, которые находились вблизи испытательных ядерных полигонов (как у нас в стране, так и в других странах), получили и получают дозы, значительно превышающие средние. Надо сказать, что уже проведенными ядерными испытаниями человечество обеспечило себя надолго. К настоящему времени ее «использовано» менее 15 % от суммарной ожидаемой коллективной эквивалентной дозы (учитывались все произведенные ядерные взрывы), которая оценивается в 30 000 000 чел. — Зв. Специалисты рассчитали, что этот «запас» человечество будет расходовать на протяжении миллионов лет (если оно так долго продержится).
Источником радионуклидов является и атомная энергетика. После аварии на АЭС восторг от того, что наконец создан источник неисчерпаемой энергии, все больше уступает место ужасу перед возможными авариями на атомных электростанциях. Если в мирное время случается то, что случилось в Чернобыле, то чего можно ожидать в случае ведения войны, проведения диверсий или даже в случае разных катаклизмов, например, землетрясений.
Теоретически в данной проблеме все очень хорошо, очень радужно. Ведь на самом деле выбросы радиоактивных веществ в атмосферу при работе АЭС очень невелики. Но только при нормальной работе! А тем временем мощность всех АЭС в мире удваивается примерно каждые пять лет. Атомные электростанции работают уже в десятках стран, задействованы сотни ядерных реакторов.
Если анализ опасности загрязнения радиоактивными веществами вести грамотно, то надо рассматривать не только выбросы радиоактивных веществ атомными электростанциями. Надо рассматривать все звенья цепи ядерного топливного цикла, одним из звеньев которого является АЭС. Цикл этот начинается с добычи и обогащения урановой руды. Затем следует звено производства ядерного топлива. Ядерное топливо используют АЭС. Отработанное АЭС ядерное топливо затем подвергается вторичной обработке с целью получения из него урана и плутония. После всего эти радиоактивные отходы следует (следовало бы) надежно захоронить. Ясно, что даже при идеальной организации работ на каждом этапе всего ядерного топливного цикла неизбежна утечка определенного количества радиоактивного вещества.
Если рассмотреть ядерный топливный цикл подробнее, то вырисовывается следующая картина. Урановую руду добывают или открытым способом, или же шахтным (50 на 50). Далее эту руду доставляют на обогатительную фабрику, которую стараются строить не очень далеко от карьеров и урановых шахт. Ясно, что и карьеры, и шахты, и фабрики являются источниками радиоактивных веществ. Рудники дают кратковременные загрязнения. Фабрики же накапливают огромные количества отходов, содержащих радиоактивные вещества. Это так называемые «хвосты». Специалисты оценивают, что к 2000 г. этих радиоактивных «хвостов» во всем мире накопится до 500 млн. т. Эти отходы являются главным источником облучения населения, который связан с атомной энергетикой. Этот источник будет оставаться эффективным в продолжение миллионов лет. Практически с ним поделать ничего нельзя. В лучшем случае от него можно (надо) отгородиться, «связать» его, покрыв асфальтом или поливинилхлоридом. Надо помнить, что эти покрытия не вечные. Но понятно, что это только пожелания, планы, хотя и обоснованные большим риском.
Продукт обогатительной фабрики — урановый концентрат — поступает на специальный завод, где он перерабатывается и очищается. В результате получается ядерное топливо. Но без отходов не обходится и здесь. Они здесь образуются как в газообразном, так и в жидком состоянии. На этой стадии облучение от данных отходов — радиоактивных веществ — меньше, чем на предыдущих стадиях — в рудниках и на фабрике. Полученное на заводе ядерное топливо поступает по назначению — на атомные электростанции. Здесь величина радиоактивных выбросов зависит от того, какой реактор используется на данной атомной электростанции. На сегодняшний день находятся в эксплуатации в разных странах пять основных типов энергетических реакторов. Водографитовые канальные реакторы эксплуатировались только в СССР, а сейчас и в странах СНГ. Наиболее распространенные сейчас водо-водяные реакторы, с водой под давлением, и водо-водяные кипящие реакторы, которые разработаны в США. В Великобритании и Франции разработаны реакторы с газовым охлаждением. В этих странах они и эксплуатируются. В Канаде широко распространены реакторы с тяжелой водой. Ядерными реакторами следующего поколения являются реакторы — размножители на быстрых нейтронах. Четыре таких реактора сейчас функционируют в Европе и России.
Примерно одна десятая часть топлива, которое уже использовано на АЭС, поступает на вторичную переработку с целью извлечения из него урана и плутония. Заводов, на которых производится такая переработка, единицы. Естественно, что имеется проблема утечки радиоактивных веществ. Особенно актуальной является проблема захоронений радиоактивных веществ. Мы не можем здесь рассматривать ее в полном объеме. Специалисты оценили, что если захоронения будут сделаны под землей и с соблюдением необходимых требований, то сколько-нибудь заметное количество радиоактивных веществ просочится в биосферу только примерно через миллион лет или чуть раньше.
Нас это устраивает.
Представляют интерес оценки доз, выполненные официальной организацией — Научным комитетом по действию атомной радиации (НКДАР). Комитет создан в рамках ООН в 1955 г. По этим оценкам, ожидаемая коллективная эффективная эквивалентная доза облучения за счет всего ядерного топливного цикла составляет за счет короткоживущих изотопов примерно 5,5 чел. — Зв на каждый гигаватт-год электроэнергии, которая вырабатывается на атомных электростанциях. Эта доза раскладывается по различным технологическим звеньям следующим образом: добыча, руды дает вклад 0,5 чел. — Зв, обогащение руды — 0,04 чел. — Зв, производство ядерного топлива — 0,002 чел. — Зв, эксплуатация ядерных реакторов — около 4 чел. — Зв, процессы, связанные с регенерацией топлива, — 1 чел. — Зв. Как видно, самая большая доза приходится на эксплуатацию реакторов. Последняя цифра, по мнению специалистов, может в действительности быть больше в 10–20 раз.
Дозу, которую «поставляют» короткоживущие изотопы, население получает примерно в течение одного года. Она составляет примерно 90 % от всей дозы облучения. Остальные 10 % приходятся на долгоживущие радионуклиды. Но уже через 5 лет население получает 98 % общей дозы. Радиус действия (разброса радиоактивных веществ) составляет несколько тысяч километров вокруг данной АЭС. Коллективная эффективная ожидаемая эквивалентная доза облучения долгоживущими радионуклидами составляет очень большую величину (670 чел. — Зв), но она «размазана» на миллионы лет. За первые 500 лет реализуется только 3 % этой дозы. Все остальное — для далеких потомков. Специалисты считают, что даже при нормальной, безаварийной работе реактора люди, проживающие вблизи АЭС, получают всю дозу сполна от короткоживущих радионуклидов. Они получают малую часть дозы от долгоживущих радионуклидов. Не вызывает сомнения, что проживающие вблизи ядерных реакторов люди получают дозы больше, чем получает все население в среднем.
Но не надо забывать об естественном фоне. Он значительно выше того уровня, который обусловлен нормально работающими АЭС (без аварий).
Далее нам предстоит рассмотреть главный вопрос — как действует радиация на человеческий организм, на его здоровье, на его жизнь. Слово радиация должно ассоциироваться у всех со словом «вред», «болезнь» и даже «смерть». Даже тогда, когда радиацию применяют в лечебных целях, она выполняет эту функцию потому, что наносит вред. Надо иметь в виду, что нет уверенности в том, что малая доза — это безопасная доза. К сожалению, это так. Даже малые дозы облучения могут вызвать заболевания раком или генетические повреждения. Поэтому любая доза облучения всегда опасна. Если можно, надо ее стараться избежать. При больших дозах радиацией разрушаются клетки и повреждаются ткани органов, в результате чего может наступить смерть организма. Это может произойти даже в продолжение всего нескольких дней или даже часов.
Установлено, что раковые заболевания возникают через одно-два десятилетия после облучения. Последствия повреждения генетического аппарата проявляются на будущих поколениях — на детях, внуках, правнуках и т. д. Надо себе представлять, что если человек облучился, то это отнюдь не значит, что он обязательно заболеет раком или его генетический аппарат расстроится. Это совсем не так, поскольку в организме человека действуют восстановительные (репарационные) механизмы и вызванные радиацией повреждения в организме ликвидируются. Вопрос в том, насколько эффективно эти механизмы работают. Это зависит от многих факторов, и определить конечный результат трудно. В такой ситуации можно только оценивать риск заболевания. Риск — это вероятность того, что данный человек может заболеть. Ясно, что чем больше неблагоприятных факторов действует на человека, тем больше вероятность того, что он заболеет, тем больше риск. Из сказанного ясно, что утверждать определенно, что человек заболел именно в результате облучения, практически невозможно, за исключением очень больших доз, когда смерть наступает уже через несколько дней или часов после облучения.
Что же происходит в организме при облучении его альфа-, бета- или гамма-излучением? Рассмотрим происходящие процессы с точки зрения физики. Радиоактивное излучение часто называют ионизирующим. Процесс ионизации состоит в следующем. От полноценного атома, у которого столько орбитальных электронов, сколько в ядре протонов, отрываются один или несколько орбитальных электронов. Такой атом перестал быть полноценным и электрически нейтральным. Нехватка оторванных орбитальных электронов проявляется в том, что положительный электрический заряд ядра оказывается скомпенсированным отрицательными зарядами орбитальных электронов не полностью. Такой атом называют ионом. В данном случае положительно заряженным ионом. Имеются и отрицательно заряженные ионы. Это атомы, к которым «прилипли» лишние электроны.