изменение в пропускной системе через мембраны клеток, то есть меняется проницаемость биологических мембран. То, что такие незапланированные изменения режима входа в клетку и выхода из нее происходят в периоды магнитных бурь, не может не сказаться на нормальной работе клетки, а значит, и на работе всего организма. Легко понять, что если из клетки из-за увеличения проницаемости мембраны вышли хотя бы частично нужные клетке вещества, то ничего хорошего в этом нет.
Мембрана клетки построена в два слоя из молекул фосфолипида. Образованная тонкая пленка находится в постоянном движении. К этой стенке с обеих сторон (изнутри и снаружи) примыкают белковые молекулы. Можно сказать, что стенка из молекул фосфолипидов выстлана молекулами белков, которые не упакованы плотно, а составляют сравнительно редкий узор (кружева). Этот узор имеет одинаковую форму у всех клеток однородной ткани, скажем ткани печени. Клетки почек имеют другой узор, клетки сердца — третий и т. д. По этой причине разнородные клетки не слипаются между собой. В каждом из таких узоров имеются пустоты, дырочки, поры. Через эти поры, проходы в узорах, могут проникать в клетку крупные молекулы, способные растворяться в жирах, из которых состоит мембрана.
Белки вырабатываются внутри клетки. Поэтому снаружи клетки они имеются в том случае, если в самой мембране (а не в узоре из белка) имеются проходы. Через эти проходы в мембране молекулы белка пробираются наружу. Эти проходы очень маленькие, но размер их не произволен. Он подобран точно таким, что соответствует размеру атомов и молекул, которые надо выпустить из клетки наружу. Эти проходы, или, как их называют, поры, служат для вывода из клетки ненужных молекул и ионов. Эти поры напоминают туннели: длина их в 10 раз больше их ширины. В мембране клетки таких проходов мало, у некоторых клеток они занимают по площади только одну миллионную часть всей поверхности мембраны. Эти проходы устроены таким образом, что они способны пропускать одни молекулы и ионы и задерживать другие. Паролем при проходе служит размер молекул и ионов, а для ионов также их электрический заряд. Дело в том, что сама мембрана находится под электрическим напряжением, как будто к ней подключена электрическая батарейка минусом на внутреннюю сторону мембраны, а плюсом — на ее внешнюю, наружную сторону. Что собой представляет эта электрическая батарейка? Она создается электрическими зарядами, которые несут на себе ионы калия и ионы натрия, растворенные в воде и находящиеся по обе стороны мембраны. Если в любом месте раствора имеется одинаковое количество положительных и отрицательных электрических зарядов, то суммарный электрический заряд в этом месте (объеме) равен нулю. Электрический потенциал в этом случае также равен нулю, то есть батарейка оказывается не заряженной. Для того чтобы она зарядилась, надо в одном месте собрать больше положительно заряженных частиц (ионов), а в другом больше отрицательно заряженных частиц. Эти места и будут не что иное, как полюсы батарейки — плюс и минус. Как же создается и функционирует эта батарейка в клетке?
Внутри клетки содержатся в водном растворе в основном ионы калия, а вне ее — ионы натрия. Однако внутри клетки наряду с ионами калия имеются (в меньшем количестве) и ионы натрия, поскольку те и другие проходят через мембрану клетки. Но поскольку ионы калия гораздо меньше ионов натрия, то они проходят через проходы в мембране наружу легче, чем ионы натрия, которые проходят через мембрану извне клетки внутрь. Внутри клетки остается столько же отрицательных зарядов, сколько ионов калия скопилось на наружной стороне мембраны. Поэтому в мембране (поперек ее) создается электрическое поле. Оно возникает в результате разности концентраций калия внутри и вне клетки. Это электрическое поле поддерживает разность потенциалов, которая не меняется с перемещением ионов натрия, так как проницаемость мембраны для них ничтожно мала. Возникшее таким путем электрическое поле увеличивает поток ионов калия внутрь клетки и уменьшает их поток наружу. Когда внутрь клетки будет входить столько же ионов калия, сколько их выходит наружу, наступит динамическое равновесие. При этом на наружной стороне мембраны имеется плюс, а на внутренней — минус.
Таким образом, не только технология образования энергии в клетке, но и регулировка ее общения с внешним миром происходит благодаря действию электрического потенциала, создаваемого движением и определенным распределением электрических зарядов.
Нелишне здесь описать, как клетка реагирует на раздражающий сигнал извне. Так, если на клетку в результате внешнего раздражения поступает импульс электрического тока (то есть биотока), то мембрана на непродолжительное время увеличивает свою проницаемость для ионов натрия. Они получают возможность проходить через мембрану. До этого во внеклеточном пространстве ионов натрия было примерно в 100 раз больше, чем ионов калия. При увеличении проницаемости мембраны клетки ионы натрия устремляются внутрь клетки. Так как их электрический заряд положительный и внутри клетки их становится большинство, то на внутренней стенке мембраны вместо минуса (который создавали отрицательные ионы калия) образуется плюс за счет ионов натрия. Происходит переполюсовка электрической батарейки, электроды которой подключены к внешней и внутренней сторонам мембраны клетки. Через некоторое время после прекращения действия на клетку внешнего раздражителя увеличивается проницаемость мембраны для ионов калия, а условия прохода ионов натрия через мембрану ухудшаются. Поэтому восстанавливается такое же положение, какое было до действия раздражителя, а именно: к внутренней стороне мембраны приложен минус, а к наружной — плюс. Таким положение остается до начала действия следующего раздражителя.
Главный для нас вывод из всего вышесказанного состоит в том, что проходы в мембранах, через которые идет обмен клетки с внешним миром, изменяются под действием электрических (биологических) токов, и они по-разному пропускают ионы в зависимости от величины этих токов.
Внешнее магнитное поле может действовать на электрические токи и на движение зарядов (ионов). Значит, оно способно влиять на процесс общения клетки с внешним миром. Оно может нарушать этот процесс, а значит, и условия функционирования и даже существования клетки.
В ответ на внешний раздражитель клетка моментально переключает полюса своей электрической батареи. Это приведет к возникновению электрического импульса. Зачем клетке этот импульс?
Чтобы предупредить центральную нервную систему о внешнем раздражителе. Но импульс должен дойти до того места, где его зарегистрируют. Для этого должен быть проводник, способный проводить электрические сигналы. Он в организме тоже есть. Это нерв. Таким образом, мы уже встретили в человеческом организме электростанции (точнее, электрохимические генераторы), батареи, обеспечивающие определенный электрический потенциал, а теперь нам предстоит ознакомиться с проводниками электрического тока в организме человека — нервами, которые вместе составляют нервную систему. Как они устроены?
Проводящий электрические импульсы проводник сконструирован из клеток, которые вытянуты в виде проводов. Каждая такая нервная клетка называется нейроном. Она имеет определенную структуру — состоит из тела и отростков, наподобие ствола дерева с отростками. Это нужно для того, чтобы успешно собирать информацию с помощью электрических импульсов с как можно большего пространства, с определенной части организма. Множество исходящих из тела клетки-нейрона отростков являются короткими. Они называются дендритами («дендро» — дерево). Один из отростков, как правило, имеет большую длину и называется аксоном. Аксон заполнен студенистой жидкостью, которая постоянно создается в клетке и медленно перемещается по аксону-волокну. От основного ствола аксона отходит множество боковых нитей, которые вместе с нитями соседних нейронов образуют сложные сети. Эти нити выполняют функции связи, как и дендриты. По ним текут электрические токи. Аксоны не располагаются по отдельности, сами по себе. Близлежащие аксоны, направленные в одну сторону, собраны вместе в жгуты, которые называют волокнами. Точно так же проводки, собранные вместе и покрытые общей изоляцией, образуют электрический кабель.
Таким образом, мы обнаруживаем в организме не только проводники электрического тока, но и многожильные кабели. Главное условие, которое предъявляется к проводнику (а значит, и к кабелю), предназначенному для передачи по нему электроэнергии, — это его небольшое сопротивление электрическому току. Если это сопротивление будет очень большим, то электрический сигнал не сможет дойти до места назначения. Его энергия по пути будет израсходована на преодоление этого сопротивления и в конце концов превратится в тепло.
Электрические же импульсы в организме человека приходится передавать на большие (по этим масштабам) расстояния. Так, например, аксоны двигательных клеток коры головного мозга имеют длину около 1 м. Скорость распространения электрического тока по нервному волокну зависит от поперечного сечения проводника (волокна), а также от оболочки волокна (оплетки кабеля). Чем тоньше нервное волокно, тем скорость распространения по нему электрического импульса меньше. Это свойство волокон организм использует для решения очень непростой проблемы, которая перед ним возникает. Проблема состоит в том, что распоряжения из центра управления организмом должны достигать любой его точки строго одновременно. Ведь только так организм может выполнять любую команду из центра как единое целое, то есть все его органы начнут действовать одновременно. Но так как расстояния до центра различные, то выход может быть только в одном: надо, чтобы гонцы бежали с разной скоростью с таким расчетом, чтобы все достигли своих конечных пунктов одновременно. Так в организме все и сконструировано. Те волокна, по которым электрическому импульсу надо бежать дальше всего, сделаны более толстыми, поэтому по ним импульс бежит быстрее. Но обратите внимание, эти толщины (а значит, и скорости) строго-настрого выверены. Они не могут быть ни меньше, ни больше нужной величины. В противном случае работа организма будет разбалансирована.