Как прекрасно, что палеогенетика может пролить так много света на историю наших далеких предков!
Мы не можем исключать, что между различными группами и популяциями людей не было стычек или даже жестоких сражений, но очевидно, что разные виды не ставили перед собой задачи уничтожить своих эволюционных конкурентов. Периодически им приходилось сталкиваться, а то и жить по соседству в различных географических областях. Если судить по знакомому нам человеческому поведению, скорее всего, они испытывали любопытство по отношению к себе подобным. Вероятно, они признавали представителей других видов людьми, вели переговоры и узнавали традиции соседей. Возможно, они даже учились друг у друга, перенимали способы охоты и собирательства, обменивались информацией о производстве инструментов, работе в группах, правилах семейной жизни и сексуального партнерства, об уходе и обучении детей, украшении своих тел, о производстве одежды и строительстве жилищ, поклонении богам и оплакивании мертвых.
Паабо и его группа хотят выяснить об этом как можно больше. Это же желание есть и у меня, и у вас. Мы хотим знать настоящую историю человечества, историю, которая навеки заключена в загадочном мире человеческого генома.
19. То, что делает нас уникальными
Сохранение предпочтительных вариантов и отклонение тех, которые приносят вред, я называю естественным отбором. Вариации, которые не являются ни полезными, ни вредоносными, не подвержены влиянию естественного отбора и остаются неопределенным элементом…
В праздничном издании The Daily Telegraph от 12 февраля 2001 года Роджер Хайфилд, научный редактор газеты, написал, что расшифровка загадочного кода человеческого генома позволит каждому человеку почувствовать себя особенным. Он был абсолютно прав. Правда, насколько мы особенные, предстоит выяснить.
Наше путешествие показало, что геномное наследие человечества сформировалось в течение необычной и удивительной эволюционной истории. Эта история началась с самого зарождения жизни на Земле и продолжается до нашего времени — эпохи, в которую мы предпринимаем первые попытки изучения Вселенной за пределами собственной планеты. Первое представление об этой истории мы получили в 2001 году, когда расшифровка человеческого генома показала, что мы имеем тысячи общих генов со многими другими живыми существами помимо приматов и млекопитающих в целом. Это и рептилии, и рыбы, и плодовые мушки, и нематоды. На самом деле наша история заходит даже глубже. Мой ушедший друг и блестящий ученый Линн Маргулис доказала, что значительная часть этой истории и большая доля наших внутренних химических процессов происходят еще из бактериального этапа существования жизни (говоря научным языком, протерозоя). Именно тогда зародились многие гены и метаболические пути, на которых строится жизнь сегодня. В главах этой книги мы один за другим разобрали все четыре механизма наследственной изменчивости, которые я объединил в понятие «геномная креативность». Именно она позволяет создавать вариации, необходимые для подтверждения дарвиновской теории о естественном отборе как о силе, сформировавшей наш уникальный человеческий геном.
Мы видели, как симбиотический союз геномов бывших паразитических микробов и геномов наших предков внес вклад в эту эволюцию: от поглощения цианобактериями энергии солнечного света и производства кислорода в качестве побочного продукта до вдыхания кислорода бактериальными предками митохондрий, которые добавили в каждую клетку нашего организма второй геном, а также до внедрения эндогенных ретровирусов, до сих пор изменяющих способы работы нашего генома. Мы знаем, что по мере усложнения генома в системы управления генами и другие его аспекты становились все более и более вовлечены средства эпигенетической регуляции. Некоторые ученые называют гены аппаратной частью, а регуляторные системы — программами, подразумевая, что там, где машинам требуется ремонт, программа может индивидуально подстраиваться под сигналы окружающей среды. Мы также видели, как скрещивание между родственными видами стало источником значительного генетического разнообразия генома наших предков.
Все это кажется мешаниной конкурирующих процессов, и действительно было бы так, если бы эволюция происходила случайным способом. Но благодаря Дарвину мы понимаем, что все происходит иначе. Мощная сила, которую Дарвин назвал естественным отбором, выбирает изменения наследственности, повышающие шансы на выживание, и отбрасывает те, которые их уменьшают. Выживание (а значит, и воспроизведение себе подобных) регулирует все механизмы, которые участвуют в этих конкурирующих процессах. История нашего постоянно развивающегося генома предполагает, что каждый из нас с геномной точки зрения уникален.
В первую очередь, мы уникальны потому, что все люди, кроме генетических близнецов, наследуют случайное сочетание генов двух разных людей — своих родителей. Смешение родительских геномов заложено уже в самом способе формирования зародышевых клеток из яйцеклеток и сперматозоидов наших отца и матери. Оно происходит в процессе, называемом мейозом, когда хромосомы вытягиваются параллельно друг другу, делятся на фрагменты и обмениваются ими. Этот процесс половой гомологической рекомбинации объясняет, почему братья или сестры, родившиеся у одной пары, не идентичны друг другу. Одинаковыми генами обладают только монозиготные близнецы, потому что они развиваются из одной оплодотворенной яйцеклетки. Но сейчас, после всего, что мы узнали об эпигенетике, мы понимаем, что ко времени рождения даже у них имеются различия в эпигенетических системах регуляторного контроля. Если бы мы решили изучить их геномы в течение жизни, мы заметили бы, что они сильно различаются, так как их эпигенетические системы реагируют на различные внешние стимулы.
Главной областью генома, отвечающей за нашу уникальность, является участок, который мы регулярно посещали во время нашего путешествия, — комплекс тканевой совместимости. Расположенный в хромосоме 6, он содержит более сотни генов, кодирующих белки, и обеспечивает нашему организму иммунную защиту, а также антигенную идентичность, в частности, в процессе переливания крови или пересадки органов. Ни один другой участок генома не определяет нас более точно, чем этот. Наша генетическая идентичность начинается с развития эмбриона в материнской утробе и постоянно изменяется под воздействием микробов в течение всей жизни. Из-за повреждений или отклонений в этом участке возникают аутоиммунные заболевания, такие как ревматоидный артрит, волчанка и диабет в раннем возрасте.
Мы знаем, что каждый раз при копировании генома для формирования половых клеток возникают небольшие ошибки. Эти мутации не являются результатом естественного отбора, и благодаря им появляются снипы, гаплотипы и гаплогруппы, позволяющие историкам отслеживать происхождение и мутации популяций.
При зачатии от каждого родителя нам достается половина генома, включая значительное количество однонуклеотидных полиморфизмов, или снипов. Примерно половина нашего генома вместе со снипами совпадает с геномами наших братьев и сестер. Если у вас есть идентичный близнец, то ваше эмбриологическое развитие началось с одинакового набора генов и снипов. Точно так же четверть вашего генома совпадает с геномом ваших бабушки или дедушки, одна восьмая — с геномом прадеда или прабабки и т. д. Но в этой упорядоченной системе есть потенциал для изменений. Геном настолько велик, что при его копировании неизбежно будут возникать мелкие ошибки. Эти ошибки обеспечивают отличие наших генетических последовательностей от тех, которые мы унаследуем от родителей.
Полное секвенирование генома позволило выявить частоту мутаций генома в целом. Два поколения (родителей и детей) разделяют около 70 новых мутаций. Большая их часть располагается вне 1,5 % участка генома, отвечающего за кодирование белков. В этой области одна мутация возникает в среднем каждые шесть поколений. Большая часть мутаций наблюдается в вирусных и эпигенетических регуляторных участках. Мы скоро вернемся к этому вопросу, но пока что я хочу продолжить разговор о мутационных изменениях. В рамках таких изменений у меня и у вас появляются снипы, уникальные для нашего генома. Именно наличие у генома подобных свойств сделало возможным существование метода так называемой ДНК-дактилоскопии.
Метод генетической дактилоскопии известен как способ установления родственных связей, например в тестах на отцовство, а также определения личности преступников. До 1980-х годов работа криминалистов в основном строилась на отпечатках пальцев, но часто преступники их не оставляли. Генетическое профилирование дает такую же точность идентификации, но для этого достаточно капли слюны, крови или спермы либо кусочка ткани организма, включая кости. Но чтобы этот метод мог работать, следовало решить проблему технологического характера. Ни у одного криминалиста нет времени на скрининг всего 6,4 миллиарда нуклеотидов в поисках индивидуальных отличий того или иного генома. Необходимо было создать простую и надежную систему автоматического скрининга, способную находить различия между людьми с такой же точностью, как дактилоскопия. В 1985 году такую систему разработал британский генетик из Лестера Алек Джеффрис.
Джеффрис сделал открытие случайно, изучая различия в последовательностях ДНК между членами семьи одного из сотрудников его лаборатории. Он обратил внимание на странно выглядящие последовательности ДНК из повторяющихся участков генома — длинные вирусные последовательности, разбросанные по хромосомам. То тут, то там ему встречались области ДНК, содержащие повторы одной и той же группы нуклеотидов. Такие повторы были нередки в геноме в целом, но их расположение в хромосомах и фактическое количество варьировались в зависимости от человека.
Если бы мы решили посетить такую последовательность на нашем волшебном поезде, то сделали бы остановку около освещенного участка пути и обратили внимание на четыре шпалы, с которых он начинается. Например, это могут быть Т, Ц, А и Г. Двигаясь вдоль полотна, мы увидим, что последовательность ТЦАГ повторяется, например, еще три раза. Поскольку эти повторы возникают парами, они называются тандемными. Джеф