Тайны квантового мира: О парадоксальности пространства и времени — страница 25 из 58

Разумеется, вполне естественно было бы считать, что в нашем ускоренно расширяющемся мире свету хватило бы времени для перехода из одной области ранней Вселенной в другую. В то же время расширением Вселенной можно было бы объяснить, почему в ней так много вещества и откуда оно взялось. Здесь просто надо принять как должное, что вокруг нас в диалектическом круговороте материи и энергии постоянно происходят взаимные переходы этих двух основных физических сущностей Мироздания. Вот и в микромире частицы могут рождаться в переходах: энергия — частица — античастица. При этом любопытно, как современная физика объясняет временно возникающий энергетический дефицит. В частности, Хокинг рассуждает так:

«Полная энергия Вселенной в точности равна нулю. Вещество во Вселенной образовано из положительной энергии. Но все вещество само себя притягивает под действием гравитации. Два близко расположенных куска вещества обладают меньшей энергией, чем те же два куска, находящиеся далеко друг от друга, потому что для разнесения их в стороны нужно затратить энергию на преодоление гравитационной силы, стремящейся их соединить. Следовательно, энергия гравитационного ноля в каком-то смысле отрицательна. Можно сказать, что в случае Вселенной, примерно однородной в пространстве, эта отрицательная гравитационная энергия в точности компенсирует положительную энергию, связанную с веществом. Поэтому полная энергия Вселенной равна нулю».

Так ученый постепенно подводит нас к мысли о том, что «поскольку дважды нуль тоже нуль, количество положительной энергии вещества во Вселенной может удвоиться одновременно с удвоением отрицательной гравитационной энергии; закон сохранения энергии при этом не нарушится. Такого не бывает при нормальном расширении Вселенной, в которой плотность энергии вещества уменьшается по мере увеличения размеров Вселенной. Но именно так происходит при раздувании, потому что в этом случае Вселенная увеличивается, а плотность энергии переохлажденного состояния остается постоянной: когда размеры Вселенной удвоятся, положительная энергия вещества и отрицательная гравитационная энергия тоже удвоятся, в результате чего полная энергия останется равной нулю. В фазе раздувания размеры Вселенной очень сильно возрастают. Следовательно, общее количество энергии, за счет которой могут образовываться частицы, тоже сильно увеличивается. Гут по этому поводу заметил: „Говорят, что не бывает скатерти-самобранки. А не вечная ли самобранка сама Вселенная?“

Сейчас Вселенная расширяется без раздувания… Затем Вселенная опять начнет расширяться и охлаждаться, так же как в горячей модели Большого взрыва, но теперь мы уже сможем объяснить, почему скорость ее расширения в точности равна критической и почему разные области Вселенной имеют одинаковую температуру».

Стивен Хокинг в невесомости

ГЛАВА СЕДЬМАЯТЕОРИЯ ТЕОРИЙ

Самое, пожалуй, удивительное в современной физике — это неожиданная связь между космосом, где галактики и звездные скопления разбросаны подобно редким пылинкам, и тесным, исчезающе малым микромиром элементарных частиц. Два полюса мироздания! На одном огромная, расширяющаяся Вселенная, на другом — не видимые ни под каким микроскопом, почти эфемерные «кирпичики» вещества. И вот оказывается, что при определенных условиях Вселенная может обладать свойствами микрочастицы, а некоторые микрообъекты, возможно, содержат внутри себя целые космические миры.

В. С. Барашенков, «Кварки, протоны, Вселенная»

НОВОЕ ТЯГОТЕНИЕ

Выдающийся физик-теоретик прошлого века, нобелевский лауреат Ричард Фейнман, по многим свидетельствам современников, был очень большим оригиналом. Это подтверждает и его знаменитый «Фейнмановский курс физики», полный новых подходов в изложении уже вроде бы устоявшихся разделов этой науки, и очень часто цитируемая книга «Характер физических законов». Раскрывая связь математики с физикой и анализируя всеобщность физико-математических представлений, выдающийся физик часто обращался к всемирному закону тяготения Ньютона. При этом он любил высказывать парадоксальное мнение, что со времен Ньютона мы ничего не достигли в постижении механизма тяготения.

Тут надо признать, что, как бы ни был своеобразен творческий стиль мышления Фейнмана, в данном случае его мысли полностью противоречат признанной истории физики. Ведь еще в начале прошлого века Альберт Эйнштейн открыл свою общую теорию относительности, создав новую теорию гравитации и наметив путь объединения всех известных взаимодействий с силами всемирного тяготения. Прежде всего это касается объединения теории относительности и квантовой механики. Возникла даже наука-кентавр — «квантовая космология». Она пока еще содержит много противоречий и неточностей, да и само ее право на существование признается далеко не всеми. При этом всегда следует учитывать, что теория относительности необходима для описания общей структуры пространства-времени, а квантовая механика направлена на объяснение поведения субатомных частиц. К сожалению, пока еще эти теории во многом противоречат друг другу. Тем не менее «сверхновая космология» хорошо известна и ставит перед собой амбициознейшую цель объединить два полюса нашей реальности — уровень невообразимо малых квантов и так же трудно вообразимый космологический масштаб Метагалактики.

Как бы там ни было, но оптимистически настроенные физики-теоретики полны надежд, что пусть даже в отдаленном будущем квантовая космология перерастет в «Теорию теорий», связывающую между собой все силы, действующие во Вселенной, с помощью одного-единственного уравнения (рис. 16 цв. вкл.).

Тут я бы хотел приоткрыть некоторые «интимные подробности и секреты» внешне такой консервативной корпорации физиков-теоретиков. Оказывается, внутри «официальной физики», опирающейся на исторически сложившиеся и, самое главное, подтвержденные неисчислимым количеством опытов модели окружающего нас мира, бурлят нешуточные страсти. Там группы молодых еретиков всегда готовы опровергнуть все и вся, невзирая ни на какие авторитеты, и все это управляется вообще мало понятным для непосвященных поветрием под названием «модные направления исследований».

Вот и конец прошлого столетия ознаменовался возникновением двух остро модных и уже конкурирующих направлений в теории квантовой гравитации. У них, как и полагается «квантовым кентаврам», довольно необычные имена — «петлевая квантовая гравитация», более известная аббревиатурой «ПКГ» (тоже дань «физической моде») и «теория суперструн», она же «теория стрингов», она же «мембранная теория», она же «М-теория».

В теории ПКГ на субэлементарном уровне пространство оказывается не непрерывным, а состоящим из дискретных элементов, мельчайших единиц пространства, подобных открытым столетие назад квантам энергии. Объем такой минимальной единицы равен кубу с ребром планковской длины (~10-35 м).

Мы уже знаем, что на микроскопическом уровне частицам нельзя одновременно приписать определенные координаты и скорости, энергию и время ее изменения, все микрообъекты подобны пятнам масла на квантовых волнах вероятности. В квантовом мире нет «пустого» пространства в обыденном смысле. То, что обычно воспринимается нами как пустота, лишенная атомов и молекул, например очень удаленные участки космоса без звезд, газа и пыли, ученые называют физическим вакуумом, кипящим морем особых «виртуальных» частиц и неисчерпаемым океаном энергии (рис. 17 цв. вкл.).

Галактики, плывущие на волнах гравитации

Так что до сих пор у нас нет иной модели для теории гравитации, кроме математической. …Каждый новый наш закон — чисто математическое утверждение, притом довольно сложное и малопонятное. Ньютонова формулировка закона тяготения — это сравнительно простая математика. Но она становится все менее понятной и все более сложной по мере того, как мы продвигаемся вперед. Почему? Не имею ни малейшего понятия. Моя цель в том и состоит, чтобы лишь сообщить об этом факте. В нем и заключается смысл всей лекции: нельзя честно объяснить все красоты законов природы так, чтобы люди восприняли их одними чувствами, без глубокого понимания математики. Как ни прискорбно, но, по-видимому, это факт.

Ричард Фейнман, выдающийся физик-теоретик, нобелевский лауреат

Объединить сверхмалый мир квантов и сверхбольшой мир всемирного тяготения, возможно, смогут исследования бездонных провалов черных дыр — застывших звезд-коллапсаров

Первое всеобщее объединение связано с построением квантовой теории поля, включающей квантовую механику и теорию относительности. Такое объединение оказалось довольно сложным, и один из его авторов, лауреат Нобелевской премии Поль Дирак, признавался: «Похоже, что поставить эту теорию на солидную математическую основу практически невозможно». Следующим, более важным и сложным шагом должна быть связь гравитации и квантовой механики, но пока и здесь нет общепризнанных достижений. Каждый специалист предлагает свои пути развития, а нобелевский лауреат Стивен Вайнберг вообще считает, что только для создания математического аппарата подобной теории понадобится не менее столетия.

КВАНТОВАЯ ТЕОРИЯ ПОЛЯ

Вообще говоря, как бы ни были «сверхреволюционны» новые представления о полях и частицах, все они покоятся на общепризнанной и традиционной квантовой теории поля. В этой теории взаимодействие элементарных частиц напоминает знаменитую игру кембриджских и оксфордских студентов, которую они устраивали после ежегодной не менее знаменитой регаты. Две лодки вечных противников расходились на некоторое расстояние, и один из гребцов, выбранный по жребию, бросал своим соперникам бутылку шампанского. Те должны были поймать ее и тут же повторить бросок, и так далее, пока кто-нибудь не промахивался или не упускал бутылку. Вот если представить лодки обычными частицами, то бутылка шампанского отлично сыграет роль силового поля, будучи сама виртуальным аналогом «реальных частиц». В этом смысле элементарный акт квантового взаимодействия и есть виртуальная частица. Обычные частицы оказываются как бы закутанными в пышную шубу множества виртуальных частиц. Физики так и говорят: «виртуальная шуба».