Многие годы надежный квадратик позволял любителям чая приготовить свой напиток без хлопот, связанных с очищением и мытьем заварочных чайников. Квадрат – очень эффективная форма, такие пакетики легко делать, кроме того, нет излишних расходов упаковочного материала. PG Tips, ведущий производитель пакетированного чая, ежегодно на протяжении 50 лет штамповал миллиарды пакетиков на своих фабриках по всей стране.
Но в 1989 г. компания Tetley, его главный конкурент, сделала смелый шаг для передела рынка и представила круглые пакетики. Хотя такое изменение мало отличалось от эстетического ухищрения, оно сработало. Продажи новой формы взмыли вверх. В PG Tips понимали, что необходимо превзойти конкурента, для того чтобы удержать покупателей. Хотя круг и понравился клиентам, он по-прежнему оставался плоской, двумерной фигурой. Тогда команда PG Tips решила совершить скачок в третье измерение.
Разработчики PG Tips знали, что нам не хватает терпения, когда дело доходит до чая. В среднем пакетик находится в чашке лишь 20 секунд, а потом его вытаскивают. Если вы разрежете обычный двумерный пакет, который окунали на 20 секунд, то обнаружите, что чай посередине остался сухим: у него было недостаточно времени для контакта с водой. Команда PG Tips полагала, что трехмерный пакетик будет своего рода заварочным чайником в миниатюре, который даст возможность всем чайным листьям провзаимодействовать с водой. Был даже привлечен эксперт по теплотехнике из Имперского колледжа Лондона: он занимался расчетом компьютерных моделей, чтобы подтвердить уверенность в том, что третье измерение способно улучшить аромат чая.
Но затем в разработке пришла очередь следующего шага: а какая же форма? Были подготовлены различные трехмерные формы для тестирования потребителями. Эксперименты шли с цилиндрами и чайными пакетиками, напоминавшими китайские фонарики. Также испытывались правильные сферы. Сфера выглядит довольно привлекательно, ведь, как и в случае пузыря, это такая форма, которая при заданном объеме требует минимума материала для изготовления пакетика. Но сфера крайне неудобна для производства, особенно если вы стартуете с плоского листа муслина – всякий, кто пытался завернуть футбольный мяч на Рождество, может засвидетельствовать это.
Если дан плоский лист бумаги, то естественно рассмотреть трехмерные формы с плоскими гранями. В PG Tips начали с исследования тех форм, которые описали Платон и Архимед более двух тысяч лет назад. В отличие от производителей спортивного снаряжения, понявших, что футбольный мяч, сделанный из пятиугольников и шестиугольников, хорошо приближает сферу, изготовители чая заинтересовались формой на другом конце спектра. Хотя тетраэдр с четырьмя гранями (пирамида с треугольным основанием) охватывает наименьший объем при заданной площади поверхности, для его изготовления требуется минимальное количество граней. Невозможно объединить три плоские грани, чтобы создать трехмерную замкнутую форму.
В компании PG Tips, очевидно, были заинтересованы и в том, чтобы как можно меньше упаковочного материала шло в отход. Форма должна быть не только визуально привлекательна, но и эффективна. Сверх того, поскольку требовалось наладить снабжение нации, которая выпивает более 100 миллионов чашек в день, обязательным условием было, чтобы производство шло с большой скоростью. Недопустимо было заполнять чайные фабрики рабочими, сшивающими вместе четыре маленьких треугольничка, чтобы получилась пирамидка. Прорыв произошел, когда кто-то предложил замечательно красивый и элегантный способ производства чайного пакетика в виде пирамидки.
Подумайте, как делается пакетик с чипсами. Цилиндрическая трубка запечатывается швом снизу, наполняется чипсами, а затем сверху делается шов в том же направлении. Но посмотрите, что будет, если шов наверху делать не в том же направлении, а сначала повернуть пакетик на 90° и лишь потом запечатывать его. Неожиданно у вас в руках оказывается упаковка в виде тетраэдра. У тетраэдра шесть ребер: два из них совпадают со швами и четыре соединяют два шва, от конца каждого шва идут по два ребра к каждому из концов противоположного шва. Это замечательно эффективный способ изготовления пирамидок. Замените чипсы чаем, запечатывайте упаковку с поворотом, и у вас получатся пирамидальные чайные пакетики. Не будет лишнего расходования материала, а машина может запечатывать их со скоростью 2000 штук в минуту, достаточно быстро, чтобы удовлетворить спрос нации любителей чая. Эта машина была настолько инновационной, что попала в топ-лист 100 патентов, зарегистрированных в XX в.
После четырех лет разработки производство пирамидальных чайных пакетиков было запущено в 1996 г. Оно оказалось эффективным, а потребители сочли новую форму современной и стильной. Новая рекламная кампания оказалась долгожданной заменой труппы одетых обезьян, на которых PG Tips полагалась на протяжении ряда лет для поддержки своей продукции. Компания возвратила себе первое место по продажам чая в пакетиках.
Но в то время как тетраэдры позволили подчеркнуть вкус чая, за обликом другого Платонова тела скрывается нечто зловещее.
Почему вы можете умереть, если подхватите икосаэдр
В 1918 г. пандемия «испанского гриппа» погубила не менее 50 миллионов человек, что значительно превосходило число жертв Первой мировой войны. Из-за смертельных последствий многие ученые поставили перед собой задачу определить механизм данного опасного заболевания. Вскоре они поняли, что причиной были не бактерии, а нечто меньшее, недоступное для наблюдения в микроскопы того времени. Они назвали новых переносчиков «вирусами» – от латинского слова virus, обозначающего яд.
Раскрытие истинной природы вирусов стало возможно позднее, когда была разработана новая методика исследований, называемая рентгеновской дифрактометрией. Она позволила ученым разглядеть молекулярную структуру, лежащую в основе этих организмов, которые нанесли такой урон. Молекулу можно представить как набор шариков для пинг-понга, соединенных между собой палочками. Хотя это и является чрезмерным упрощением настоящей науки, в каждой химической лаборатории имеются коллекции шариков и палочек, чтобы помочь студентам и научным сотрудникам исследовать структуру молекулярного мира. Когда пучок рентгеновских лучей проходит через исследуемое вещество, то часть лучей рассеивается встреченными молекулами на различные углы. Это явление называется дифракцией рентгеновских лучей. Получающиеся изображения в чем-то схожи с тенями, которые образуются, если осветить упомянутые структуры из шариков и палочек.
Математика стала могучим союзником в сражении за расшифровку информации, содержащейся в этих тенях. Цель состоит в том, чтобы определить, какие трехмерные формы могли дать двумерные тени, полученные при рентгеновской дифракции. Довольно часто успех связан с нахождением оптимального угла, под которым нужно направить свет, чтобы раскрыть истинное молекулярное строение. Силуэт головы, получающийся, если кому-то направить свет прямо в лицо, содержит мало информации, разве что покажет, насколько торчат уши. Но профиль позволит сказать значительно больше. То же самое касается и молекул.
После того как Фрэнсис Крик и Джеймс Уотсон открыли структуру ДНК, они совместно с Дональдом Каспаром и Аароном Клугом обратили внимание на двумерные картинки, получающиеся при дифракции рентгеновских лучей на вирусах. К своему удивлению, они увидели изображения, полные симметрии. На первых картинках были видны точки, упорядоченные в треугольники. Это подразумевало, что у вирусов была трехмерная форма, которая переходит в себя при повороте на треть полного оборота: значит, имелась симметрия. Когда биологи заглянули в математический кабинет теней, они решили, что Платоновы тела были наилучшими кандидатами на форму вирусов.
Представьте, что на рождественской елке висит украшение в форме кубика, причем веревочка прикреплена к одному из его углов. Если вы разрежете куб горизонтально между верхней и нижними точками, то получите два тела, у каждого из которых будет новая грань. Какова форма новой грани? Ответ приведен в конце главы.
Но проблема была в том, что у всех пяти Платоновых тел имеется ось симметрии третьего порядка, при повороте на треть полного оборота вокруг которой тело переходит в себя. Лишь когда биологи получили другие дифракционные изображения, возникла возможность более точно определить структуру вирусов. Неожиданно появились точки, сгруппированные в пятиугольники. Это позволило сфокусировать внимание на одном из более интересных Платоновых тел – на икосаэдре, у которого 20 треугольных граней, причем в каждой вершине сходятся пять граней.
Вирусы любят симметричные формы, потому что симметрия позволяет им лучше размножаться, что и делает вирусные заболевания настолько заразными. Именно это значит слово «вирулентный». Обычно люди считают симметрию эстетически привлекательной, идет ли речь о бриллианте, цветке или лице супермодели. Но симметрия не всегда так желанна. Некоторые из самых смертоносных вирусов по медицинской статистике, от гриппа до герпеса, от полиомиелита до вируса иммунодефицита человека, в своем строении используют форму икосаэдра.
Стабилен ли пекинский олимпийский плавательный комплекс?
Плавательный комплекс, построенный к пекинской Олимпиаде, – необычайно красивое сооружение, в особенности когда включается ночная подсветка и он кажется прозрачной коробкой, наполненной пузырями. Проектировавшая его компания Arup стремилась к тому, чтобы совместить дух водных состязаний, проводимых внутри, с естественным и органичным внешним видом комплекса.
В компании начали с того, что принялись изучать формы, которыми можно замостить плоскость, наподобие квадратов, равносторонних треугольников и правильных шестиугольников. Но разработчики решили, что они слишком регулярны и не позволяют создать желаемый органичный вид. Тогда проектировщики решили изучить другие возможности, которые использует природа для упаковки многих предметов, например кристаллы и клеточные структуры в тканях растений. Во всех этих структурах встречаются примеры тех форм, которые, согласно открытию Архимеда, позволяют сделать хорошие футбольные мячи. Но команду Arup в особенности привлекло то, как множество пузырей группируется вместе и создает пену.