х процессов, например, при электрических разрядах (молниях) и др.
Азот протоплазмы ряд бактерий-редуцентов переводят из органической формы в неорганическую. При этом каждый вид бактерий выполняет свою весьма определенную часть работы. В этой цепочке каждое звено на своем месте и нельзя допустить, чтобы оно выпало. В конце концов некоторое количество азота переводится в аммиак или в нитрат. Эти формы азота наиболее успешно усваиваются зелеными растениями.
Человек добавляет азот в окружающую среду вследствие выбросов соединений азота в атмосферу. Человек осуществляет промышленную фиксацию азота. Продукты этой фиксации азота поступают в пахотные земли в форме азотных удобрений. Их количество примерно равно природной фиксации азота. Но биологическая фиксация ниже. Относительно азота нет каких-либо опасений — его баланс в природе сохраняется. Это результат большого резервного фонда и того, что фиксация азота уравновешивается его денитрификацией.
Круговорот азота, как и воды и вообще любого вещества, требует затрат энергии. Когда происходит разложение белков до нитратов, то высвобождается энергия, которую потребляют организмы, проводящие это разложение. Обратный процесс использует солнечную энергию или же энергию, заключенную в органическом веществе. За счет разложения получают энергию микроорганизмы (бактерии), которые превращают аммиак в нитрит, и бактерии, которые превращают нитрит в нитрат. Бактерии азотфиксирующие и нитрифицирующие для выполнения работы по превращению азотосодержащих соединений используют энергию других источников.
Имеется целый ряд бактерий, которые фиксируют азот. Это свободноживущие бактерии (как аэробы, так и анаэробы), симбиотические клубеньковые бактерии бобовых растений, сине-зеленые водоросли, которых еще называют цианобактериями, пурпурные бактерии из ряда фотосинтезирующих.
Многим известна роль клубеньков на корнях бобовых растений. В этих клубеньках находятся бактерии, которые фиксируют азот. Такие живые организмы, кооперирующиеся с растениями, называют мутуалистами, или симбионтами. Благодаря этим сожителям бобовые получают удобрения прямо с воздуха. Это, естественно, широко используется в агротехнике: после бобовых почва оказывается хорошо удобренной. Менее известно то, что и у многих других растений имеются подобные сожители. Бобовые имеют тропическое происхождение. Но имеется не менее 160 видов двудольных растений, у которых имеются подобные по своему назначению клубеньки на корнях. В качестве примера можно привести ольху. У нее в корневых клубеньках содержатся особые примитивные грибы, которые и осуществляют фиксацию азота. Эффективность их работы не хуже, чем у бактерий в клубеньках бобовых. Эти растения, в отличие от бобовых, возникли в умеренной зоне, для которой характерны песчаные и болотистые почвы. Здесь-то и надо в скудную почву добавлять азот, что успешно и делается.
Сине-зеленые водоросли выполняют ту же функцию фиксации азота. Они хорошо устраиваются на мелком плавающем водном папоротнике, где они заполняют микроскопические поры. Их многие века успешно используют при выращивании риса на заливных рисовых полях Востока. Технология следующая. До того, как будет высажен рис, залитые поля зарастают этим папоротником. В результате поля получают азотные удобрения, благодаря которым регулярно получаются хорошие урожаи риса. Нет нужды вносить удобрения, нет нужды менять места посадок риса. На одних и тех же местах в продолжение 1000 лет рис дает отменные урожаи.
Надо сказать, что фиксация азота происходит и бактериями, которые живут на эпифитах и листьях влажных тропических лесов. Часть этого фиксированного азота получают деревья.
Процесс фиксации азота является очень энергоемким. Для того, чтобы из молекулы азота N2 путем добавления водорода из воды получить две молекулы аммиака NH3, необходимо затратить большое количество энергии, которая идет на разрыв тройной связи в молекуле N2. Коэффициент полезного действия этого процесса составляет не более 0,1. Необходимая энергия получается растениями в фотосинтезе. Бактерии в клубеньках бобовых на связывание одного грамма азота затрачивают примерно десять граммов глюкозы. Глюкоза получается в процессе фотосинтеза. Это и дает столь нужный КПД.
Что касается внесения азотных удобрений в почву, то, как это ни покажется странным, это крайне не эффективно. Посудите сами. По данным американских специалистов, при увеличении азотных удобрений в 12 раз (с 1950 г.) урожайность увеличилась примерно в два раза. Только небольшая часть удобрений используется повторно. Практически вся масса удобрений удаляется из почвы с уборкой урожая. Часть нитратов (немалая!) попадает к нам на стол. Другая часть выносится из почвы водой (происходит выщелачивание), а также выходит из игры в результате денитрификации. В природных же процессах дело обстоит иначе: примерно 80 % того азота, который усваивается ежегодно на всей Земле, возвращается в круговорот из воды и из суши. Из игры выходит только 20 %, которые восполняются в результате фиксации или с осадками (дождем).
Подводя итог азотному циклу (круговороту), укажем на то, что часть азота непрерывно уходит в резервный фонд, опускаясь в глубоководные океанические отложения. Зато в круговорот время от времени включается азот, поступающий в атмосферу с вулканическими газами. Так что даже деятельность вулканов хорошо согласована со всеми процессами на Земле. Специалисты считают, что «выключение» вулканов сказалось бы отрицательно на производстве пищевых продуктов на Земле («от голода вполне могло бы погибнуть больше людей, чем страдает сейчас от извержений»). Надо сказать еще несколько слов об азоте как об опасном загрязнителе воздуха. Оксиды азота (N2O и NO2) являются токсичными. В обычных условиях их образуется немного. Но при сжигании ископаемого топлива содержание этих летучих окислов очень сильно увеличивается, особенно в городах и в промышленных районах. Они составляют третью часть всех отравляющих веществ промышленного происхождения, которые как загрязнители попадают в атмосферу.
Печально известный фотохимический смог, который раздражает глаза и вообще отрицательно действует на здоровье, образуется из NО2, который содержится в выхлопных газах. Под действием ультрафиолетового солнечного излучения NО2 вступает в реакции с продуктами неполного сгорания углеводородов, которые также содержатся в выхлопных газах, и образуется фотохимический смог (фото — потому, что образуется под действием света, ультрафиолетового солнечного излучения).
Круговорот фосфора. Фосфор, в отличие от азота, является в природе дефицитом, или фактором, ограничивающим, лимитирующим жизненные процессы. Поэтому нельзя допустить, чтобы он выходил из игры, то есть из круговорота, на какой-либо ее стадии. Из всех элементов, которые необходимы для живых организмов, причем в больших количествах, фосфор является одним из наиболее редких в смысле его содержания на поверхности Земли. А между тем тот фосфор, который мы добываем для удобрений, тут же теряется — как только мы его добавляем в почву, в том же году он из нее вымывается (по крайней мере большая часть его) водой и навсегда оказывается потерянным для нас. Конечно, он не исчезает как таковой, но из круговорота выключается или навсегда или очень надолго. Он попадает на морское дно, откуда возвращается к нам в очень малых количествах. Возвращают его рыбы. Но возвращают в общей сложности мало, не более 60 000 т в год. А добываем мы фосфора в год примерно два миллиона тонн. Разница весьма существенная. Некоторые успокаивают тем, что разведанные запасы пород, содержащих фосфор, достаточно велики и его, дескать, хватит и для нас и для наших внуков. Но нас должна тревожить не только проблема растранжиривания фосфора (который очень быстро вымывается из почвы), но и те отходы, которые накапливаются в процессе переработки фосфоросодержащих веществ и производства удобрений. Создаются очень серьезные загрязнители окружающей среды, главным образом в виде фосфата. Огромные количества растворимых фосфатов выносятся в водные системы вместе со сточными водами как сельскохозяйственными, так и промышленно-городскими. Специалисты-экологи считают, что если мы не хотим погибнуть от голода, то нам придется всерьез заняться проблемой возвращения фосфора в круговорот. В некоторых местах (за рубежом) практикуют опрыскивание наземной растительности сточными водами, содержащими фосфор. В другом варианте их «пропускают» через болота. Это не решает проблемы полностью, но определенный эффект достигается.
Сложность проблемы фосфора, в отличие от азота, состоит в том, что его резервный фонд находится не в атмосфере, а на дне морском, в горных породах и других отложениях, которые возникли как результат геологической активности. Из этих пород фосфор добывает человек, ведя их разработки, но добытый фосфор почти незамедлительно теряется — он в прямом смысле уплывает из его рук и оказывается на дне морском. При этом часть фосфатов отлагается в мелководных осадках, а часть теряется очень глубоко на морском дне. В принципе в истории Земли имел место процесс поднятия отложений. Но сейчас он практически не наблюдается и уповать на то, что фосфор сам поднимется со дна морского, не приходится. Рыба, как мы уже видели, также не справляется с этой задачей. А между тем фосфор является незаменимым элементом протоплазмы, без которого жизнь невозможна. Круговорот его прост: он переходит из органических соединений в фосфаты, а фосфаты потребляют растения. Что касается потери фосфора, то мы теряем и еще одну возможность его возвращения в круговорот — морские птицы стали это делать намного менее эффективно, чем в недалеком прошлом. Птиц становится меньше — и это результат деятельности человека. А ведь было их несметное количество. Колоссальные скопления гуано на побережье Перу казались неистребимыми. Но человеку все по плечу.
Круговорот серы. Сера не столь необходима живым организмам, как фосфор и азот. Но роль ее огромна, и круговорот ее в природе сбивать нельзя. Роль ее не только прямая, но и косвенная. Например, когда в осадках образуются сульфиды железа (содержат серу), то это помогает фосфору переходить из нерастворимой формы в растворимую. А это то, чего мы так желаем. Но у серы есть и своя непосредственная задача — она входит в состав аминокислот и участвует в процессе продуцирования и разложения биомассы.