Таинственный геном человека — страница 20 из 50

Вспомним Сиднея Бреннера, который вместе с Криком изучал трансляцию генов в белки в Кавендишской лаборатории. В 1973 году, работая в лаборатории Центра медицинских исследований в Лондоне, Бреннер опубликовал работу по этому вопросу. Она начиналась так: «Как гены могут определять сложные структуры высших организмов? Биология еще не знает ответа на этот важный вопрос». Он объяснял, что на данный момент многие молекулярные механизмы, ранее найденные у микробов, в таком же виде были найдены в эукариотических клетках — клетках животных и растений, в которых есть ядро. Генетический код оказался универсальным — и механизмы синтезирования белка по этому коду тоже. «Существует много объясняющих это теорий [как ДНК высших организмов контролирует регуляцию экспрессии генов], но вопрос в целом остается невыясненным». Бреннер выбрал другую модель, чтобы изучить, как устроены и организованы гены животных. В своей работе он рассказал об этой новой модели: миниатюрный круглый червь Caenorhabditis elegans длиной в миллиметр, обитающий в почве средних широт. C. elegans обладает рядом весьма привлекательных в рамках данного исследования черт. Червь не является паразитом и не заражает лаборантов; у него очень простая структура — всего 959 клеток; его легко разводить; он прозрачный и его легко рассмотреть под микроскопом; его геном состоит из всего пяти пар аутосом и одной пары гетерохромосом; у него два пола — гермафродиты и мужские особи.

Короче говоря, для генетиков червь представляет идеальный образец для экспериментов: его легко разводить, безопасно хранить в больших количествах и у него есть особи различных полов и генетика, которую легко изменять.

В своей работе Бреннер показывает, как в рамках экспериментов он вносил изменения в более чем 300 генов червя, чтобы показать, как эти изменения отразятся на его биологическом строении и поведении. Но даже на примере такого простого организма Бреннер увидел, что генетика его намного сложнее, чем он мог себе представить. На простые извивающиеся движения червя влияли 77 различных генов. Однако его дальнейшее изучение показало, что модель для эксперимента была выбрана правильно. Модель была способна на практике продемонстрировать, как работают гены, в частности, как они регулируют загадочные и сложные изменения, происходящие в процессе развития эмбриона, когда его стволовые клетки начинают меняться и формируют множество различных тканей и органов.

Модель Бреннера внушала надежду. Ею воспользовались во многих научных центрах. По мере того как знания становились более глубокими, вместо С. elegans, который когда-то заменил фруктовых мушек, ученые исследовали геном рыб, лягушек, ланцетников и млекопитающих (мышей), а также многих растений.

Человеческое тело состоит из более чем 200 различных типов клеток, формирующих конечности, ткани и органы, которые выполняют отдельные функции. Чтобы из зиготы сформировалось всё вышеуказанное, она должна состоять из так называемых тотипотентных клеток, которые могут развиться в любую ткань человеческого организма, включая плаценту и эмбриона. Первая дифференциация на этом этапе — из тотипотентных в плюрипотентные клетки. У последних есть множество вариантов развития, но они не превратятся в клетки внезародышевых органов. Плюрипотентные клетки — это клетки, из которых развиваются более сложные структуры и при дальнейшей дифференциации начинают формироваться различные ткани и органы. Эти же клетки, также называемые стволовыми, остаются в нашем организме на протяжении всей жизни, восстанавливая поврежденные ткани в постоянном круговороте, необходимом для нормального физиологического функционирования организма и его здоровья. Чтобы сделать возможной трансформацию эмбриона с такой удивительной точностью, каждая клетка должна «знать» о своей дальнейшей судьбе. Эта судьба определяется точно выверенной бюрократией генетического механизма, включая эпигенетическую регуляцию, о которой мы поговорим в следующей главе, а также сущности, известные как гены-регуляторы.

До конца 1980-х генетики, работавшие с фруктовыми мушками, открыли группу генов, которая отвечала за порядок расположения отдельных сегментов тела насекомого в процессе формирования эмбриона внутри яйца. Они назвали эту группу homeobox, или Hox. Дальнейшие исследования показали, что точно такой же набор генов Hox в том же порядке в определенной хромосоме играет очень важную роль в развитии эмбриона у животных. У человека план развития эмбриона, управляемый набором Hox, определяет правую и левую стороны, отвечает за нашу двустороннюю симметрию. Сравните наше строение с экзотическими морскими животными эхинодермами — к ним относятся, например, морские звезды и морские ежи. У них симметрия радиальная, как у долек апельсина или лепестков ромашки.

Человеческий эмбрион начинает развиваться из клеток зиготы, а набор генов Hox диктует ему, где будет голова, где на ней расположить глаза, нос и челюсти; позвонок за позвонком строится шея. Позвонок за позвонком двенадцать костей формируют грудную клетку с зачатками верхних конечностей и ребер. Точно так же формируются поясничные позвонки, которые будут поддерживать брюшную полость, и, наконец, крестцовый отдел позвоночника, который поддерживает таз и нижние конечности. Все располагается определенным образом относительно центральной оси нашего тела. Развитие набора генов Hox было важным шагом в эволюции животных. Их функция настолько важна, что они сохранялись неизменными в процессе естественного отбора на протяжении очень долгого времени. Например, хотя общий предок насекомых и человека жил в океанах 600 миллионов лет назад, если бы мы заменили Hox — ген в зиготе насекомого, отвечающий за расположение его глаз, на человеческий ген, глаз насекомого все равно развился бы правильно.

В Hox — генах закодированы белки, но не энзимы, они не участвуют в построении организма — кожи, почек, сердца, костей, а регулируют экспрессию генов (транскрипцию генов). Поэтому их также называют факторами транскрипции. Белки, закодированные Hox — генами, связаны с ключевыми нуклеотидными последовательностями в хромосомах (известны как гены-модификаторы), где они включают или выключают определенные гены. Со временем ученые открыли множество подобных генов-регуляторов, которые играют огромную роль в развитии эмбриона и функционировании человеческого организма на протяжении жизни. Ключевые гены вроде группы Hox запускают процесс из нескольких шагов развития, включающий сигнальные гормоны и факторы транскрипции. В подобных системах один ключевой ген может запускать много вторичных генов, которые в свою очередь запускают другие гены, образуя каскад из сотен генов, которые и определяют «путь развития». Это гарантирует, что определенная часть эмбриона станет мозгом, конечностью, почкой или ногтем на ноге. Если посмотреть внимательнее на структуру сложной ткани, например конечности или почки, мы увидим, что она состоит из разных более простых тканей и клеток. Так, нога состоит из кожи, мышц, костей, нервов и кровеносных сосудов, и чтобы она развивалась правильно, нужно координировать между собой множество процессов, возможно, с местными системами связи между отдельными тканями. Несрабатывание всего лишь одного компонента может привести к катастрофе. Талидомид, ранее продававшийся без рецепта, широко использовался для купирования тошноты при беременности в 1950–60-х годах. Несколько лет спустя около 10 тысяч детей родились с серьезными нарушениями в формировании конечностей — с так называемой фокомелией. Причиной трагедии с талидомидом было нарушение развития кровеносных сосудов в зачатках будущих конечностей.

Ко времени публикации работы Бреннера в начале 1970-х мы еще мало знали о том, как гены регулируют развитие человека. Конечно, мы знали, что мозг человека при рождении относительно неразвит, продолжает расти и развиваться еще два-три года жизни младенца. Мы знали об изменении желез в период полового созревания, однако не знали, как гены это регулируют. Теперь известно, что половое созревание включает в себя очень глубокие изменения на генетическом и эпигенетическом уровнях: фактически мы возвращаемся к бурному водовороту развития эмбриона. Сейчас генетики считают его главной и самой важной фазой постэмбрионального развития. В том, как гены регулируют изменения в пубертатный период, много похожего на удивительную трансформацию гусеницы в бабочку, поэтому некоторые ученые считают это вариацией метаморфоза.

В препубертатный период и мальчики и девочки имеют примерно одинаковые пропорции мышечной, костной и жировой массы. Однако после запуска мощных эпигенетических и генетических механизмов тело ребенка претерпевает значительные изменения, включая бурный рост и изменения в пропорциях мышечной и жировой массы, которые отличаются у обоих полов. К концу полового созревания у мужчин в полтора раза больше костной и мышечной массы, чем у женщин, а у женщин в два раза больше жировой ткани, чем у мужчин. Эти очевидные физические изменения сопровождаются также изменениями в клетках и тканях половых и относящихся к ним органов, например грудных желез у женщин и простаты у мужчин. Процесс полового развития запускается гормоном, сигнализирующим о необходимости производить гонадотропин (GnRH), который вырабатывается гипоталамусом. Это, в свою очередь, стимулирует питуитарную железу. Она увеличивает выработку половых гормонов гонадотропинов, которые через кровеносную систему попадают в яичники или яички, где повышают уровень соответственно эстрогенов или андрогенов. Иногда подростки бывают капризными или нервными. Это и неудивительно, ведь в их теле происходят гормональные изменения невероятного масштаба. Мы только недавно узнали, что в пубертатный период под влиянием гормонов происходит своего рода перезапись нейронных цепей мозга и поведение меняется на взрослое.

Некоторые психологи считают, что индивидуальные различия в поведении зрелых особей и сопряженные с полом психические нарушения связаны с тем, как гормоны, влияющие на половое созревание, действуют на перезапись нейронных сетей в период взросления.