Модель редукции (коллапса) волновой функции
Акт измерения в квантовой механике мгновенно изменяет волновой вектор. Эта странная операция называется коллапсом волновой функции или редукцией волнового пакета. Однако все дело в том, что уравнение Шрёдингера просто не имеет подобных «разрывов» в своих решениях. Так что же происходит с волновой функцией в процессе измерения и как эти процессы описать на языке квантовой механики?
Эксперименты по проверке ЭПР-парадокса
Лазеры возбуждают в вакуумной камере отдельные атомы, испускающие при этом фотоны — кванты электромагнитного излучения. Фотоны разлетаются в противоположных направлениях, путешествуя внутри многометрового световода. После поляризаторов они попадают на фотодетекторы. Согласно квантовой механике, должна существовать тонкая корреляция между поляризациями разлетающихся фотонов, что, в общем, и подтвердили последующие эксперименты.
ПАРАДОКС ЭЙНШТЕЙНА — ПОДОЛЬСКОГО — РОЗЕНА
При анализе эксперимента Эйнштейн, Подольский, Розен полагали, что два различных измерения над одной частью квантовой системы не могут привести к различным состояниям второй составляющей в силу отсутствия взаимодействия между ними. Это гипотетическое свойство квантовых систем получило впоследствии название локальности (то есть разделимости на независимые части). Альтернативную точку зрения, согласно которой «в результате двух различных измерений, произведенных над первой системой, вторая система может оказаться в двух различных состояниях…», исследователи отвергли.
Одно из объяснений ЭПР-парадокса возникло сразу же после выхода в свет статьи Эйнштейна, Подольского и Розена. Так, в полном соответствии с концепцией волновой функции ЭПР-коррелированные частицы могут характеризоваться одной общей волновой функцией. Поэтому в момент измерения над одной частицей действительно меняется как общая волновая функция обеих частиц, так и соответствующий квантовый объект — две коррелированные частицы. Затем обсуждение перешло на свойства разделенных квантовых систем и их критические параметры. Одним из первых с обширными комментариями к работе Эйнштейна выступил Нильс Бор. Через три месяца на страницах того же журнала он провозгласил, что мысленный эксперимент ЭПР не отменяет соотношения неопределенностей и не создает никаких препятствий для применения квантовой механики.
Конечные выводы Бора показывали, что возникший парадокс есть результат предположения о локальности квантовых систем. Отказ от локальности и признание существования связи между разделившимися частями целостной квантовой системы устраняет парадокс ЭПР. Именно анализ парадокса ЭПР привел Бора к формулированию принципа дополнительности, требующего рассмотрения квантовой системы и измерительного прибора как единой, целостной структуры. Результаты измерения квантовой системы зависят от ее состояния и устройства измерительных приборов.
Бор подчеркнул, что Эйнштейн вправе полагать квантовую теорию неполной, но ее практическая эффективность от этого не уменьшается. С Бором согласились почти все теоретики, кроме Эрвина Шрёдингера и отчасти Луи де Бройля. Знаменитый французский теоретик всегда имел оригинальную собственную позицию и рассматривал свои «волны материи» как некие конструкции «волны-пилота».
Несомненно, что ЭПР-парадокс имел большое значение для развития квантовой теории. Прежде всего, он стимулировал развитие ряда новых понятий и вызвал интерес к коррелированным состояниям квантовых частиц. Когда такие состояния были обнаружены экспериментально для фотонов, началось бурное развитие новой области в физике — квантовой оптики. Кроме того, эксперименты с коррелированными парами квантовых частиц (их также называют ЭПР-парами) позволили проверить, действительно ли вероятностное поведение характерно для отдельной квантовой частицы, или это свойство совокупности частиц.
Здесь необходимо вспомнить еще об одном фундаментальном квантовом принципе — соотношении неопределенностей. Согласно данному принципу, мы не можем проводить парные измерения определенных физических параметров. Например, невозможно одновременно измерить координату и импульс микрообъекта. В научно-популярной литературе это часто объясняется взаимным влиянием дуальных измерений. Существуют свидетельства, что подобной аргументацией вначале пользовался сам автор принципа неопределенности, один из создателей квантовой механики Вернер Гейзенберг. Однако впоследствии он развил и дополнил теорию так, что влияние координатного измерения на импульс стало выглядеть несущественным.
Это может быть показано следующим образом: рассмотрим произвольный ансамбль невзаимодействующих частиц, находящихся в одном и том же состоянии; для каждой частицы в ансамбле мы измеряем либо импульс, либо координату, но не обе величины. В результате измерения мы получим, что значения распределены с некоторой вероятностью и для их дисперсий (математический параметр из теории вероятностей) верно отношение неопределенности.
Поляризация электромагнитного излучения
Неопределенность параметров квантовой системы хорошо демонстрирует пример квантов электромагнитного излучения — фотонов. Поляризующая пленка пропускает весь свет, если он поляризован вдоль штриховки на пленке, и задерживает весь свет, если его поляризация перпендикулярна штриховке. Если же поляризация фотонов составляет какой-то угол со штриховкой, то определенного ответа на вопрос, пройдут ли фотоны сквозь пленку, просто не существует. В этом случае можно лишь попытаться оценить вероятность процесса прохождения.
«Сверхъестественная связь» между поляризациями двух фотонов
Такое состояние образуется наложением двух состояний, в первом из которых оба фотона линейно поляризованы вдоль вертикальной оси, а во втором — вдоль горизонтальной и содержат равные числа вертикально и горизонтально поляризованных состояний. Если на пути таких фотонов поместить горизонтальные поляризаторы, то прохождение и задержка через них фотонов будет равновероятна. При этом либо оба фотона проходят, либо вместе задерживаются. Возникает впечатление, что каждый фотон как бы «знает», проходить ему сквозь поляризатор или нет, в зависимости от поведения его «собрата».
КВАНТОВЫЙ КОТ ШРЁДИНГЕРА
Парадокс ЭПР имел большое значение для развития квантовой теории. Прежде всего, он стимулировал развитие ряда новых понятий и вызвал интерес к коррелированным состояниям квантовых частиц. Когда такие состояния были обнаружены экспериментально для фотонов, началось бурное развитие новой области в физике — квантовой оптики. Кроме того, эксперименты с коррелированными квантовыми ЭПР-парами позволили проверить, действительно ли вероятностное поведение характерно для отдельной квантовой частицы, или это свойство совокупности частиц.
Итак, мы уже выяснили, что квантовый объект, в отличие от классического, имеет изначальную статистическую природу. Однако следует помнить, что вероятностный характер квантовых микросистем не сводится только к классической неопределенности неполного знания параметров объекта. Поэтому для описания квантовых систем используется специальное очень важное понятие — состояние.
В историю также вошел мысленный парадокс, сформулированный Шрёдингером и получивший название «Квантовый кот Шрёдингера». В нем выдающийся физик заострил внимание на необычном характере квантовых суперпозиционных состояний, сконструировав парадоксальный мысленный эксперимент, противоречащий нашему обыденному восприятию окружающей реальности. Так, он предположил, что в замкнутом ящике находится сосуд с ядом, который может быть разбит механизмом, управляемым радиоактивным распадом. Внутри ящика находится кот Шрёдингера, живой либо мертвый в зависимости от результата радиоактивного распада. Отметим, что процесс измерения как взаимодействия с макроскопическими измерительными приборами — принципиально необратимый процесс, в результате которого состояние измеряемого объекта претерпевает редукцию. Редукция, как и всякое физическое явление, имеет характерное время своего существования. Однако в силу краткосрочности процесса вопрос о его внутренней динамике, как правило, не рассматривается. В данном случае возмущение должно распространяться мгновенно, ибо частицы могут находиться на любом расстоянии друг от друга к моменту проведения измерения. И все-таки противоречия нет. По законам квантовой механики, возмущение, вносимое при измерении, случайно. В этом случае мгновенная передача возмущения не есть передача сигнала, ибо не может нести информацию.
Шрёдингер придумал свой мысленный эксперимент, считая квантовую механику неполной и не до конца описывающей нашу реальность. Поскольку ясно, что кот обязательно должен быть либо живым, либо мертвым (не существует состояния, промежуточного между жизнью и смертью), то это верно и для атомного ядра. Оно обязано быть либо распавшимся, либо целым.
Нильс Бор считал, что система «Квантовый кот» перестает быть смешением состояний и выбирает одно из них в тот момент, когда происходит наблюдение. Эксперимент с котом показывает, что в этой интерпретации природа самого действия — наблюдения и измерения определена недостаточно. До тех пор, пока ящик закрыт, система находится в обоих состояниях одновременно: «распавшееся ядро, мертвый кот» и «целое ядро, живой кот», а когда ящик открывают, то только тогда происходит определение одного из вариантов.
В середине прошлого века американский физик Хьюго Эверетт предложил многомировую интерпретацию квантовой механики, в которой оба состояния кота существуют, но взаимодействуют совершенно особым образом. Когда наблюдатель открывает ящик, мир расщепляется на две разных вселенных, в одной из которых наблюдатель смотрит на ящик с мертвым котом, а в другой — другой наблюдатель смотрит на живого кота. Парадокс?
Известный английский физик Стивен Хокинг однажды воскликнул: «Когда я слышу про кота Шрёдингера, моя рука тянется за ружьем!» Окончательное единство среди физиков по этому вопросу все еще не достигнуто.