Таинственный геном человека — страница 21 из 50

* * *

К 1990-м годам у биологов уже было базовое понимание того, как работают гены. Они знали, что гены кодируют несколько видов белков. Энзимы играют важную роль в наших внутренних химических процессах, из других белков строятся мембраны клеток, ткани кожи, глаз, волос и ногтей. Генетики узнали, где в 46 хромосомах человека располагаются сотни определенных генов. Они накопили ключевые знания о генетической регуляции. Появилось понимание того, что существуют дополнительные системы регуляции, которые не управляются ДНК. Становилось все очевиднее, что вне ДНК также есть системы, которые могут регулировать ее экспрессию, — системы, обладающие способностью изменяться на протяжении жизни индивидуума и получения им определенного опыта. Со временем станет понятно, что они — часть эпигенетической регуляционной системы, про которую я расскажу в следующей главе.

В 1953 году произошло революционное открытие — открытие структуры ДНК, которое дало начало развитию новой науки — молекулярной биологии, пересекающейся с медициной и биологией. Через несколько десятилетий мы узнали о запутанной системе человеческой наследственности, развитии эмбрионов и работе клеток, тканей и органов на биохимическом уровне больше, чем за все предыдущее время. Все больше фактов указывало на то, что в человеческий геноме есть вирусы: в нем присутствовали вирусные последовательности генов и даже целые геномы вирусов. Одни генетики считали, что это просто мусор, оставшийся от давних инфекций, другие полагали, что эти куски генома на что-то активно влияют.

Тысячи генов были открыты в процессе кропотливых экспериментов с мутациями животных. В человеческом организме содержится от 80 до 120 тысяч белков. Предположим, что один ген кодирует один белок, тогда должно быть столько же генов. А это значит, что существует огромное количество еще неизвестных нам генов. Теперь генетики хотели знать не только последовательности отдельных генов. Следующим шагом должно было стать изучение структуры каждой хромосомы, а кроме этого — исследование всего генома. Только полностью разделив геном на секвенции, мы поймем, что лежит в основе нашего существования, — перефразируя Броновского, какие «генетические подарки» выделяют нас среди других животных. Все, что нам было нужно для совершения этого гигантского шага, — желание правительства профинансировать исследования, а также более эффективные техники чтения последовательностей ДНК.

В середине 1970-х в Кембридже британский биохимик Фред Сэнджер, который в то время уже был нобелевским лауреатом по химии за работу над структурой белков, впервые предложил новые техники автоматического секвенирования ДНК. Их потом так и назвали: секвенирование Сэнджера. Он использовал эти техники, чтобы впервые расшифровать геном организма полностью. Это был тот же организм, который я изучал, будучи и студентом, и доктором наук, — вирус-бактериофаг ФХ174. Это открытие принесло ему вторую Нобелевскую премию, и, таким образом, он стал единственным нобелевским лауреатом с двумя премиями по химии. Методология Сэнджера стала стандартной техникой секвенирования генома в лабораториях по всему миру и позволила изучить структуру десятков и тысяч генов. Тем не менее, по признанию самого Сэнджера, метод был медленным и требовал кропотливого труда. Ученым приходилось считывать показания с распечаток и тратить огромное количество радиоактивного фосфора, который использовался для того, чтобы помечать нуклеотиды. В середине 1980-х Лерой Худ и его коллеги в Калифорнийском технологическом институте придумали более быстрый и простой метод, который помечал нуклеотиды четырьмя видами флуоресцентной краски, которую можно было считывать лазерным аппаратом. Другие техники для репликации последовательностей генов использовали культуру бактерий E. coli — небольшие количества ДНК можно было размножить, чтобы затем проще секвенировать. Итак, геном можно было разделить на более мелкие последовательности, а их размножить с помощью бактерий и автоматически секвенировать специальными аппаратами.

В 1984 году политическая составляющая вопроса достигла максимума: Министерство энергетики США заявило, что полностью расшифрует весь человеческий геном — 6,6 миллиарда нуклеотидных последовательностей. Комитет назвал проект The Human Genome Project (проект «Геном человека»).

Этот проект ошеломлял, но был фантастически амбициозным, вдохновляющим и волнующим. К 1987 году заявку полностью обсудили и ясно сформулировали цель: «Главная цель данной инициативы — понять устройство человеческого генома. Это знание необходимо для дальнейшего прогресса в медицине и других дисциплинах здравоохранения точно так же, как знание человеческой анатомии было необходимо для достижения нынешнего положения дел в медицине».

Проект начался в Америке и затем распространился на многие другие страны, превратившись в самый значительный проект по биологии в истории науки. В нем участвовало огромное количество разных ученых и научных групп. Это означало, что неизбежно возникнут разногласия относительно способов ведения исследования. Некоторые считали, что нужно сосредоточиться на одной хромосоме в отдельный момент времени, но это растянуло бы процесс на десять или даже пятнадцать лет. Некоторые политики не осознавали всей важности проекта и неодобрительно посматривали на его возможную стоимость, которая в таком случае поднималась до миллиардов долларов. Некоторых деморализовала перспектива настолько гигантского шага в неизвестность.

Но к началу 1990-х жребий был брошен. В 1990 году две главные финансирующие организации — Министерство энергетики США и Национальный центр исследования здоровья — объединили свои усилия. В том же году Джеймс Дьюи Уотсон, участвовавший в открытии структуры ДНК, был назначен управляющим программы Национального центра исследования здоровья. Теперь проект поддерживала репутация Уотсона, Национальная академия наук США, многие влиятельные молекулярные биологи и фонды от правительства и других официальных спонсоров в размере около 2,6 миллиарда долларов США. Уотсон немедленно предложил сделать проект международным, заручившись помощью Великобритании, Германии и Франции. Свою лепту внесли многие другие европейские центры, в том числе Япония, Китай и Австралия. Фонд Wellcome Trust в Великобритании стал основной благотворительной организацией наряду с правительственными органами США.

Итак, все было организовано, скоординировано, профинансировано и готово к запуску. В ход пошли компьютеры и автоматы для расшифровки генетического кода. В целом предполагалось, что для завершения проекта понадобится около пятнадцати лет, но эта цифра изменилась с неожиданным появлением конкурента: американской коммерческой организации Celera Genomics. Необходимость соревноваться с частной коммерческой организацией внесла суматоху в некоторые очень тщательно продуманные планы.


8. Первые наброски человеческого генома

Я знаю, что это исторический момент. Это самая важная научная инициатива, которую когда-либо предпринимало человечество… Это навсегда изменит биологию.

Фрэнсис Коллинз

В субботу 12 февраля 2001 года две соперничающие организации — Celera Genomics и Human Genome Project (при поддержке множества правительственных и благотворительных организаций в США, Великобритании, Германии, Японии и Франции) — одновременно объявили о завершении первого этапа полной расшифровки генома человека. Это вызвало волну восторгов в мировых СМИ. Президент США Билл Клинтон начал хвалебную оду, которую подхватил премьер-министр Великобритании Тони Блэр, а вслед за ними национальные лидеры и ведущие ученые каждой из стран объявили о начале новой эпохи знания и научных исследований. Роджер Хайфилд, научный редактор The Daily Telegraph, выразился прямо: «Ученые-соперники открывают книгу жизни». По словам Энди Коглана и Майкла Ле Пейджа, корреспондентов New Scientist, геном скоро будут учить в школах как таблицу Менделеева. Не было никаких сомнений, что это открытие знаменует собой начало нового этапа в генетике и является огромным шагом вперед и логическим продолжением открытий в области ДНК. И так же как с ДНК, вновь начались конфликты между двумя соперничающими группами.

Директор Human Genome Project Уотсон сделал проект международным, заручившись таким образом поддержкой, благодарностью и преданностью многих ученых по всему миру. Кроме того, он выделил небольшую часть средств, чтобы донести социологические, религиозные и этические идеи, касающиеся проекта, до интеллектуалов и политиков. В академических кругах многие видели в Celera Genomics наглых выскочек, ведомых предприимчивым ученым Джоном Крейгом Вентером. Но следует отдать ему должное — Вентер благодаря проницательности и обаянию смог преуспеть в длинном списке удивительных научных прорывов, включая новые области генетических исследований. Как Уотсон, Крик и Уилкинс, Вентер отмечал, что его в свое время вдохновила книга Шрёдингера.

Вентер развивался как ученый, работая в Национальном институте здоровья США рядом с кабинетом Маршалла Ниренберга, который внес вклад в открытие гистонового кода. В 1992 году Вентер, которому было сложно вынести неторопливость прогресса в его окружении, организовал собственную коммерческую лабораторию — Институт генетических исследований (The Institute for Genomic Research — TIGR). Теперь он мог совмещать автоматизированное секвенирование с изобретенным его исследовательской группой новым подходом — «пулеметной лентой», в котором длинные генетические последовательности, найденные в живых организмах, можно было разбивать на более мелкие части. Разделяя геном на все более мелкие части, ученые находили повторяющиеся фрагменты, которые в дальнейшем можно было использовать для воссоздания целой нуклеотидной последовательности микроба или, скажем, человеческой хромосомы.

«Техника пулеметной ленты» могла ускорить работу над проектом, однако соперники Вентера заклеймили метод как потенциально неточный. Тем не менее в 1995 году Вентер опубликовал статью о своей первой победе: впервые был полностью расшифрован геном живого организма — бактерии