Углекислый газ поглощает и переизлучает часть инфракрасного излучения, которое испускается земной поверхностью. Если его станет больше, то Земля будет продолжать поглощать то же самое количество солнечного излучения, а излучать в окружающую среду будет меньше. Значит, ее температура повысится.
Пыль и другие частицы, которые попадают в атмосферу при извержении вулканов и от других источников загрязнения, также способны повлиять на температуру земной поверхности и приземного слоя воздуха. Чем их больше, тем они сильнее задерживают солнечное излучение и тем самым приводят к уменьшению температуры планеты.
Бытует представление, что очень полезно «подышать озоном». Поэтому многих удивит, что озон является ядом в том случае, если его содержится в воздухе больше определенной (очень малой!) его части. Озон образуется в приземном слое воздуха в результате деятельности промышленности и автотранспорта. Окислы азота и несгоревшие углеводороды газов, взаимодействуя под влиянием солнечного излучения, создают густую дымку (фотохимический смог). В одном кубическом метре этого смога содержится до 1 мг озона. Этот смог опасен. Он поражает растительность, раздражает дыхательные пути и слизистую оболочку глаз, отрицательно влияет на земную флору и фауну. К сожалению, в настоящее время «озонный смог» наблюдается во многих крупных городах мира.
В природе происходит бесконечно повторяющийся круговорот веществ. В нем участвуют и составляющие воздуха — азот, кислород и углекислый газ. Когда азот находится в газообразном состоянии, он является мимически инертным газом. Но в соединениях, которые называют нитратами, он играет важную роль в обмене веществ в животном и растительном мире. Нитраты создаются растениями, бактерии которых захватывают свободный азот из воздуха. Животные, питаясь растениями, потребляют нитраты. Зеленые растения извлекают углекислый газ из воздуха и с помощью фотосинтеза освобождают кислород. Оценки показывают, что вся растительность земного шара использует за год около 550 млрд. тонн углекислого газа. При этом они освобождают кислород в количестве примерно 400 млрд. т. Углекислый газ поступает в атмосферу, когда растения сгорают или гниют, когда дышат люди и животные, когда испаряются минеральные источники и извергаются вулканы. Продолжительность полного цикла для каждого газа разная. Так, углекислому газу требуется в среднем от одного до трех лет, кислороду — три тысячи лет, а азоту — все сто миллионов лет.
Чем выше в горы мы поднимаемся, тем становится холоднее. Если же мы поднимемся на самолете на высоту в 9 км, то там (за бортом) температура вообще упадет до минус 40–50 °C. Что же выше? До каких пор температура будет уменьшаться по мере нашего подъема вверх? Ясно, что для дальнейшего подъема нам придется пересесть из самолета в ракету. Но при этом надо не забыть прихватить термометр для измерения температуры воздуха. Будем совершать наш подъем на ракете в средней полосе летом, когда температура воздуха на Земле достигает +27 °C. Мы выбрали такую температуру не только потому, что она реальна в этих условиях, но и потому, что она соответствует круглому числу градусов по шкале Кельвина, а именно 300°К. Это не принципиально, просто более удобно. По мере нашего подъема на каждый километр температура уменьшается на 6,5°. Вдруг на высоте около 12–13 км температура перестает уменьшаться. Это мы достигли нижней части озонного слоя, этого запасника тепла в атмосфере. Здесь и находится озонопауза. Эта область атмосферы, в которой температура падает с высотой, была названа тропосферой. Слово «тропо» означает изменчивый. Это относится к температуре.
Высотный ход температуры атмосферы исследовался задолго до изобретения ракет и самолетов. Изучение температуры атмосферы началось в середине XVIII в. Для этого поднимали термометры на воздушных змеях. В конце XVIII в. термометры стали поднимать на воздушных шарах. И это было очень даже эффективно. Так, хорошо известный физик и химик Жозеф Гей-Люссак в 1804 г. совершил два подъема на воздушном шаре. Во втором подъеме он достиг высоты 7 км. Эти подъемы были очень информативны. Ученый не только измерял температуру воздуха на разных высотах, но и его влажность, а также забирал пробы воздуха на разные уровнях. Анализ этих проб воздуха и позволил впервые заключить, что на этих высотах состав воздуха остается постоянным. С увеличением высоты уменьшается только его плотность.
В том же 1804 г. полет на воздушном шаре совершил русский академик Я. Д. Захаров.
В дальнейшем эти исследования проводились регулярно. Особенно массовыми они стали во второй половине XIX в. Была достигнута рекордная высота — 11,2 км. Это сделал английский метеоролог Джеймс Глайшер. На воздушном шаре с целью исследования атмосферы в 1887 г. поднялся великий русский химик Д. И. Менделеев. Таким образом, с помощью шаров-зондов удалось «прощупать» всю тропосферу.
Выше 11 км стали поднимать на высотных баллонах приборы, которые могли проводить измерения температуры (и других параметров) атмосферного газа без участия человека. Такой прибор был изобретен в 1892 г. Г. Эрмитом и Ж. Безансоном и был назван метеографом. Именно с помощью метеографа в 1928 г. и было обнаружено Л. Бортом, что выше 12 км температура не уменьшается. В такой результат никто не хотел верить — слишком уж парадоксальным он казался. Поэтому решили, что измерения являются ошибочными. Но когда такой же результат показали метеографы в сотнях полетов высотных баллонов, деваться было некуда, — в него поверили. Пришлось признать наличие в атмосфере выше тропосферы слоя, в котором высотный профиль температуры испытывает обращение, то есть инверсию. Поэтому он был назван слоем с инверсией.
Еще в первых измерениях с помощью метеографов было установлено, что тропосфера на разных широтах имеет разную протяженность по высоте (от 8 до 12 км).
Будем продолжать подъем вверх дальше. От 12 до 20 км температура практически не меняется с высотой. Говорят, что этот слой изотермический, то есть слой с постоянной температурой («изо» значит «равный», «одинаковый»). От 20 до 47 км температура с ростом высоты увеличивается. Если в тропосфере перепад температуры по высоте был положительным, то на этих высотах он отрицателен. Выше 47 км (до 51 км) температура снова остается неизменной. Это второй изотермический слой. Вся область от 12 до 51 км названа стратосферой («страто» — «слоистый»). Стратосфера на верхней границе заканчивается стратопаузой. Температура на стратопаузе достигает приблизительно 10–20 °C.
Если к тропосферному воздуху добавить тот, что находится в стратосфере, то получим 99 % всего воздуха. Выше 51 км находится только около 1 % всего воздуха.
Выше стратопаузы располагается еще одна (промежуточная) сфера. Она названа мезосферой («мезос» — «промежуточный»). Здесь снова температура уменьшается с высотой (как и в тропосфере). Мезосфера простирается до высоты 86 км. В верхней части мезосферы (на мезопаузе) температура уменьшается до минус 75–90 °C.
На мезопаузе высотный профиль температуры снова ломается. Выше мезопаузы температура увеличивается с высотой (как и в стратосфере). Эта часть атмосферы названа термосферой («термо» — «тепло»). В термосфере температура достигает многих сотен градусов (рис. 13).
Значит ли это, что попав туда, мы с нашей ракетой попадем в ад? Отнюдь нет! Здесь настолько глубокий вакуум, что понятие температуры приобретает смысл, отличный от принятого нами в ежедневной жизни. Находясь в обычных условиях (на земной поверхности), мы температурой измеряем степень нагретости тела. В случае газа это значит, что чем выше температура газа, тем больше скорости его молекул. Другими словами, чем быстрее движутся частицы газа, тем больше температура. Говорить о температуре одной частицы нельзя. Можно говорить только о температуре всего газа. Частицы газа должны сталкиваться и обмениваться друг с другом энергией (как бильярдные шары). Чем меньше плотность газа, тем реже сталкиваются частицы, из которых он состоит. На уровне моря молекулы воздуха сталкиваются друг с другом так часто, что между столкновениями молекула пролетает всего несколько миллионных долей сантиметра. Этот путь называется длиной свободного пробега частицы. На высоте 100 км длина свободного пробега частиц достигает одного метра, а в термосфере на высоте 300 км — до 10 км. Поэтому в термосфере надо говорить не просто о температуре, а о кинетической температуре частиц. Она измеряется кинетической энергией частиц, их скоростью. Кинетическая энергия частиц в термосфере очень велика, поэтому высока их кинетическая температура. Но эту высокую температуру мы, оказавшись там, были бы не в состоянии почувствовать, поскольку плотность газа ничтожно мала. Более того, та часть нашего тела, на которую не падали бы солнечные лучи, испытывала бы ледяной холод (несмотря на то, что там кинетическая температура достигает многих сотен градусов).
Выше термосферы имеется еще одна сфера — экзосфера («зкзо» — «внешняя»). Эта область атмосферы названа так потому, что находящиеся здесь частицы могут иметь скорости, которые больше первой космической скорости (11,2 км/с). При таких скоростях частицы преодолевают силу земного притяжения и уносятся за пределы земной атмосферы.
На Крайнем Севере их называют северными сияниями. В южном полушарии — южными. Поскольку и северные, и южные сияния появляются в полярных широтах, те и другие называют полярными.
Сияние трудно описать. Его надо видеть. Но чтобы дать о нем представление, приведем несколько описаний, которые даны ученым, путешественником, художником.
С. А. Черноус — ученый, изучающий полярные сияния на Кольском полуострове, так описывает сияния: «…полнеба затянуто бледной дымкой, сквозь которую видны звезды. Медленно из этого легкого тумана возникают очертания гигантской дуги — арки, концы ее уходят за горизонт. Внезапно — как порывом ветра — тронуло дугу: в ней появились складки и петли, словно холодная горная река извивается по небу. Еще мгновение — и длинные вертикальные нити-лучи помчались вдоль дуги. Они дрожат, пляшут, кружатся, и над головой повисает настоящая корона. Вдруг все небо взрывает