t0, можно было однозначно предсказать, какие значения х, у,… этих величин будут найдены, если их определять в какой-либо последующий момент времени t. Это следует из уравнений, положенных в основу механической и физической теорий, и есть прямое математическое свойство этих уравнений.
Утверждения о возможности точного предсказания будущих явлений исходя из настоящих явлений и о том, что будущее в определенном смысле полностью содержится в настоящем и ничего к нему добавить не может, и составляют то, что носит название детерминизма явлений природы. Но такая возможность точного предвидения предполагает точное определение в некоторый момент времени переменных, описывающих положение в пространстве, и сопряженных им динамических переменных. А именно такое одновременное определение взаимно сопряженных величин и оказывается с точки зрения квантовой механики невозможным. И с этим связаны существенные изменения, происшедшие в понимании возможностей предвидения современной теоретической физики и взаимосвязи явлений природы.
Поскольку значения величин, которые характеризуют состояние системы в момент времени t0, возможно установить лишь с некоторой неопределенностью, неизбежной в квантовой теории, то соответственно физик уже не может точно предсказать, каковы будут значения этих величин в некоторый последующий момент времени. Он может предсказать лишь вероятность того, что при определении этих величин в последующий момент времени t мы получим те или иные их значения. Связь между результатами последовательных измерений, которая объясняет количественную сторону явлений, не будет больше причинной связью, отвечающей классическому детерминизму. Она скорее будет вероятностной связью, единственно совместимой с неопределенностью, которая вытекает из самого существования кванта действия. В этом и состоит главное изменение в наших взглядах на физические законы, изменение, все философские следствия которого, как нам кажется, еще далеко не осмыслены.
В результате развития новейшей теоретической физики появились две важные идеи: принцип дополнительности Бора и принцип ограниченности представлений. Бор был первым, кто заметил, что в новой квантовой физике, в том виде, какой ей придала волновая механика, понятия частицы и волны, пространственно-временной локализации и вполне определенного динамического состояния являются дополнительными. Под этим он понимал, что полное описание наблюдаемых явлений требует использования обоих этих понятий, но тем не менее в некотором смысле они несовместимы между собой. Вызываемые ими образы никогда нельзя одновременно использовать для описания действительности. Например, большое число явлений, наблюдаемых в атомной физике, можно объяснить только исходя из понятия частиц. Следовательно, использование этого понятия физику необходимо. Равным же образом для объяснения целого ряда других явлений необходимо пользоваться понятием волны. Последовательное применение для описания явлений природы какого-либо одного из этих двух представлений, строго говоря, исключает применение другого. Однако в действительности при описании некоторых процессов используют оба понятия, и, несмотря на их противоречивый характер, нужно применять то или иное из них в зависимости от ситуации.
Так же обстоит дело с понятиями пространственно-временной локализации и вполне определенного динамического состояния: они так же дополнительны, как и понятия частицы и волны, с которыми к тому же, как мы скоро увидим, они тесно связаны. Можно спросить, почему же применение этих противоречащих друг другу представлений никогда не приводит к абсурду. Как мы уже говорили, это связано с тем, что невозможно одновременно определить все детали, которые позволяли бы полностью уточнить эти два представления. На математическом языке это выражается соотношением неопределенности Гейзенберга, которое в конечном счете есть следствие существования кванта действия. Так выступает со всей ясностью громадное значение открытия квантов в развитии современной теоретической физики.
С принципом дополнительности Бора тесно связан принцип ограниченности представлений. Такие простые образы, как частица, волна, точка, строго локализованная в пространстве, состояние вполне определенного движения, представляют собой, в сущности, некоторые абстракции, идеализации. В большинстве случаев эти идеализации приблизительно соответствуют действительному положению вещей, хотя и имеют определенные границы применимости. Применение каждой из этих идеализаций возможно лишь до тех пор, пока не окажется необходимым использование «дополнительной» идеализации. Таким образом, можно сказать, что частицы существуют, так как большое число физических явлений может быть объяснено только в том случае, если допустить их существование. Однако в других явлениях корпускулярная природа более или менее завуалирована и явно проявляется лишь волновой характер процесса.
Созданные нами более или менее схематичные идеализации способны отразить некоторые стороны различных явлений, но они все же ограниченны, и в их жесткие рамки не умещается все богатство реальности…
Сказанного здесь достаточно, чтобы показать читателю, как глубока и интересна квантовая теория. Она не только вызвала к жизни отрасль науки — атомную физику — наиболее живую и увлекательную, но также, бесспорно, расширила наши представления о мире и привела к появлению многих новых идей, которые оставят, без сомнения, глубокий след в истории человеческой мысли. Именно поэтому квантовая физика представляет интерес не только для специалистов, она заслуживает внимания каждого культурного человека.
Луи Виктор Пьер Раймон маркиз де Бройль (1892–1987)
ГЛАВА ВТОРАЯПАРАДОКСЫ КВАНТОВОЙ РЕАЛЬНОСТИ
Мы многократно повторяли, что уравнения квантовой механики отличны от уравнений классической механики. Поэтому движение квантовых объектов ни описать, ни представить в классических понятиях и образах нельзя. Примерно так же, как нельзя отметить на глобусе все движения пассажира, пересекающего на пароходе Атлантику. Однако, как бы волны ни качали корабль и чем бы ни занимался при этом пассажир, в среднем он все-таки перемещается в соответствии с заданным курсом.
Открытие принципа неопределенности показало, что человек в процессе познания природы может оторваться от своего воображения, он может открыть и осознать даже то, что ему не под силу представить.
ВОПРОСЫ КВАНТОВОГО МИРА
История закладки фундамента квантовой науки богата бурными дискуссиями между ее отцами-основателями о глубинном смысле новой реальности микромира.
Наиболее часто спор вращался среди вопросов:
— Какой еще смысл, кроме вероятностного, может иметь остающаяся во многих отношениях загадкой пси-функция?
— Как происходит переход от волновой сущности микрообъекта к его второму — дискретному «я»: посредством «коллапса волновой функции» или «редукции волнового пакета»?
— Как подобрать точную и наглядную картину — аналогию данного явления?
— Означает ли подобный подход, что наше будущее не определено и квантовый принцип причинности устанавливает между событиями в микромире лишь вероятностные связи?
— И наконец, насколько полно описывают объективную реальность законы квантового мира?
Именно подобные вопросы и подвигли Эйнштейна с его сотрудниками — Подольским и Розеном написать знаменитую статью «Можно ли считать квантовомеханическое описание физической реальности полным?». Они предложили парадоксальный мысленный эксперимент, из которого логически следовало, что для описания физических объектов волновой функции недостаточно. Тем самым утверждалось, что квантовая механика еще не до конца разработана и ее законы не полностью описывают наш мир. Эйнштейн, Подольский и Розен рассмотрели систему двух взаимосвязанных (коррелированных) частиц. В результате блестящего умозрительного анализа они сделали удивительный вывод, что «… поскольку эти системы уже не взаимодействуют, то в результате каких бы то ни было операций на первой системе во второй системе уже не может получиться никаких реальных изменений…».
Давайте и мы в несчетный раз проследуем по схеме рассуждений команды теоретиков Великого Физика. Итак, возьмем две микрочастицы и назовем их для образности А — Алиса и Б — Боб. Пусть данные квантовые объекты рождаются в одной точке, а затем разлетаются в разные стороны. В момент рождения ни у одной из частиц не определены координата и импульс, но в силу закона сохранения импульса сумма их импульсов в любой последующий момент времени равна нулю (как до рождения частиц). Теперь любое измерение координатного местоположения Алисы приведет к коллапсу ее волновой функции, и в тот же момент «схлопнется» и волновая функция Боба, поскольку его координаты автоматически уточняются через данные Алисы! Если волновая функция полностью характеризует частицу, то, значит, с Бобом действительно что-то произойдет, а ведь измерение проводилось над Алисой, которая могла быть в этот момент очень далеко от Боба, даже на другом краю Метагалактики! Это напоминает мистическую магию — Алиса дергает за невидимую ниточку, и где-то во Вселенной возникает улыбающийся Боб! В этом и заключается парадокс Эйнштейна — Подольского — Розена или, сокращенно, ЭПР-парадокс.
Игральные кубики квантовой вероятности
Философия успокоения Гейзенберга — Бора (или религия?) так тонко придумана, что предоставляет верующему до поры до времени мягкую подушку, с которой его не так легко спугнуть. Пусть спит… Большой первоначальный успех квантовой теории не может заставить меня поверить в лежащую в основе всего игру в кости.