Тайны будущего. Прогнозы на XXI век — страница 66 из 140

Влияние космических факторов на организм человека осуществляется разными путями, часто очень опосредованно, например, и через указанные выше рецепторы. Но имеется и прямое воздействие, которое осуществляется через электромагнитные колебания. Это могут быть колебания (вариации) магнитного поля Земли, которые вызываются изменением условий в космосе (прежде всего на Солнце), это могут быть и различные электромагнитные волны, которые зарождаются на самом Солнце, в межпланетном и околоземном пространстве, внутри магнитосферы Земли и даже вблизи земной поверхности.

Только недавно была создана аппаратура такой чувствительности, что стало возможным зарегистрировать те электромагнитные колебания, которые излучают наши органы: сердце, печень, мозг и др. Нам еще предстоит существенно повысить чувствительность своей аппаратуры для того, чтобы до конца понять, как устроены рецепторы человека, регистрирующие электромагнитное излучение, и как организм использует электромагнитное излучение для организации синхронной работы своих систем и органов. Таким образом, познание электромагнитной природы человека сильно отстало от познания других его сторон. Это, собственно, неудивительно. Ведь о самом существовании электромагнитных волн еще сто лет назад мы и не подозревали, тогда как о воздействии света человек знал с самого начала своего существования.

Для того, чтобы понять, как регистрируются электрические, магнитные и электромагнитные сигналы человеческим организмом и как впоследствии организм реагирует на них, надо рассмотреть его электрические и магнитные свойства.

ЧЕЛОВЕЧЕСКИЙ ОРГАНИЗМ —СИСТЕМА ЭЛЕКТРОМАГНИТНАЯ


Нервная система

Следует начать рассмотрение с клетки. Она не только представляет собой самостоятельную хозяйственную единицу практически со всеми функциями живого организма, но и является началом начал. В первой, единственной пока клетке, из которой впоследствии должен развиться организм, заложена вся информация как о ходе этого строительства, так и о свойствах будущего организма. Более того, в самое последнее время ученые на основании электромагнитных исследований приходят к выводу, что практически все об организме можно узнать, изучая исключительно только клетку.

Так что же представляет собой клетка живого организма? Клетка окружена мембраной, функции клеточных мембран очень серьезные, от них в организме зависит очень многое. В настоящее время сформировалась целая наука, которая изучает мембраны клеток, — мембранология. Внутри клетки находится ядро. В клетке имеются колонии, окруженные двойной мембраной, которые называются лизосомами. Если лизосомы выберутся за пределы своей колонии, то они начнут разрушать все попадающиеся им на пути вещества, из которых состоит клетка. Через короткое время они способны уничтожить и саму клетку.

Зачем же клетке нужны лизосомы, которые содержатся в специальных изоляторах за двойной мембраной? Они нужны на тот случай, если понадобится убрать ненужные разлагающиеся вещества в клетке. Тогда они по команде из ядра делают это. Часто эти пузырьки в клетке называют мусорщиками. Но если по какой-либо причине мембрана, которая их сдерживает, будет разрушена, эти мусорщики могут превратиться в могильщиков всей клетки. Забегая вперед, скажем, что таким разрушителем мембран может быть меняющееся магнитное поле во время магнитных бурь. Когда под его действием мембраны клеток разрушаются, лизосомы обретают свободу и делают свое черное дело. Имеются и другие факторы, способные разрушить эти мембраны, но их мы рассматривать здесь не будем.

В ядре клетки, которое занимает примерно третью часть всей клетки, размещен весь «управленческий аппарат». Это прежде всего знаменитая ДНК (дезоксирибонуклеиновая кислота). Она предназначена для хранения и передачи информации при делении клетки. Ядро содержит и значительное количество основных белков — гистонов, и немного РНК (рибонуклеиновой кислоты).

Клетки работают, строят, размножаются. Это требует энергии. Клетка сама же и вырабатывает нужную ей энергию. В клетке имеются энергетические станции. Они занимают площадь в 50—100 раз меньшую, чем площадь ядра клетки. Энергетические станции также обнесены двойной мембраной. Она предназначена не только для ограничения станции, но и является ее составной частью. Поэтому конструкция стенок отвечает технологическому процессу получения энергии.

Энергию клетки вырабатывают в системе клеточного дыхания. Она выделяется в результате расщепления глюкозы, жирных кислот и аминокислот. Но самым главным поставщиком энергии в клетке является глюкоза. Процесс превращения глюкозы в углекислоту, при котором выделяется энергия, идет с участием электрически заряженных частиц — ионов. Этот процесс называется биологическим окислением. Можно сказать, что энергия в клетке производится по электрической технологии. Поясним, что собой представляет частица ион.

Любой атом или молекула является электрически нейтральной частицей. Каждый атом имеет такой же по величине положительный электрический заряд (он расположен в ядре атома), как и отрицательный. Последний несут на себе электроны, вращающиеся вокруг ядра. Пока положительные заряды скомпенсированы отрицательными — атом является электрически нейтральным. Если от атома оторван один (или больше) электрон, то в нем преобладают положительные заряды ядра. Говорят, что атом при этом превратился в положительно заряженный ион. Атом становится отрицательным ионом в том случае, если к нему «прилипнет» лишний электрон. То же самое относится и к молекулам, то есть имеются положительные и отрицательные молекулярные ионы. В организме человека имеются как разные (положительные и отрицательные) ионы, так и электроны.

В процессе биологического окисления участвуют не только ионы (имеющие электрический заряд), но и электроны (имеющие отрицательный электрический заряд). Этот процесс на своем последнем этапе образует молекулы воды. Если же по какой-то причине на этом заключительном этапе не окажется атомов кислорода, то конечный продукт — вода — образоваться не сможет. Водород, предназначенный для образования воды, останется свободным и будет накапливаться в виде электрически заряженных ионов. Тогда дальнейшее протекание процесса биологического окисления, то есть процесса образования энергии, прекратится. Прекратится работа электрической станции и наступит энергетический кризис.

Очень интересно, что для удобства потребления энергия в клетке вырабатывается малыми порциями. Процесс окисления глюкозы включает в общей сложности до 30 реакций. При протекании каждой из этих реакций выделяется небольшое количество энергии. Такая «расфасовка» очень удобна для использования энергии. Клетка при этом имеет возможность наиболее рационально использовать освобождающуюся малыми порциями энергию на текущие нужды, а избыток запасенной энергии откладывается клеткой в виде АТФ (аденозинтрифосфорной кислоты). Энергия, запасенная клеткой в виде АТФ, — это своего рода неприкосновенный запас (НЗ).

АТФ — сложное соединение, в молекулу которого входят три остатка фосфорной кислоты. На присоединение каждого из остатков затрачивается энергия в количестве около 800 кал. Этот процесс называется фосфорилированием. Эта энергия может быть взята обратно (востребована) из АТФ. Для этого АТФ надо разложить на два других вещества: АДФ (аденозиндифосфат) и неорганический фосфат. Аналогично при расщеплении сложных атомных ядер выделяется энергия. Конечно, эта аналогия не полная, так как расщепление (гидролиз) молекул АТФ оставляет неизменными атомные ядра. Расщепление АТФ происходит в присутствии специального вещества — фермента. В этом случае, то есть при расщеплении АТФ, ферментом является аденозинтрифосфаза (АТФаза). Это вещество бывает различных видов и встречается повсеместно, где протекают реакции с потреблением энергии.

АТФ является универсальной формой хранения энергии. Его используют все клетки не только животных (в том числе и человека), но и клетки растений.

АТФ образуется в процессе биологического окисления из тех же веществ, на которые он расщепляется при обратном процессе — фосфорилировании, а именно: неорганического фосфата и АДФ. Поэтому, для того чтобы протекал процесс биологического окисления, необходимо наличие на всех стадиях этого процесса АДФ и неорганического фосфата. Но эти вещества по мере протекания процесса окисления непрерывно расходуются, поскольку из них образуется запас энергии в виде АТФ.

Процесс окислительного фосфорилирования протекает одновременно с процессом биологического окисления. Оба эти процесса тесно связаны между собой и протекают благодаря участию электрически заряженных частиц (ионов и электронов). С этими электрическими процессами связана вся технология получения энергии в клетках. Четкая, сбалансированная сопряженность этих процессов является залогом существования и нормального функционирования клетки. Но если по каким-либо причинам в клетке создаются такие условия, что процесс биологического окисления может протекать независимо от процесса фосфорилирования, то нормальное функционирование и существование клетки становится невозможным. Дело в том, что процесс производства энергии при этом оказывается никак не связанным с процессом ее потребления. Поскольку магнитное поле оказывает влияние на заряженные частицы (ионы и электроны), участвующие в этих процессах, то тем самым оно может влиять и на ход самого процесса образования энергии внутри клетки.

Вторым жизненно важным вопросом для клетки является вопрос ее общения с внешним миром, то есть регулирование входа в клетку и выхода из нее через мембрану, окружающую клетку. И этот вопрос решен с использованием технологии, созданной на электрической основе. Другими словами, вход в клетку и выход из нее регулируются электричеством. Этот вопрос исключительно важен в смысле влияния космических факторов на здоровье человека. Чтобы заострить внимание читателя на этом вопросе, скажем здесь, забегая вперед, что под действием космических факторов происходит