайшей, порядка 1/10120 точностью!
Разработка Стандартной модели была завершена в 1970-е годы. Получившаяся теория дала точную математическую схему, которая могла использоваться для определения результатов столкновения любых известных частиц. Эта теория проверена в бесчисленных экспериментах на ускорителях, и на сегодня она подтверждается всеми имеющимися данными. Стандартная модель также предсказала наличие и свойства новых элементарных и субэлементарных частиц, которые все были позднее открыты. По любым меркам это феноменально успешная теория. Но и у нее есть проблемы, причем касающиеся не только космологической постоянной.
Прежде всего, Стандартная модель слишком громоздкая. Мир не может так «вязнуть в зубах»! Модель включает в себя более 60 элементарных частиц — не слишком большой шаг вперед по сравнению с количеством элементов таблицы Менделеева. В модели 25 настраиваемых параметров, которые должны выводиться из экспериментов, но с позиций теории их значения совершенно произвольны.
Далее, гравитация — важнейшее взаимодействие (правда, наиболее важное как раз в космологии) — остается за бортом модели. Успех Стандартной модели говорит о том, что мы на правильном пути, но ее недостатки указывают, что поиск должен продолжаться.
Большинство физиков ныне возлагают надежды на принципиально новый подход к квантовой гравитации — теорию струн. Она предлагает единое описание всех частиц и их взаимодействий и является самым многообещающим из всех кандидатов на роль универсальной теории. Согласно теории струн, частицы, подобные электронам или кваркам, которые кажутся точечными и потому считаются элементарными, на самом деле являются крошечными колеблющимися колечками из струн. Струны бесконечно тонки, а длина колечек сравнима с так называемой планковской длиной (это размер, для которого становятся существенными разные диковинные квантовые эффекты, не подчиняющиеся обычным физическим законам). Частицы кажутся бесструктурными точками потому, что планковская длина крайне мала, она составляет всего лишь 1,6 × 10–35 м (одну миллиардно-триллионно-триллионную долю сантиметра).
Что особенно замечательно, спектр состояний струн с необходимостью включает гравитон — частицу, переносящую гравитационное взаимодействие. В теории струн нет проблемы объединения гравитации с другими взаимодействиями; наоборот, ее нельзя построить без гравитации.
Конфликт между гравитацией и квантовой механикой также исчезает. До недавнего времени у ученых не было квантовой теории гравитации — то есть теории гравитации на уровне элементарных частиц. Не было даже намеков на сколько-нибудь вразумительную форму такой теории. Эта проблема связана с квантовыми флуктуациями самой геометрии пространства-времени. Ниже некоторого критического размера, который как раз и есть наша планковская длина, пространство-время теряет гладкость и непрерывность, а главное — точную определенность и превращается в хаотическую, пенообразную структуру. Это так называемая пространственно-временная пена.
Пространство неистово закручивается и сминается, крошечные «пузырьки» отрываются от него и немедленно коллапсируют, возникает и мгновенно исчезает множество «ручек» или «туннелей». Практически в любых сколько-нибудь больших масштабах пространство выглядит гладким и пространственно-временная пена просто незаметна.
В теории струн крошечные струнные колечки не изменяются в размерах; они невосприимчивы к таким субпланковским флуктуациям: пространственно-временная пена укрощается как раз в тот момент, когда она должна была начать причинять неприятности. Таким образом, впервые мы получаем согласованную квантовую теорию гравитации.
В струнной теории нет произвольных, подстраиваемых параметров, так что она не допускает никаких настроек и подгонок. Это не преувеличение: их действительно нет, ни одного. Все, что мы можем сделать, — это открыть ее математическую структуру и посмотреть, соответствует она реальному миру или нет. К сожалению, математика этой теории невероятно сложна.
Теория жестко фиксирует даже количество измерений пространства: она требует, чтобы пространство имело целых 9 измерений. Это звучит довольно странно: почему мы вообще должны рассматривать теорию, которая находится в столь вопиющем противоречии с нашей трехмерной реальностью? Противоречие это можно, однако, обойти, если считать, что 6 лишних измерений свернуты или, как говорят физики, компактифицированы. Представим себе соломинку для коктейля. Она имеет одно открытое изменение — это ее длина. То, что на самом деле у нее есть и другое изменение, почти не видно — оно как бы скручено, свернуто.
Теоретики надеялись, что в итоге теория приведет к единственной компактификации, которая описывает наш мир, и мы получим наконец объяснение наблюдаемых значений всех параметров элементарных частиц. Но дело поворачивалось по-другому: теория, как выяснилось, допускает тысячи различных компактификаций.
Дальше — больше! По мере того как улучшалось понимание математики теории струн, становилось ясно, что вдобавок к одномерным струнам теория должна включать двумерные мембраны, а также их многомерные аналоги. Все эти новые объекты назвали собирательно бранами. Маленькие вибрирующие браны должны выглядеть как частицы, но они слишком массивны, чтобы рождаться на ускорителях. С бранами связан один неприятный эффект: они радикально увеличивают количество способов, которыми можно конструировать новые виды вакуума. Брана может, как резиновая лента, накручиваться на некоторые компактные измерения. Каждая стабильная конфигурация браны дает новый тип вакуума. Можно накрутить одну, две и более бран на каждую ручку компактного пространства, и при большом количестве ручек число вариантов становится просто чудовищным. В уравнениях теории нет подстроечных констант, но их решения, описывающие различные состояния вакуума, характеризуются сотнями параметров: размерами компактных измерений, расположением бран и т. п. Поведение вакуума в зависимости от этих параметров называют ландшафтом теории струн.
Если у нас есть два параметра, можно представить ландшафт двумерным. Не путайте, пожалуйста, с измерениями пространства! Это не пространство, это представление различных состояний. «Пики» не относятся к вакууму. А вот «впадины» — это как раз состояния истинного вакуума. То, насколько высоко или низко расположена «впадина», представляет вакуум с соответствующей плотностью энергии — то есть с определенным значением космологической постоянной.
В действительности энергетический ландшафт теории струн гораздо более сложен! Чтобы учесть все параметры, нужно пространство с несколькими сотнями измерений. Грубые оценки показывают, что ландшафт включает в себя около 10500 различных вакуумов (опять гуголплексное число, да еще какое!). Его нельзя изобразить. Но существует не только наглядное изображение — ландшафт можно анализировать математическими методами. Одни вакуумы похожи на наш, другие имеют совершенно иные значения фундаментальных постоянных. Есть и такие вакуумы, которые поддерживают абсолютно другие частицы и взаимодействия или/и имеют свыше трех больших (то есть не свернутых, некомпактифицированных) измерений.
Когда стали проступать контуры этого ландшафта, надежда вывести из теории струн один уникальный тип вакуума (и, следовательно, один существующий мир) развеялась как дым.
Проблема космологической постоянной оказалась своего рода лакмусовой бумажкой современных фундаментальных исследований. Космология в лице теории вечной инфляции довольно хорошо умеет обращаться с ней. Теория самого малого — физика элементарных частиц — очень нелегко переживает ее. Это стало для науки показателем какой-то важнейшей необходимости. И указанием пути. Нужно было каким-то образом склонить космологическую теорию к работе на стороне теории элементарных частиц. Нужно было найти возможности согласования и содействия. Некоторые талантливые и чуткие к ситуации физики это поняли и встали на этот путь. Первыми были Рафаэль Буссо и Джозеф Полчински: они сделали то, что давно «стучалось в двери» фундаментальной науки и диктовалось самим естественным ходом событий. Они объединили картину струнного ландшафта с идеями инфляционной космологии и показали, что в ходе вечной инфляции будут порождаться области со всеми возможными вакуумами.
Джозеф Полчински — блестящий теоретик, ведущий специалист по теории струн. Между тем, с его именем связан один курьез, который заслуживает нашего внимания. Полчински заявил своим коллегам, что бросит заниматься физикой, если будет открыто, что космологическая постоянная имеет значение, не равное строго нулю. Ведь значение, полученное в экспериментах, могло иметь только антропное объяснение: постоянная должна быть именно такой, малой, но ненулевой, фактически из-за нас и ради нас! На это Полчински согласиться не мог — он не переносил антропных рассуждений. Но теперь главное занятие его жизни — теория струн — подвело его к тому, что он был не прав, и Полчински изменил свое решение и в отношении физики (надо сказать, к счастью для последней), и в отношении антропного принципа.
Буссо и Полчински показали, что в ходе вечной инфляции будут порождаться области со всеми возможными вакуумами. Некоторые из этих областей станут сразу «съеживаться», коллапсировать, но некоторые — расширяться. Самый высокоэнергичный вакуум будет расширяться быстрее всех. На этом инфляционном фоне начнут зарождаться пузырьки менее энергичных вакуумов. Внутренние области пузырьков будут инфлировать тоже, только в меньшем темпе, и в них появятся пузырьки с еще меньшей энергией. В результате будет задействован весь ландшафт теории струн — образуется бесчисленное множество пузырьков со всеми возможными типами вакуума.
Мы живем в одном из пузырьков, но теория не говорит, в каком именно. Лишь очень малая доля из них пригодна для жизни, и мы должны оказаться именно в одном из таких редких пузырьков. Но именно так работает антропный принцип! Поэтому в 2003 году Леонард Сасскинд ввел термин «антропный ландшафт теории струн» и детально описал, как разнообразие вакуумов в теории струн впервые дает серьезную научную основу для антропных рассуждений. Струнные теоретики, говорил он, должны поддерживать антропный принцип, а не бороться с ним.
Конечно, впереди еще очень много работы. Необходимо подробно «картировать» струнный ландшафт. Какие типы вакуумов существуют? Какие семейства объектов связаны с каждым типом? Ясно, что все 10500 мы охарактеризовать не сможем. Правда, для выхода из этой ситуации существует математическая статистика и теория вероятностей. Необходимо также оценить вероятность появления пузырьков с одним типом вакуума по сравнению с другим. После этого у нас будут все ингредиенты для разработки модели вечно инфлирующей Вселенной с пузырьками внутри пузырьков внутри пузырьков (можно было бы еще добавить «внутри пузырьков» — этот процесс не ограничен).
Далее можно применить антропный принцип для определения вероятности нашего существования в том или ином типе вакуума, в том или ином пузырьке. Итак, мы начинали с Universe — единственной и уникальной фридмановской Вселенной. Затем теория вечной инфляции, прямо-таки сообразно своему названию, молниеносно раздвинула пределы мира и превратила Universe в Multiverse — множество вселенных в море инфляции. Теория струн как теория самого малого в содружестве с инфляционной космологией породила совершенно невиданный объект, который, с легкой руки Леонарда Сасскинда, мы могли бы называть Megaverse. «Я готов держать пари, — пишет Леонард Сасскинд, — что к началу XXII века физики будут с ностальгией оглядываться на наше настоящее, вспоминая золотой век, когда узкая и ограниченная концепция Вселенной XX века уступила место гораздо более широкому и масштабному Мегаверсу, населяющему ландшафт ошеломительных размеров».
Каждые сутки на Землю падает порядка 200 тыс. метеоритов. Ежегодно тонны межпланетной пыли достигают Земли. Поэтому за последние 500 лет масса Земли увеличилась на миллиард тонн.