Тайны квантового мира: О парадоксальности пространства и времени — страница 16 из 58

Но тот, кто хочет окончательно понять устройство атома, должен обратиться к его основе, к строению ядра. Составляющие его крупные элементарные частицы — положительно заряженные протоны и нейтральные нейтроны — также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится „скрестить“ квантовую теорию с теорией относительности. К сожалению, такая теория до сих пор не создана, и нам придется ограничиться несколькими общепринятыми моделями.

Теория относительности показала (а проведенные эксперименты доказали), что масса является лишь одной из форм энергии. Энергия — величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии.

Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на „еще более простые“ блоки. Если разогнать две частицы в ускорителе и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения — таким образом, они и разделятся, и не разделятся одновременно!»

Разумеется — и в этом мы полностью согласны с д-ром Фишманом — в мире, где понятия пустого пространства, изолированной материи теряют смысл, частица описывается только через ее взаимодействия. Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию — измерению. Так что же мы меряем в итоге? И насколько правомерны эти измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, а значит, меняет и ее саму?

В современной физике элементарных частиц все больше нареканий вызывает… сама фигура ученого-наблюдателя. Правомернее было бы называть его «участником».

Наблюдатель-участник необходим не только для измерения свойств субатомной частицы, но и для того, чтобы определить эти самые свойства, ведь и о них можно говорить лишь в контексте взаимодействия с наблюдателем. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся.

Вот каким образом автор «Квантовой сутры» раскрывает глубинное единство всех вещей и явлений:

«Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик — эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения — просто потому, что у нее их не будет. Опишите точно движение частицы — вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.

Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее — могут существовать. Они не то чтобы обладают характеристиками, а скорее — могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи. Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: „Противоположности дополняют друг друга“. Математически распределение вероятности представляет собой неравномерные волновые колебания. Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна — расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда (чем точнее можно локализовать частицу в пространстве), тем более неопределенной становится длина волны (тем меньше можно сказать об импульсе частицы). Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.

Это фундаментальное свойство математически выводится из свойств волны и называется принципом неопределенности. Принцип касается и других характеристик элементарных частиц. Еще одна такая взаимосвязанная пара — это энергия и время протекания квантовых процессов. Чем быстрее проходит процесс, тем более неопределенно количество энергии, задействованной в нем, и наоборот — точно охарактеризовать энергию можно только для процесса достаточной продолжительности».

Итак, вместе с Романом Фишманом мы наконец-то поняли: о частице нельзя сказать ничего определенного. Она движется туда или не туда, а верней, ни туда и ни сюда. Ее характеристики такие или сякие, а точнее — и не такие, и не сякие. Она находится здесь, но может быть и там, а может и не быть нигде. Тут уж в самую пору вообще задать вопрос: а существует ли она вообще?

Конечно, подвергать объективность материального квантового мира сомнению, как это одиозно попытался сделать метафизик Фритьоф Капра в своей нашумевшей книге «Дао физики», у нас нет никакого желания. Более того, если задуматься, то квантовая сущность постоянно меняющихся и «перетекающих» друг в друга микрообъектов лишь в очередной раз блестяще подтверждает правильность диалектико-материалистического метода исследования природы. И здесь ни мистические благоглупости Капры, ни идеалистические выкрутасы некоторых отечественных «исследователей», связывающих реальность квантового мира с сознанием наблюдателя, не имеют абсолютно никакого значения.

ГЛАВА ЧЕТВЕРТАЯИНФОРМАТИКА БУДУЩЕГО

Ощущение тайны — наиболее прекрасное из доступных нам переживаний. Именно это чувство стоит у колыбели истинного искусства и настоящей науки.

Альберт Эйнштейн

Изменения в представлении о реальности, ясно выступающие в квантовой теории, не являются простым продолжением предшествующего развития. По-видимому, здесь речь идет о настоящей ломке в структуре естествознания.

Вернер Гейзенберг, нобелевский лауреат, один из создателей квантовой механики

КВАНТОВАЯ ПЕРВООСНОВА НАШЕГО МИРА

Еще без малого полстолетия назад академик Александр Соломонович Компанеец в уже упоминавшейся книге «Квантование в науке настоящего и будущего» попытался уточнить вопрос — каким образом представления квантовой физики могут оказаться полезными для математики, психологии и физиологии. По мнению Александра Самойловича, связать воедино эти довольно «разношерстные» научные дисциплины могла бы некая мера квантовой информации, опираясь на которую «квантовые» биофизики наконец-то смогли бы не только объяснить работу человеческого мозга, но и приступить к моделированию «искусственного квантового сознания»:

«С незапамятных времен человека волнует вопрос о свободе его воли и мысли: почему в известных обстоятельствах он подумал или поступил именно так, а не иначе. Всегда ли можно предвидеть его собственные поступки, поведение врага или друга заранее?

В древнегреческих трагедиях людьми правил неотвратимый рок. Не только то, что случилось с героями под влиянием внешних причин, но и сами их действия были заранее предопределены.

Однако человеческая мысль искала и других решений вопроса. О свободе воли немало спорили богословы. Не все их споры были совсем бессодержательны: дело ведь отчасти шло об ответственности людей за свои поступки.

Мыслители нерелигиозного толка тоже раздумывали над смыслом предопределения. Крайнюю точку зрения выразил Лаплас. Он утверждал, что в принципе все происходящее во Вселенной может быть записано в виде единого уравнения. То, что решение мирового уравнения неизвестно, связано только с ограниченностью наших измерительных и математических средств. Но Лаплас едва ли сомневался в объективной действительности всего существующего. Следовательно, он верил в непреложный закон, управляющий человеком. Непознанный закон оставался столь же неотвратимым, как „рок“ у греков. С этим не может примириться сознание современного человека, как бы ни был велик научный авторитет Лапласа или любого другого крайнего выразителя идеи механического детерминизма».

Как же можно практически использовать новые возможности квантовых каналов передачи информации? Давайте обратимся к оригинальному отрывку из книги известного американского физика Брайана Р. Грина «Ткань космоса: Пространство, время и структура реальности». В нем рассказывается, как герои телесериала «Секретные материалы» Малдер и Скалли получают странные одинаковые посылки инопланетного происхождения, в которых «находятся маленькие, защищенные от света титановые коробочки, пронумерованные от 1 до 1000, и письмо… письмо говорит, что каждая титановая коробочка содержит инопланетную сферу, которая сверкнет красным или синим в момент, когда будет открыта маленькая дверца на боку коробочки».

Далее Малдер разъясняет Скалли: