«Как он учится?»
И другой ангельский голос пел в ответ:
«Ничего-го-о-о!»
Решающие бои
Итак, дорога передо мной была открыта. Я понимал, что впереди – большие трудности. Справлюсь ли я? В силах ли я? Смогу ли я? И вообще в человеческих ли это возможностях? Я не знал. Я знал лишь, что хочу. И какое-то чувство говорило мне, что «хочу» – это значит «могу».
В тот день, вернувшись из школы, я тут же засел за уроки и, скажу откровенно, впервые без неохоты, без желания поскорее отделаться от них.
Правда, от этого не сразу получился у меня толк. Есть предметы, как, например, география, ботаника, зоология, в изучение которых можно включиться с середины. А вот в других предметах, как в алгебре, если не усвоил предыдущего, то не поймёшь в последующем. Дома у нас никто ничего не понимает в алгебре и никто ничего не может мне объяснить. Карапет в классе тоже ничего не объясняет, а всё только спрашивает да ещё в какой-то издевательской, весёлой манере. Карапет, к примеру, вызывает меня к доске, диктует уравнение и не просто велит решить его, а задаёт вопрос в такой форме:
– Не можешь ли ты, голубчик, удовлетворить моё любопытство и сказать, чему равен икс?
Так как я не могу удовлетворить его любопытство, он приглашает к доске на помощь мне другого ученика:
– Ну-ка, вот ты, Смирнов, сделай, пожалуйста, одолжение и объясни нам, чему равен икс.
Видя, однако, что Смирнов не может сделать такого одолжения, Карапет вызывает к доске Быстрова, за Быстровым – Калугина… Постепенно у доски становится тесно. В классе начинают раздаваться смешки.
– Кто смеётся? – строго спрашивает Карапет. – Кому там весело? Тебе, Орлов, весело?
– Мне не весело, – признаётся Орлов.
– Ах, тебе не весело? – иронизирует Карапет. – Тебе, стало быть, скучно! Ну, чтоб тебе не было скучно, иди к доске и объясни нам, чему равен икс.
Орлов подходит и, деловито стуча по доске мелом, начинает излагать примерно следующее объяснение:
«Так как в задаче говорится то-то и то-то, а это на столько-то больше того-то, то икс равен тому-то плюс то-то, а вместе это даёт то-то. Составляем уравнение: икс плюс то-то равно тому-то. Решаем уравнение: икс равняется тому-то минус то-то. В результате получаем то-то. Значит, икс равен тому-то».
– Ну вот! – радостно обращается Карапет ко мне. – Теперь понял?
– Понял, – говорю я.
– Садись в таком случае. Все садитесь, – отдаёт распоряжение Карапет.
Мы все гурьбой удаляемся от доски. Я сажусь на своё место, так и не поняв, почему икс сначала был равен чему-то плюс что-то, а потом вдруг стал равен чему-то, но уже минус что-то. Мне, однако, всегда выгоднее сказать, что я понял: остаётся надежда, что Карапет, может быть, не поставит мне на этот раз плохую отметку. Если же я начну упорно твердить, что не понял, то он быстро разберётся, что я в алгебре ни уха ни рыла, как у нас принято говорить, то есть абсолютно ничего не понимаю.
А я на самом деле ничего не понимаю в алгебре. Я не понимаю самой алгебры. В моей голове туман. Отчего это? Может быть, я хворал, когда мы начали проходить алгебру, или по какой-нибудь другой причине отсутствовал на уроках. А может быть, я и присутствовал, да не слушал объяснений преподавателя, а потом, когда спохватился, было поздно: класс ушёл далеко вперёд и для меня теперь вся эта алгебра вроде китайской грамоты. Но если так… Если начать всё сначала, то, может быть, я одолею эту премудрость? Ведь выучил же я по самоучителю ноты. Почему нельзя выучить по самоучителю алгебру? Почему здесь обязательно нужен учитель? Но бывают ли самоучители алгебры? Я что-то не слыхал о существовании таких самоучителей.
Обдумав всё это, я раскрываю алгебраический задачник Шапошникова и Вальцева, но не там, где нам задано, а на первой странице, где помещены самые начальные упражнения, расположенные столбиком: «а + а =», «в + в =», «а – а =», «с + с + с =»… «Что это?» – ломаю голову я. Это похоже на арифметические примерчики для самых маленьких, вроде: «2 + 2 =», «3 + 3 =», «2–2 =»… Но два плюс два будет равно четырём. А чему может быть равно «а + а»? Ведь это же не цифры, а буквы! Из букв можно складывать слова и читать книги. Для того и придуманы буквы! А здесь при чём они, эти буквы? Какой в них смысл? Явная бессмыслица!
Я заглядываю в задачник дальше. Там идут примерчики уже посложнее, вроде: «2а + 3а =», «3а + 4в – 2в =», «4с – с =»… А это что же? Тут уже буквы перемешаны с цифрами! Словно какой-то сумасшедший задался целью перепутать азбуку или грамматику с арифметикой! Пробую заглянуть в ответы, но ответов на эти упражнения нет. И главное: никаких объяснений! Решай как знаешь!
Тут мне почему-то приходит на память, что среди моих школьных учебников есть ещё одна книжка по алгебре. Это не задачник, и называется книжка просто «Алгебра», и автор её Киселёв. В эту книжку я вообще никогда не заглядывал. Возможно, в классе иногда и задавали прочитать в этой книжке ту или иную главу, но поскольку задания приходилось выполнять сплошь по задачнику Шапошникова и Вальцева, то я и имел дело с Шапошниковым и Вальцевым, не тратя драгоценного времени на чтение Киселёва, который даже и не знаю зачем вообще нужен.
В поисках выхода из создавшегося безвыходного положения или из любопытства (сейчас уже не помню точно) пробую почитать эту книжку. Читаю. Разумеется, с первой главы читаю, так, словно бы это у меня какой-нибудь занимательный роман про индейцев или про подводную лодку. И мне вдруг начинает казаться, будто я понимаю что-то! Нет! Мне не начинает казаться, а просто кажется, что я понимаю… Да нет! Не кажется! Просто я понимаю – и всё тут! Алгебра, как оказывается, – это часть математики, изучающая общие законы действий над числами. В алгебре какое-нибудь число может быть условно заменено какой-нибудь буквой, и наоборот, под какой-нибудь буквой может подразумеваться любое число. Например: под буквой «а» мы можем подразумевать, скажем, число «2» или «3», и если мы запишем «а + а», то это может означать, что число «2» или «3» мы берём два раза или умножаем на два, следовательно, можем записать, что «а + а = 2а».
Прочитав главу, я тут же возвращаюсь к задачнику и убеждаюсь, что легко могу делать эти буквенные примерчики, доступные пониманию приготовишки, если ему, конечно, с толком всё разобъяснить. Дальше у меня дело идёт так: читаю очередную главу у Киселёва и делаю соответствующие примеры и задачки из соответствующего раздела Шапошникова и Вальцева, потом снова читаю Киселёва и снова разделываюсь с главными моими врагами – Шапошниковым и Вальцевым. Хороший у меня союзник – Киселёв! Хороший у меня учитель – Киселёв! Вот он где, самоучитель алгебры! Он, оказывается, лежал у меня в сумке или на полке, а я даже не подозревал, что он у меня есть. Искал, как пошехонец, рукавицы, а они за поясом!
Таким способом за два или три дня я «прохожу» такой «кусок» алгебры, который ребята в школе не проходят и за два месяца. Но не все трудности уже позади, потому что впереди такой крутой и опасный перевал в алгебраическом хребте, как алгебраические дроби.
Мой мудрый советчик, мой добрый друг и союзник Киселёв начинает к тому же почему-то вилять в стороны и, вместо того чтобы говорить прямо, без обиняков, что-то там мямлит, темнит, всё чаще ссылаясь на арифметику, утверждая, что и сложение, и вычитание, и умножение, и деление алгебраических дробей производится подобно арифметическим дробям… Как это «подобно»? Будто я знаю, как это делается в арифметике. Об арифметических дробях я только и знаю, что они состоят из числителей и знаменателей и их можно как-то там складывать, вычитать, делить и умножать. Как-то! Но как? Этого я вам не могу сказать. Может быть, мы этого не проходили. Или меня, может быть, не было в классе, когда это проходили. Или, может быть, я и был, так сказать, физически, но мысленно витал где-нибудь в дебрях реки Амазонки.
Возможно, однако, Киселёв не так уж и виноват. Зачем ему писать двадцать раз об одном и том же? Я помню, что когда мы проходили арифметику, то помимо арифметического задачника Евтушевского у нас был ещё учебник, который назывался просто «Арифметика», и автором этой «Арифметики» был всё тот же старина Киселёв… Роюсь в своих книжках, отыскиваю «Арифметику» Киселёва и начинаю читать. Ну, в самом начале там говорится, что числа, которые складываются, называются слагаемыми, а результат сложения называется суммой, и прочая всем известная чепуха. Это я пропускаю. Начинаю читать раздел, который называется «Обыкновенные дроби» – про числитель и знаменатель… Тоже всем известно. Пропускаю. Читаю раздел «Сложение обыкновенных дробей» и узнаю, что, для того чтобы сложить две дроби, их надо привести к общему знаменателю. А чтоб привести к общему знаменателю, нужно отыскать общее наименьшее кратное, а чтоб отыскать это самое наименьшее кратное, нужно разложить на простые множители и ещё найти какой-то общий наибольший делитель.
Общий знаменатель! Простые множители! Наименьшее кратное! Наибольший делитель! Это что ещё за зверьё такое?.. Листаю книжку в обратном порядке. Нахожу раздел «Разложение чисел на простые множители». Читаю. Узнаю постепенно и про простые множители, и про наименьшее кратное, и про наибольший делитель. Только после этого возвращаюсь к дробям, постигаю, как отыскивается общий знаменатель, без которого не обходится ни сложение, ни вычитание простых дробей. Перехожу к умножению и делению дробей, что вопреки ожиданию оказывается проще, чем сложение и вычитание.
Подтянув арифметические резервы, снова иду в наступление на алгебру. Алгебраические дроби не выдерживают натиска, несут большие потери и отступают в беспорядке. Алгебра бросает против меня хорошо подготовленные отряды многочленов и одночленов, выводит из засады отрицательные числа, палит из всех орудий отношениями, пропорциями, уравнениями и чем только может. В моих позициях образуются бреши. Мне то и дело приходится отступать на заранее подготовленные рубежи и выравнивать линию фронта. Все мои неудачи происходят из-за того, что я слишком быстро продвигаюсь вперёд, стараясь обойти стороной некоторые опорные пункты в оборонительной системе Шапошникова и Вальцева. В тылу у меня остаются огневые точки противника, которые наносят мне непоправимый ущерб.