Таинственный геном человека — страница 17 из 50

Eagle. Предложение русского физика заставило Уотсона и Крика возобновить обсуждение загадки белков.

Вскоре после этого Уотсон вернулся в Америку, и пара ученых лишилась возможности обмениваться идеями. Более того, работа над этой задачей остановилась на несколько лет.

Летом 1954 года Крик и Уотсон снова воссоединились на три недели в Вудс-Холе в штате Массачусетс. Там же присутствовали Гамов и его жена. После обеда Крик и Уотсон обычно сидели вместе с семьей Гамовых на берегу, смотрели, как великий физик показывает карточные фокусы, и болтали все о той же загадке. После письма Крику Гамов составил список людей, которые тоже интересовались ее решением. Через какое-то время, не без участия Уотсона и Дельбрюка, была организована «вечеринка с виски и РНК», приглашения на которую получили лишь ученые из списка Гамова. Из нее вырос «клуб галстуков РНК», своего рода джентльменский клуб, насчитывающий всего 20 членов — по количеству аминокислот. Помимо Крика, Уотсона и Гамова в него вошли Мартинас Ичас, Алекс Рич и Сидни Бреннер, выходец из ЮАР и выпускник Оксфорда. Весной 1953-го Бреннер вместе с группой молодых ученых приехал из Оксфорда в Кембридж, чтобы встретиться с Уотсоном и Криком и посмотреть на их модель. На тот момент он занимался написанием докторской диссертации по молекулярной биологии и изучал бактериофаги. Во время прогулки с Уотсоном по саду Бреннер узнал об эксперименте Херши и Чейз. В момент создания клуба Бреннер был научным сотрудником лаборатории молекулярной биологии Совета медицинских исследований в Кембридже, но не утратил интереса к ДНК и генетике. Каждый из членов клуба получил по особому галстуку, сшитому в Лос-Анджелесе по проекту Гамова. Булавки для галстуков были разными — на каждой было написано сокращенное название одной аминокислоты. Например, на булавке Крика стояли буквы tyr — тирозин. Разумеется, это была всего лишь игра, ведь члены клуба даже не встречались вживую. Но, как и в случае с фаговой группой, они обменивались всеми публикациями и новостями, которые могли принести пользу общему делу. По словам британского журналиста и писателя Мэтта Ридли, составившего биографию Фрэнсиса Крика, последний являлся «главным мыслителем-теоретиком… дирижером в этом научном оркестре».

Бреннер математически доказал, что идея перекрывающих друг друга триплетов бесперспективна. К Крику и Лесли Оргелу присоединился друг и соратник Крика, молодой валлийский математик Джон Гриффит, попытавшийся исключить некоторые триплеты, которые попросту не могли бы существовать. Например, он вычеркнул из списка триплет ААА, потому что при расположении рядом с идентичной буквой А он мог бы вызвать затруднения. Методом исключения они рассчитали, что может существовать всего 20 осмысленных вариаций. Результаты этой работы были опубликованы в 1957 году в Proceedings of the National Academy of Science. К сожалению, они были абсолютно неверными.

Тем не менее у членов клуба уже появлялись кое-какие полезные идеи. Ген с его длинной нитеобразной молекулой, состоящей из определенных последовательностей Г, А, Ц и Т (иногда до тысячи или более букв), кодирует определенный белок, имеющий аналогичное строение — длинную цепь из 20 аминокислот, также расставленных в определенном порядке. Члены клуба знали, что серповидно-клеточная анемия (заболевание, характеризующееся наличием в красных клетках крови гемоглобина с аномальной структурой) вызывается мутацией в гене, кодирующем бета-глобин. Поломка в генетическом коде выражалась в неправильном строении гемоглобина. Крик обратил внимание на поступающие из разных источников идеи о том, что в переходе от генов на основе ДНК к сборке белков в рибосомах, скорее всего, участвуют две разные формы РНК. Одна форма, которую мы сегодня называем информационной РНК, или иРНК, копирует код всего гена из хромосомы внутри ядра и переносит его к рибосомам. Интересно, что информационная РНК была открыта группой исследователей в гарвардской лаборатории Уотсона. Вторая форма РНК, названная транспортной РНК, или тРНК, выбирает отдельные аминокислоты и, действуя в соответствии с кодом иРНК, присоединяет их по одной к формирующейся белковой цепочке. Таким образом, код, записанный нуклеиновой кислотой, переносится к месту строительства белков и воплощается в нем на практике.

Кодирующие триплеты ДНК путем проб и ошибок были в конце концов открыты группой, в которую входили Маршалл Ниренберг, Хар Гобинд Коран и Северо Очоа. Сегодня мы знаем, что триплеты ДНК, или кодоны, кодируют конкретные аминокислоты, но при этом одной аминокислоте может соответствовать более одного кодона. Например, для аминокислоты лейцина существует шесть различных кодонов (ЦТТ, ЦТЦ, ЦТА, ЦТГ, ТТА и ТТГ), для фенилаланина — две (ТТТ и ТТЦ), а для метионина всего одна (АТГ). Кроме того, некоторые варианты триплетов (ТАА, ТАГ и ТГА) не кодируют аминокислоты, но являются генетическим вариантом точки, которая ставится в конце последовательности аминокислот, прекращая сборку белка. Они известны как стоп-кодоны, или терминаторы.

Итак, очередной шаг к пониманию общей картины был сделан, но он вызвал новые вопросы. «Фабрики» по производству белка нуждаются в контроле. Как именно клетка понимает, какой белок ей нужно собирать? Как она решает, что на данном этапе жизни ей требуется именно этот белок? Как запускается и останавливается производство?

* * *

Возможно, вы помните, что большой вклад в открытие Крика и Уотсона внесла фаговая группа — сообщество ученых из разных стран мира, работающих с вирусами, заражающими бактерии. Троица ученых из Парижа, Андре Мишель Львов, Жак Моно и Франсуа Жакоб, занимались изучением фагов и бактерий-носителей в Институте Пастера. Они сконцентрировали свои усилия на бактериях, которые использовались во всех экспериментах с фагами, — Eschurichia coli, или, для краткости, E.coli. Эти бактерии чаще всего встречаются в человеческом кишечнике. Парижскую группу интересовало открытие, сделанное их американскими коллегами Джошуа Ледербергом и Эдвардом Тейтемом. Американские ученые заявляли, что, вопреки распространенным представлениям, бактерии ведут что-то вроде половой жизни. Обычно бактерии размножаются бесполым путем — дочерний организм просто отпочковывается от материнского, как если бы сосиску перетянули посередине, сделав из одной две. Но иногда у бактерий появляется вырост, играющий роль полового органа, при помощи которого она вводит свой генетический материал в тело другой бактерии. Ученые в шутку называли подобные действия «коитусом».

В 1955 году Жакоб вместе со своим коллегой Элаем Уоллманом стал изучать, как генетический материал переносится от одной бактерии к другой. Они знали, что гены бактерий, как и любых других форм жизни, состоят из ДНК, а также расположены вдоль одной длинной хромосомы, замкнутой в кольцо, которое в одной точке присоединяется к внутренней стороне стенки бактерии. Жакоб и Уоллман выяснили, что в процессе «коитуса» хромосома очень медленно вытягивается из «мужской» клетки и через клеточную стенку медленно проникает в «женскую». В то время как на почкование бактерии требовалось всего 20 минут, «бактериальный секс» занимал почти два часа. Это позволило Жакобу и Уоллману провести несколько экспериментов с «прерванным коитусом», в ходе которых они останавливали процесс в определенные сроки в течение этих двух часов. Поскольку гены бактериальной хромосомы всегда проникают сквозь клеточную стенку в одной и той же последовательности, они смогли наблюдать влияние определенных мутировавших генов и на основе этого определить, в какой части хромосомы находятся гены, отвечающие за те или иные свойства бактерии.

Затем французские ученые решили пойти в своем эксперименте еще дальше и определить, как именно контролируются гены внутри бактерии.

Они сфокусировались на трех генах, позволяющих бактериям транспортировать лактозу внутрь, а затем перерабатывать ее в два других сахара с меньшим количеством компонентов — глюкозу и галактозу. Бактерии нет смысла постоянно держать эти гены в активном состоянии, если лактоза в окружающей среде отсутствует. Французская группа выяснила, что в химии генов имеется механизм контроля. Когда лактозы поблизости не наблюдалось, он активировал «репрессор», который приостанавливал работу трех соответствующих генов. В присутствии лактозы репрессор прекращал действовать, а генетическая область рядом с генами, названная промотором, активировала их экспрессию.

Мы не станем вдаваться в генетические детали. Важно лишь понимать, что в клетках всех живых организмов существуют регуляторные системы, которые включают и выключают гены. Более того, эти системы умеют отслеживать ключевые сигналы, поступающие из-за пределов генома (в данном случае — наличие сахара (лактозы) в окружающей бактерию среде). Это была первая научная демонстрация того, что сегодня мы называем генетической регуляцией, и в 1965 году она принесла Львову, Моно и Жакобу Нобелевскую премию по медицине и физиологии.

* * *

А теперь пришло время магии. Я предлагаю вам прокатиться на волшебном поезде. Представьте себе, что мы внезапно уменьшились до микроскопических размеров, в тысячу раз меньше ретровируса. Клетка человеческого организма стала для нас размером с мегаполис, а нуклеотиды, входящие в состав ДНК, видны невооруженным взглядом. Всего доля секунды нужна нам, чтобы забраться в вагоны и начать увлекательное путешествие.

Звучит свисток — и мы пускаемся в путь. Прямо перед нами слева направо простирается невероятно прекрасная сияющая двойная спираль. Мы приближаемся, она оказывается плоской, но сияние не прекращается, и ее расположение не изменяется. Мы видим, что спираль принимает форму железнодорожного полотна с двумя рельсами и близко расположенными друг к другу шпалами. В течение пары секунд мы можем наблюдать невероятную структуру ДНК вблизи. Затем я останавливаю двигатель, и наш волшебный поезд зависает в клубах пара прямо над полотном. Вы выходите из вагона, чтобы получше рассмотреть, где мы находимся.