Тайны будущего. Прогнозы на XXI век — страница 79 из 140

Следует иметь в виду, что не всегда арктический холодный воздух перекрывает путь влажному теплому западному ветру, который несет в себе осадки. При их соприкосновении возможна и такая ситуация, когда от воздействия холодных масс арктического воздуха быстрее и интенсивнее выпадают осадки из теплого западного воздуха. О таком исходе свидетельствуют данные о водоносности рек в Восточной Сибири. Такая ситуация может реализоваться в теплый сезон года, но не зимой.

Эти факты еще раз говорят за то, что нельзя искать только непременно прямые связи между солнечной активностью и земными процессами, в частности, водоносностью рек. Если такой прямой связи нет, то это не значит, что солнечная активность не влияет на сток рек. Поскольку водоносность рек зависит от солнечной активности посредством атмосферной циркуляции, то возможны различные варианты этой связи в зависимости от того, какая составляющая атмосферной циркуляции преобладает: зональная или меридиональная. Когда преобладает зональная составляющая атмосферной циркуляции, то именно она определяет водоносность рек Сибири. В эпохи, когда она подавлена, преобладает меридиональная циркуляция атмосферы, водоносность рек зависит от нее: в одних случаях ее усиление понижает водоносность, перекрывая полностью дорогу теплому влажному западному ветру, а во втором случае (летом) способствует образованию осадков из западных воздушных масс.

Если мы рассматриваем другой регион Земли, то все может выглядеть по-иному. Важно, какие воздушные массы сюда попадают, какие из них приносят осадки, а какие из них не только не приносят их, но и препятствуют образованию осадков и т. д. Поэтому и получается, что в разных регионах Земли зависимость хода природных процессов от солнечной активности различная. Но это различие отнюдь не означает какого-либо противоречия, оно тем более не означает отсутствия зависимости данного процесса от солнечной активности.

Это можно проиллюстрировать ситуацией со стоком рек в другом, ближнем к Сибири регионе — Средней Азии. Здесь зависимость водостока рек от атмосферной циркуляции иная. Поскольку регион Средней Азии находится дальше от Арктики, чем Сибирь, влияние холодных арктических масс воздуха на количество осадков, а значит и на водоносность рек меньше, чем в Сибири. Практически в Средней Азии количество осадков (и водоносность рек) зависят всецело от тональной циркуляции, то есть от теплых влажных масс воздуха, приходящих с запада.

Таким образом, солнечная активность оказывает влияние на водоносность рек путем изменения количества осадков, которое, в свою очередь, определяется характером атмосферной циркуляции. Последнее звено связи мы выяснили. Так как же обстоит дело с зависимостью между конечными звеньями этой цепи, то есть между солнечной активностью и водоносностью рек? Ясно, что для разных регионов эта зависимость будет различной. В одних увеличение солнечной активности приведет к уменьшению водостока рек. Это справедливо для Средней Азии. В этом случае говорят, что эти величины изменяются в противофазе (сдвиг фаз на 180°), то есть максимум солнечной активности совпадает с минимумом водоносности рек. Такая же зависимость (в противофазе) между солнечной активностью и водостоком рек имеет место и для Зауралья, и Восточной Сибири (река Лена). Более сложная зависимость имеет место на юге Восточной Сибири (р. Ангара, верхний Енисей, о. Байкал), а также в Западной Сибири. Здесь в разные эпохи развития атмосферной циркуляции зависимость разная. Так, в те эпохи, когда преобладает движение теплых воздушных масс с запада (то есть 1928 г.), водоносность рек в Западной Сибири и на Дальнем Востоке изменялась синфазно с изменением солнечной активности, то есть максимуму одной величины соответствовал максимум другой, а в бассейнах озера Байкал и р. Енисей сдвиг по фазе составил 90°.

К настоящему времени выполнены только первые исследования связи процессов в гидросфере с солнечной активностью. Они подтвердили эту связь. В дальнейшем предстоит исследовать эти связи в полном объеме. Конечно, это относится не только к процессам в атмосфере, но и к другим природным процессам на Земле. Зачем это надо? Зная причину изменения этих процессов, можно будет уверенно прогнозировать их развитие на ближнее и отдаленное будущее. Значение таких достоверных прогнозов для жизни человека очевидно.

Объемные исследования связи атмосферной циркуляции с солнечной активностью были выполнены под руководством Э. Р. Мустеля. Использовались данные многих метеорологических станций. Главным параметром, определяющим характер атмосферной циркуляции, является давление. Именно перепады в давлении заставляют воздух двигаться туда, где давление меньше. Для исследований были выбраны конкретные периоды, когда Землю с ее магнитосферой окутал поток солнечных заряженных частиц. Магнитосфера Земли под давлением потока заряженных частиц возмущается, происходит магнитосферная буря. Одним из признаков бури в магнитосфере является магнитная буря, то есть возмущение магнитного поля Земли. Именно по степени возмущенности магнитного поля и отбирались периоды, за которые анализировалось изменение атмосферного давления. Поскольку во время магнитосферных бурь часть энергии заряженных частиц передается в атмосферу, то можно ожидать, что вызванные вносом этой энергии процессы изменят распределение атмосферного давления. Были отобраны 834 периода нахождения Земли в потоках солнечных заряженных частиц (которые имели место с 1890 по 1967 г.). Анализ проводился дифференцированно, то есть раздельно для разных сезонов и разных метеостанций.

Было показано, что спустя некоторое время после начала магнитной бури атмосферное давление действительно меняется: в одних регионах оно увеличивается, а в других — уменьшается. Правда, величина (амплитуда) колебания давления, которое можно уверенно связать с магнитной бурей, намного меньше того размаха изменения давления, которое сопровождается ураганами и штормами. Были выделены шесть районов, в каждом из которых наблюдались однотипные изменения атмосферного давления. Это — Восток СССР, Западная Сибирь, Европа, окрестности Карского моря, Северная Атлантика.

Анализ показал, что на Востоке СССР, в Северной Атлантике и на Канадском архипелаге после начала магнитной бури атмосферное давление уменьшается. В это же время в Европе, Западной Сибири и в окрестности Карского моря атмосферное давление увеличивается. Наиболее эффективно и быстро энергия солнечных заряженных частиц вносится в атмосферу в высоких широтах, в овале полярных сияний, на широтах вблизи 70°. Поэтому уже через двое суток в высокоширотных районах меняется атмосферное давление. Чем дальше в сторону экватора от овала полярных сияний, тем больше надо времени, чтобы энергия солнечных потоков заряженных частиц попала в атмосферу и вызвала там изменение атмосферного давления. Так, в Восточной части СССР атмосферное давление изменяется только спустя четверо суток. При этом с увеличением широты уменьшается амплитуда изменения атмосферного давления.

Эффективность воздействия солнечных заряженных частиц на магнитосферу зависит от направления межпланетного магнитного поля. Было показано, что направление межпланетного магнитного поля проявляется и в атмосферных процессах: при изменении знака магнитного поля существенно изменяется зональная циркуляция атмосферы.

Ветровой режим атмосферы на высотах 6—12 0 км также зависит от солнечной активности. Исследования проведены В. Ф. Логиновым по данным станций ракетного и аэрологического зондирования атмосферы в 1962–1970 гг. над Тихим океаном и Северной Америкой. Было показано, что при увеличении солнечной активности ослабляется циркуляция атмосферы в поясе с широтами меньше 40° с. ш. Ранее было установлено по данным о торможении искусственных спутников в атмосфере Земли, что с ростом солнечной активности увеличивается плотность атмосферного газа в верхней атмосфере (где летали спутники).

Развивающиеся в атмосфере процессы при воздействии внешних факторов, связанных с солнечной активностью, зависят от того, в каком состоянии в момент воздействия находится атмосферный газ. Поэтому зависимость атмосферной циркуляции от солнечной активности различна в разные сезоны года, на разных широтах и долготах. Это следует из всех выполненных исследований.

До сих пор рассматривая глобальную циркуляцию атмосферы, мы говорили только об одной зоне максимального нагрева атмосферы, которая находится в экваториальном поясе. Но ведь имеется и вторая зона, где нагрев атмосферного газа большой. Это та зона в высоких широтах, куда в атмосферу вторгаются заряженные частицы и в различных процессах передают свою энергию атмосферному газу. Эта зона и есть овал полярных сияний. Грубо она расположена между 65 и 75° с. ш. (в северном полушарии). Именно в этой зоне наблюдаются чаще всего антициклоны большой силы. В зоне полярных сияний происходят частые нарушения установившейся атмосферной циркуляции, то есть зональная атмосферная циркуляция часто меняется, возмущается. Вторжение заряженных частиц в зоне полярных сияний зависит прямым образом от солнечной активности. Поэтому естественно, что от солнечной активности зависит и характер зональной атмосферной циркуляции. Значит, в нем должны проявлять себя как 11-летний, так и вековой цикл изменения солнечной активности. Сопоставление данных (после определенной обработки) о зональной атмосферной циркуляции с уровнем солнечной активности за периоды максимальной солнечной активности уменьшается повторяемость зональных атмосферных процессов. Это и понятно, поскольку для повторяемости необходима стабильность, а при частом вторжении в атмосферу зоны полярных сияний о какой ее стабильности может идти речь? Стабильность больше при низкой (минимальной) солнечной активности. Поэтому в минимумах солнечной активности, когда нагрев атмосферы заряженными частицами в зонах полярных сияний минимален, увеличивается повторяемость зональных процессов, ветров, направленных в долготном направлении запад — восток. В зонах полярных сияний больше всего меняется атмосферное давление в продолжении 11-летнего цикла солнечной активности. Причина та же: атмосфера подвержена действию потоков солнечных заряженных частиц. Такая же зависимость зональной циркуляции атмосферы от уровня солнечной активности прослеживается и в течение векового цикла солнечной активности. Вековой цикл солнечной активности в начале нашего столетия имел минимум, то есть солнечная активность в максимумах 11-летних циклов была небольшой, минимальной.