В первой и второй частях нашей книги мы познакомили читателей главным образом с основными свойствами пространства и времени как основополагающих форм существования материи, материального мира. Заключительную же часть книги мы посвятили физическим и некоторым другим процессам, которые протекают в пространстве и времени окружающего нас мира.
Глава 1ВЕЛИКИЕ ПРИНЦИПЫ НАУКИ
Известный физик-теоретик Е. Вигнер в одной из своих работ заметил, что в современной физике можно выделить три уровня понимания явлений природы: первый – информация о различных явлениях, второй – законы природы, определяющие связи между явлениями; и третий – так называемые симметрии, устанавливающие связи между законами.
Однако к этому следует добавить, что в физической науке существуют еще и так называемые принципы, занимающие совершенно особое место и охватывающие широкий круг разнородных явлений. Порой такие принципы вытекают из анализа реальных фактов и явлений, обобщения общепризнанных фундаментальных физических теорий, порой они формулируются на основе общечеловеческого опыта и здравого смысла. Иногда они определяют направление исследований в той или иной области, становятся идейной основой фундаментальных научных теорий, иногда носят характер «запретов». Но в любом случае они играют важнейшую роль в процессе научного познания окружающего мира, в развитии естествознания. В то же время, воспринятые как некие «абсолютные истины», они могут превращаться в своеобразные тормоза, препятствующие дальнейшему развитию науки. Опыт истории естествознания показывает, что от некоторых принципов с течением времени приходилось отказываться, другие, в свое время возникнув, продолжают существовать и по сей день.
С некоторыми из них мы подробно познакомили читателей в первых двух частях этой книги. И о них мы лишь кратко упомянем в данной главе, обратив внимание на некоторые важные аспекты, которых мы до этого не касались или почти не касались.
От детерминизма к вероятности
Как мы уже говорили, в фундаменте классической физики, основанной Галилеем и Ньютоном и их последователями, лежал объединяющий принцип «механического детерминизма». Речь идет о связи причин и следствий, о том, что одинаковые явления всегда порождают абсолютно одинаковые следствия. Из этого следовало, что зная «начальные условия», можно с точностью вычислить развитие дальнейших событий сколь угодно далеко в будущее.
Однако претензии классической механики на абсолютно точное и исчерпывающее описание всех без исключения событий и явлений на основе чисто механических закономерностей потерпели крушение. Оказалось, что природа устроена гораздо сложнее. Это особенно отчетливо проявилось при изучении явлений микромира.
В рамках классической механики, в тех случаях, когда изучается движение какого-либо тела, например, кометы или артиллерийского снаряда, выпущенного из артиллерийского орудия, мы в принципе можем с какой угодно точностью одновременно измерить скорость его движения и положение в пространстве. Но если речь идет о движении микрочастицы, то вступает в действие так называемый принцип неопределенности, впервые сформулированный выдающимся немецким физиком Вернером Гейзенбергом и пришедший на смену принципу механического детерминизма. Если мы станем одновременно измерять скорость движения интересующего нас микрообъекта и его координаты, то чем точнее мы определим скорость, тем неопределеннее окажется его положение в пространстве. И наоборот. Это означает, что в микромире законы классической механики принципиально неприменимы, и мы не в состоянии точно вычислить траекторию микрочастицы. И не потому, что не умеем это сделать, а потому, что такой траектории не существует. Получается, что одна и та же частица может в одно и то же время находиться… и «там», и «здесь». Не частица, а своеобразное облако.
Это, в частности, связано с тем, что всякое измерение изменяет состояние микрообъекта. Иными словами, человек-наблюдатель оказывается активным участником познавательного процесса. Мы можем только вычислить вероятностное поведение ансамбля микрообъектов.
Научные данные свидетельствуют о том, что не только микрообъекты, но и Вселенная обладает квантовыми свойствами, и акции, связанные с ее изучением, неизбежно изменяют ее состояние. В связи с этим некоторые философы стали говорить о «субъект-объектном» взаимодействии. Речь идет о том, что открываемые наукой законы не являются зеркальной копией законов природы – они содержат «человеческую составляющую».
«Да» или «нет»?
На рубеже XIX и XX столетий, когда своего наивысшего расцвета достигла «классическая наука», в основе которой лежали механические представления о природе, ученые непоколебимо верили в то, что все события и явления можно разложить на чисто механические составляющие и все происходящее и предстоящее абсолютно точно рассчитать и предусмотреть.
Задавая свои вопросы природе, ученые классической эпохи отчетливо представляли себе, чего хотят добиться. А хотели они на свои вопросы получить однозначные окончательные ответы типа «да» или «нет». Основу естествознания составляла так называемая формальная логика, одним из главных принципов которой является «закон исключенного третьего» – либо «да», либо «нет», третьего быть не может, третье «от лукавого».
Такое положение вещей выглядело вполне естественным и с точки зрения повседневного здравого смысла. Ведь и в обыденной жизни мы, как правило, стремимся к определенности, к однозначности. Уж лучше твердое «нет», чем раздражающая неясность, расплывчатая неопределенность. А еще хуже, когда ситуация то и дело меняется: сегодня «да», завтра «нет», а послезавтра снова «да». Хочется раз и навсегда все «разложить по полочкам», все предусмотреть наперед. Впрочем, на практике жизнь оказывается значительно сложнее.
Классическая же физика на протяжении весьма длительного времени была лишена на этот счет и тени сомнения. Однозначность казалась в рамках этой науки незыблемой и нерушимой. Тем более что она была заложена уже в основных ее понятиях.
К концу XIX столетия механическая картина мира представлялась практически завершенной. И любые трудности, которые могли встретиться на ее дальнейшем пути, выглядели в глазах ее последователей чисто техническими, вычислительными, а потому принципиально преодолимыми. Однако новая «неклассическая» физика, пришедшая на смену физике XIX века, открыла нам мир с совершенно иной, неожиданной стороны.
С принципом неопределенности, о котором говорилось выше, связана и еще одна «неоднозначность», обнаруженная новой физикой в результате ее проникновения в глубины микромира. Речь идет о так называемом квантово-волновом дуализме. С точки зрения классической физики, частица – это всегда частица, а волна – всегда волна. Квантовая же физика пришла к заключению, что одно и то же «образование» в одних условиях может проявлять себя как частица, а в других – как волна.
А вот и еще один «сюрприз», преподнесенный теорией относительности. До ее появления считалось, что масса того или иного тела, если к нему ничего не прибавлять и от него ничего не отнимать, есть величина постоянная. Но оказалось, что в действительности это не так. Чем выше скорость тела, тем больше его масса. И поэтому масса, скажем, протона – ядра атома водорода, при достаточно большой скорости в принципе может превзойти массу Земли, массу Солнца и даже массу нашей звездной системы Галактики.
Более того, выяснилось, что «не абсолютна» не только масса, но и длина отрезков. Чем ближе скорость движения наблюдателя к скорости света, тем короче становятся отрезки, мимо которых он проносится.
В физике существует закон, который называется «принципом наименьшего действия». Суть его в том, что из различных возможных вариантов движения механической системы осуществляется тот, для которого так называемое действие, то есть произведение величины энергии на время, минимально.
Другой аналогичный принцип – «принцип Ферма», относится к процессу распространения света и состоит в том, что световой луч, проходя через различные среды, распространяется таким образом, чтобы время его прохождения было минимальным.
О «рациональном поведении» неживых систем
Как известно, любое человеческое действие предполагает наличие определенной цели. Однако целесообразное поведение присуще только живым системам, и лишь существа, наделенные разумом, способны ставить перед собой сознательные цели и сознательно добиваться их осуществления.
Может ли в таком ключе действовать неодушевленная природа? Ведь даже саморегулирующийся природный объект, например звезда, всего лишь существует и функционирует – и не более того!
И все же, что-то похожее, напоминающее, пусть и отдаленно, целесообразное поведение, наблюдается и в неживой природе. Весьма любопытны и так называемые компенсационные или вариационные принципы. Например, закон Ленца, относящийся к явлениям магнитной индукции. Всякое изменение магнитного поля вызывает возникновение тока индукции, магнитное поле которого препятствует тем изменениям, которые вызвали этот ток. Еще более общее значение имеет принцип «Ле Шателье – Брауна». Он состоит в том, что внешнее воздействие, которое выводит систему из термодинамического равновесия, вызывает в ней процессы, стремящиеся ослабить результаты этого воздействия.
Разумеется, подобное «рациональное поведение» неживых систем не имеет ничего общего с рациональным поведением человека. У него совершенно иная природа. Человек стремится определить оптимальную линию своего поведения, сделать свой выбор, исходя из тщательного анализа обстановки и сознательного прогноза последствий, к которым могут привести те или иные его действия. У природы такой способности, конечно, нет. Как справедливо заметил Ричард Фейнман по поводу «принципа Ферма», свет не может заранее знать всю свою траекторию, то есть особенности тех сред, которые ему предстоит преодолеть. Он в каждый данный момент «знает» лишь то, что ему положено «знать» – именно в данное конкретное мгновение. Иными словами, поведение неживых систем полностью определяется «мгновенной ситуацией», неодушевленная материя не обладает свойством «предвидения». Мертвая материя способна оперировать только настоящим.
Но почему все-таки выполняются вариационные принципы? Какими глубинными свойствами материи они обеспечиваются? Понять это – значит не только понять очень многое, но и получить возможность активно, целенаправленно вмешиваться в природные процессы, не рискуя получить нечто прямо противоположное тому, чего мы добиваемся.
Многого мы еще не знаем…Но, по-видимому, между миром живого и неживого нет непроходимой границы. Конечно, жизнь – это особая, специфическая форма существования материи, качественно отличающаяся от неживой природы, в частности, наличием «управляющих органов», способных воспринимать и перерабатывать информацию, поступающую по бесчисленным каналам обратных связей, и принимать необходимые решения. У звезд, например, таких органов нет. И тем не менее непреодолимой пропасти между живым и неживым не существует. Об этом говорит хотя бы тот факт, что возникает живое именно из неживого.
Но если в природе существуют отдельные законы, компенсирующие действие некоторых других законов, то почему не допустить, что эти законы сами являются частным случаем закона более общего или даже всеобщего?
Закона, согласно которому для каждого фундаментального закона природы должен существовать своеобразный «антизакон», компенсирующий действие первого, или такие условия, в которых он теряет свою силу.
Кое-что в этом роде нам уже известно. Мы знаем, например, что в условиях невесомости перестает действовать закон Архимеда, а при скоростях, близких к скорости света, – за коны классической механики, а при сверхнизких температурах – закон Ома.
Возможно, стоит задуматься над обобщением всех этих фактов. И не есть ли это тот путь, который может привести к познанию общих законов эволюции материи?
«Логическая машина»
Один остроумный человек, имея в виду необычайную удаленность космических объектов и связанную с этим чрезвычайную сложность проверки справедливости различных астрономических представлений, гипотез и теорий, как-то сказал, явно претендуя на то, чтобы стать автором очередной «крылатой фразы»: «Астрономы, по сути дела, никогда не знают, о чем они говорят, и верно ли то, о чем они говорят…»
А другой «мудрец», развивая эту мысль, заметил, что путем чисто формально-логических умозаключений можно в принципе получить какие угодно результаты, устраивающие тех, кто формальной логикой достаточно умело пользуется.
Что верно – то верно: логическая машина обладает завидной способностью прорабатывать любую заложенную в нее информацию, независимо от того, чему именно она соответствует в реальной действительности. Вероятно, это обстоятельство в какой-то мере побуждает ученых заниматься разработкой даже самых экстравагантных предположений. И нередко подобные усилия оправдываются, приводят к открытию новых явлений, новых закономерностей окружающего мира. Даже в тех случаях, когда полученный результат не подтверждается, он все равно приносит немалую пользу, способствуя выяснению того, «как в природе не бывает», и тем самым отсекая бесперспективные пути исследования, сужая круг возможных объяснений.
Таким образом, было бы неправильно утверждать, что физики и астрономы «не знают, о чем они говорят». Ведь исходные предположения строятся либо на фундаменте существующих теорий, либо на почве тех или иных конкретных фактов. А полученные выводы с помощью наблюдений и экспериментов сопоставляются с реальностью.
Так что попытки применения разнообразных теоретических подходов к тому или иному еще недостаточно изученному явлению отнюдь не бесполезны. Особенно в тех случаях.
когда ни одни из имеющихся теоретических вариантов объяснения рассматриваемых явлений нельзя признать достаточно убедительным. Именно с такого рода ситуациями достаточно часто сталкиваются современные астрономы и астрофизики.
Как известно, астрономия – наука дистанционная. Изучаются не сами космические объекты непосредственно, а их излучения. Свойства этих излучений зависят от свойств их источников – природа как бы вкладывает в эти излучения информацию о тех физических процессах, которые их порождают. Однако связь между тем, что регистрирует прибор, установленный на поверхности Земли или на борту искусственного спутника, и космическим явлением – далеко не прямая. Показания прибора необходимо истолковать, интерпретировать. А сделать это можно лишь в рамках определенных теоретических представлений, но они далеко не всегда являются однозначными. Особенно в тех случаях, когда речь идет о новой области исследований. Отсюда могут возникать различные неопределенности. Это, разумеется, не значит, что астрономические методы исследований вообще недостоверны – имеются в виду лишь те специфические затруднения, которые нередко возникают в астрономии на пути к желаемому.
Вспомним хотя бы нашумевшую историю, которая произошла в 1967 году. Тогда английские радиоастрономы зарегистрировали космические радиосигналы, следовавшие один за другим через равные промежутки времени. Объяснение напрашивалось само собой – обнаружен радиопередатчик неведомой внеземной цивилизации…
Английские ученые были настолько ошеломлены этим поразительным открытием, что на протяжении длительного времени хранили его в строжайшей тайне. И даже окрестили своих предполагаемых далеких корреспондентов «зелеными человечками».
Сегодня природа загадочных радиоимпульсов уже ни для кого не составляет секрета: их порождают пульсары – быстро вращающиеся нейтронные звезды. Физические объекты, не имеющие никакого отношения к деятельности гипотетических внеземных цивилизаций.
На чем было основано первоначальное ошибочное заключение английских радиоастрономов? На предположении, что в отличие от обычных радиоволн космического происхождения, представляющих собой хаотический радиошум, искусственные сигналы должны быть определенным образом организованы, в них должна присутствовать правильная переменная составляющая. Неудивительно поэтому, что строго периодические радиоимпульсы неизвестной космической радиостанции могли ввести ученых в заблуждение.
Таким образом, оказалось, что во Вселенной возможны физические процессы, порождающие правильно организованное радиоизлучение и тем самым как бы «маскирующиеся» под искусственные радиопередачи.
Закон и случай
Одна из характерных особенностей XX столетия – невиданные прежде темпы развития общества. Правда, и в прошлом в истории человечества были периоды очень быстрого развития, например, период создания древнегреческой культуры или эпоха Возрождения. Однако они охватывали лишь отдельные регионы. Сейчас же этот процесс фактически охватил весь мир.
В XX веке достигли качественно нового уровня масштабы человеческой деятельности, ее объектом стала не только вся наша планета, но и околоземное космическое пространство.
Необычайно высокие темпы развития – чрезвычайно важный фактор современной культуры, который касается буквально каждого человека, поскольку с ним связана очень быстрая смена ситуаций. С огромным ускорением развивается и наука, происходят изменения научной картины мира, влекущие за собой новое мироощущение. Колоссальные успехи физики и астрономии привели к осмыслению эволюционной картины мира, более того, его взрывного развития. Была создана теория горячей расширяющейся Вселенной, ее инфляционного начала, открыты мощные нестационарные явления в космосе.
Современные физика и астрофизика изучили многие фундаментальные закономерности, определявшие течение и последовательность событий в процессе эволюции материи во Вселенной, протянули цепь причин и следствий от нашей эпохи вплоть до самых первых мгновений расширения.
В то же время одним из величавших достижений физики XX века было установление того факта, что в окружающем нас мире наряду с «железными» закономерностями, есть место и случайным событиям. Однако в современной научной картине мира подобным событиям отводится явно недостаточная роль.
Между тем складывается впечатление, что объяснить все существующее и происходящее с помощью одних только закономерностей заведомо невозможно. Ведь характер развития многих физических процессов зависит от начальных условий, а они могут складываться случайным образом.
Недостаточно изучен и вопрос о том, в какой мере случайные факторы играли роль в развитии земной биосферы. Вопрос этот представляет особый интерес, поскольку биосфера реально существует, она реализовалась, несмотря на то, что в особенности на первых этапах развития ее разрушение было крайне вероятным. Ее могли уничтожить вулканические зимы, космические катастрофы, многие другие явления.
Аналогична ситуация и в отношении истории человеческого общества. И здесь роль случайных факторов изучена еще недостаточно.
Глава 2НОВАЯ НАУКА – «ИНФОРМАЦИОННАЯ ФЕНОМЕНОЛОГИЯ»
Необычные феномены
Вторая половина XX столетия ознаменовалась целым рядом необычных явлений и событий, относящихся как к окружающему нас миру, так и к самому человеку. К числу первых можно отнести многочисленные феномены, связанные с появлением так называемых неопознанных летающих объектов (НЛО). К числу вторых – различные парапсихологические эффекты – такие как телепатия, сверхчувственные восприятия, телекинез, интуиция, озарения, ясновидение и другие так называемые пси-феномены.
Характерной особенностью многих явлений такого рода может служить то обстоятельство, что они либо наблюдаются единственный раз и больше не повторяются, либо являются невоспроизводимыми или трудно воспроизводимыми в эксперименте. Речь также идет о некоторых объектах, существование которых обосновано теоретически, исходя из существующих научных представлений, но которые до сих пор не удается обнаружить экспериментально. К числу подобных объектов относятся, например, кварки – частицы с дробными электрическими зарядами или так называемые хиггсовские поля, которые заполняют все пространство Вселенной и, взаимодействуя с различными элементарными частицами, придают каждой из них вполне определенную, только ей присущую массу.
Что касается явлений единичных, то наука их изучением фактически не занималась, считая, что неповторяющиеся явления лежат за ее пределами, поскольку об этих явлениях имеется слишком мало информации и к тому же она, как правило, исчерпывается показаниями очевидцев.
Однако в настоящее время познание природы достигло такого уровня, когда именно уникальные явления способны принести принципиально новые сведения об окружающей нас действительности. Поэтому современная наука не вправе их по-прежнему игнорировать.
Но что значит – не вправе игнорировать? Это значит, что наука обязана вплотную заняться подобными проблемами и дать ответ на вопрос о природе этих необычных уникальных феноменов, для исследования которых необходима новая методология, которая в научных исследованиях либо вообще не применялась, либо не была признана научным сообществом.
Как мы увидим далее, такой методологией оказывается система подходов, связанных как с исследованием будущего, так и с информационным аспектом изучаемых явлений, объединенными в одно так называемое синергетическое целое. Что же касается существующей науки, устремленной главным образом в прошлое, то вполне естественно, что она концентрировала внимание на вещественно-энергетической стороне реальности, лишь изредка устремляясь в будущее и далеко не всегда обращая внимание на информационный аспект тех или иных проблем.
Следует признать, что в подавляющем большинстве случаев мы не в состоянии детально исследовать единичные явления, например, появление необычных НЛО. И таким образом, лишены возможности непосредственно установить их физическую природу и породившие то или иное конкретное явление причины. Но мы можем и должны использовать другой путь: сопоставлять, хотя и не вполне идентичные, но сходные, однотипные единичные явления и стараться установить их общую природу и причины. Для этого прежде всего необходимо включить подобные явления в общую научную картину мира и выяснить их возможные связи с другими, уже изученными явлениями. Но это, разумеется, требует кардинального пересмотра многих традиционных представлений и принципов.
Сознание. Информация. Разум
«Освобождать может лишь дух, материя может лишь только порабощать».
Поскольку все феномены, о которых идет речь, так или иначе прямо или косвенно связаны с деятельностью сознания, то очевидно, прежде всего, необходимо пересмотреть существующие представления о мироздании именно в этом плане. Как известно, ортодоксальная «материалистическая» точка зрения на эту проблему заключается в том, что «материя» – первична, в «сознание» – вторично. Иными словами, сознание представляет собой одно из свойств высокоорганизованной материи, а явления, происходящие в живой и неживой природе, обусловлены исключительно действием присущих ей закономерностей, управляющих ходом любых процессов. Однако новейшие открытия в области физики, астрофизики и молекулярной биологии убедительно свидетельствуют о том, что в целом ряде явлений, происходящих в окружающем нас мире, присутствует «элемент сознания».
Так, например, антропный принцип утверждает, что между жизненно важными потребностями человека и фундаментальными свойствами Вселенной существует тесная связь. При этом расчеты показывают, что совокупность физических свойств Вселенной, обеспечивающая возможность возникновения и существования жизни, заключена в необычайно узком интервале, Даже сравнительно небольшие изменения значений физических параметров, обеспечивающих эти свойства, как уже было отмечено выше, неизбежно привели бы к тому, что в такой Вселен ной не только живые биологические структуры, но и вообще никакие сложные системы не могли бы существовать.
Выдающийся мыслитель XX столетия В.И. Вернадский утверждал, что в истории естествознания наибольшее значение имели крупномасштабные обобщения научных наблюдений и экспериментов. При этом он подчеркивал, что натуралисту-ученому следует избегать априорных идеологических установок, чтобы они не стесняли творческую мысль, которая должна опираться исключительно на научные обобщения наблюдений реальности (В.И. Вернадский. Научная мысль как планетарное явление. М., 1991. С. 180-190).
Именно к числу подобных обобщений относится и идея о том, что информация существует везде, а не только на высших уровнях организации материи.
Но если она «присутствует» и в неживой природе (то есть имеет место всеобщность ее существования), то это означает, что информация существовала всегда. Другое дело, что она, как и все в мире, эволюционировала, принимала различные формы, и эти формы между собой взаимодействовали. Так, информация от человека может передаваться, например, водной среде и там сохраняться, но может оказаться и за пределами нашей планеты, включившись в потоки энергии и информации, взаимодействующие между собой в космосе. Сказанное также означает, что информация не просто сопровождает течение физических, химических и других процессов, но и может воздействовать на них, причем тем в большей степени, чем выше информационный потенциал того или иного образования.
Что же касается чисто физической стороны проблемы, то, согласно гипотезе Л. Лескова, «носителем» информационного или семантического поля является одна из разновидностей физического вакуума – мэон. Таким образом, человеческое сознание выполняет функцию «оператора», обеспечивающего связь с семантическим потенциалом мэона. Еще в начале 1970-х годов советский исследователь Н.И. Кобозев высказал предположение, что нейронную сеть головного мозга человека заполняет особый «газ», состоящий из сверхлегких частиц, которые он назвал «психонами». Масса такой частицы на 4-7 порядков меньше массы электрона. Психоны первыми реагируют на внешнюю информацию, поступающую из семантических структур мэона, и передают ее в нейронную сеть мозга, минуя каналы органов чувств.
Именно действием подобного «механизма», возможно, объясняются такие явления, как интуиция, озарения, ясновидение и другие парапсихологические феномены. Что же касается физической структуры самого мэона, то в настоящее время по этому вопросу не существует единой точки зрения.
Поскольку физический вакуум не содержит реальных частиц, то в нем, как мы уже знаем, не действует второй закон термодинамики, и, следовательно, отсутствует «стрела времени», существование которой, по-видимому, определяется ростом энтропии. Поэтому прошлое, настоящее и будущее здесь не следуют одно за другим, как в обычном мире, а сосуществуют на равных правах, как бы синхронно. Именно по этой причине в семантическом поле мэона возможно накопление информации не только о прошлом и настоящем, но и о будущем! Каким образом эта информация кодируется в семантическом пространстве, остается неясным. Возможно, с помощью так называемых квантовых чисел. Для этого в принципе достаточно всего четырех таких чисел, как достаточно четырех нуклеотидов для кодирования генетической информации в ДНК.
Следует особо подчеркнуть, что несмотря на экзотичность подобных представлений, они нигде не вступают в противоречие с известными нам и многократно проверенными на опыте законами природы и фундаментальными научными теориями.
Судя по всему, информационный поток, циркулирующий между мэоном и материальным миром, действует в обе стороны. И именно «давлением» со стороны мэона объясняется направленный характер эволюции в неживой и живой природе и обеспечивается антиэнтропийная направленность – многих процессов эволюции материального мира.
По мнению некоторых ученых, человеческий мозг занимает высшее место в иерархии «операторов смысла», способных управлять потоками информации, связывающими материальный мир с мэоном, поскольку только мозг обладает самосознанием и свободой воли. Что же касается мэона, то он является лишь хранилищем информации, в том числе и той, которая поступает в его «память» в результате творческих актов сознательной деятельности человека.
Однако нельзя исключить, как мы уже говорили, возможность того, что «информационное» или «семантическое поле» обладает самосознанием, намного превосходящим возможности человеческого мозга, и поэтому играет роль своеобразного Мирового Разума.
Такое предположение вполне согласуется с основными представлениями современной «синергетики», которая предполагает возможность самоорганизации материальных объектов даже при их малом информационном содержании. Можно также предположить, что колоссальному энергетическому потенциалу физического вакуума соответствует и наличие огромного информационного потенциала. По некоторым оценкам, полный поток информации, перерабатываемый на поверхности всей нашей планеты (прежде всего ее биотой), составляет лишь ничтожную – почти на пятьдесят порядков ниже – часть потока информации от физического вакуума.
При этом трансформации (то есть хранение и переработка) информации в физическом вакууме, согласно законам самоорганизации, в принципе должны создавать некий информационный потенциал, который имеет наивысшую в мироздании сложность и устройство и способен выполнять гигантскую работу по преобразованию информации. Именно там может происходить информационная имитация (отражение) реальных процессов, причем во всех временах, в том числе и в будущем, иными словами, может моделироваться грядущее реального мира.
Интересно отметить, что процессы хранения и переработки информации осуществляются в таком Мировом Разуме или Космическом Интеллекте практически без затрат энергии и как бы вне зависимости от материальных носителей, которые в энергетическом ракурсе сведены до минимума. Это значит, что единица информации тождественна здесь единице энергии и хранение и преобразование информации протекает здесь без обычной для нашего мира энергетической избыточности. Вполне понятно, что получение доступа к такому информационному потенциалу означало бы прорыв в поистине неисчерпаемую «информационную Вселенную».
На существование в природе подобной информационной субстанции указывает и то обстоятельство, что, согласно современным теоретическим представлениям, наша Вселенная произошла в результате «фазового перехода», совершившегося именно в физическом вакууме.
В свое время великий художник и философ Святослав Рерих высказал чрезвычайно интересную мысль о том, что развитие человеческой культуры повышает «энергетический потенциал» не только самого человечества, но и окружающей среды, создавая тем самым благоприятные условия для творческих свершений. Похоже, что идея Мирового Разума – информационного поля, пополняющегося за счет достижений человеческого интеллекта и способного, в свою очередь, питать человеческий разум новой информацией, а, возможно, и дополнительными порциями психической энергии – подводит под идеи Рериха своеобразный естественно-научный фундамент…
Глава 3НАУКА СЕГОДНЯ И ЗАВТРА
Можно ли победить тяготение?
Поскольку геометрические свойства пространства тесно связаны с силами гравитации, то вопрос о том, можно ли в принципе преодолеть тяготение, имеет к изучению свойств пространства самое непосредственное отношение…
Контрольные приборы отсчитывают последние мгновения перед стартом. Сигнал – и громада звездолета плавно отделяется от Земли и, набирая скорость, устремляется ввысь. И при этом ни оглушительного грохота ракетных двигателей, ни вспышек пламени, ни огненно-дымного шлейфа за хвостом стартовавшего космического корабля. И никаких сложнейших громоздких стартовых сооружений.
Так или примерно так авторы научно-фантастических произведений описывают взлет антигравитационных космических кораблей будущего. Как известно, для того, чтобы «оторваться» от Земли и улететь в космос, космический аппарат должен преодолеть силу земного притяжения, порвать «цепи тяготения», привязывающие любой предмет к поверхности нашей планеты. Для этого необходимо развить так называемую вторую космическую скорость, которая для Земли равна 11,2 км/с. Для других – более массивных или более плотных небесных – тел значение второй космической скорости может быть и значительно более высоким. Так, например, для Солнца она составляет 600 км/с, для очень плотных звезд – «белых карликов» – 6000 км/с, а для еще более плотных нейтронных звезд – 1 000 000 км/с.
Создание антигравитационных двигателей помогло бы решить многие проблемы, связанные с освоением космоса. Что говорит о подобной перспективе современная физическая наука?
В рамках общей теории относительности возможность существования антигравитационных сил практически исключена. Дело в том, что в основу этой теории положен «постулат» о равенстве «гравитационных зарядов» массам взаимодействующих тел для любых форм и видов материи. А так как отрицательных масс в природе, по-видимому, не бывает, то не могут существовать и отрицательные «гравитационные заряды».
Значит ли это, что придется отказаться от всяких надежд? Общая теория относительности Эйнштейна – великая теория! Сегодня это признается всеми. Но тем не менее и у нее, видимо, должны существовать границы применения. И предположение о том, что за этими границами антигравитация все же может существовать, не содержит в себе ничего антинаучного. В частности, в последние годы физики обнаружили нечто такое, что, возможно, открывает реальный путь к победе над тяготением. Согласно квантовой физике, любое физическое поле состоит из элементарных порций – квантов. Не должны, очевидно, составлять исключение из этого правила и поля тяготения. Исследование природы различных физических взаимодействий привело ученых к выводу о том, что существует не одно-единственное поле тяготения, как считалось раньше, а – три, различающиеся по своим свойствам. На больших расстояниях эти поля как бы сливаются, образуя единое «супергравитационное поле». Однако на малых расстояниях они расщепляются и становятся независимыми друг от друга. Пока это только гипотеза, но знаменательно, что современная теоретическая физика приходит к ней разными путями, отталкиваясь от самых различных предположений. Скорее всего, это не простая случайность. Обычно подобная ситуация свидетельствует о том, что полученный вывод соответствует действительности.
Но если полей тяготения три, то каждое из них должно иметь и свои собственные кванты. Кванты обычного гравитационного поля получили название «гравитонов». Они всегда движутся точно со скоростью света и, подобно фотонам, а, возможно, и нейтрино, не имеют «массы покоя». Правда, в отличие от этих частиц, обнаружить гравитоны экспериментально никому до сих пор не удалось. Может быть, потому, что эти частицы чрезвычайно слабо взаимодействуют с веществом и поэтому обладают фантастической проникающей способностью, которая во много раз превосходит проникающую способность даже таких «всепроницающих» частиц, как нейтрино.
Что же касается квантов двух других гравитационных полей, получивших названия «гравифотонного» и «гравискалярного», то будучи столь же неуловимыми как гравитоны, они, в отличие от своих «собратьев», обладают вполне определенными массами. Впрочем, массы эти скорее всего весьма невелики, но в то же время не меньше, чем несколько тысячных триллионной доли массы электрона. Дело в том, что чем «легче» кванты, тем больше радиус их действия. И если бы гравифотоны и гравискаляры были чересчур легкими, то их влияние должно было бы неизбежно сказаться на характере движения небесных тел. А это неминуемо было бы зарегистрировано астрономами и астрофизиками.
Однако нельзя исключить и другую возможность. Гравифотоны и гравискаляры могут оказаться весьма тяжелыми частицами с массами, в сотни и тысячи раз превосходящими массу протонов – ядер атомов водорода. Но тогда их действие может проявляться лишь на ультрамалых расстояниях, то есть в глубинах микромира. Ответ на вопрос, каковы реальные значения масс этих образований, могут дать только будущие исследования.
Но самое интересное – другое. Оказывается, гравискалярные силы, подобно обычным силам тяготения, могут быть только «притягивающими». А гравифотонные – как «притягивающими», так и «отталкивающими», в зависимости от того, из чего состоят взаимодействующие тела – из вещества или антивещества. И тут мы сталкиваемся с совершенно неожиданным парадоксом: массы, состоящие из вещества и антивещества, должны притягиваться, а объекты, состоящие из обычного вещества – наоборот… отталкиваться. Иными словами, самые обычные окружающие нас предметы под действием гравифотонного поля тяготения должны разлетаться в разные стороны. Однако ничего подобного, как известно, не происходит. Почему? Возможно, гравифотонное взаимодействие значительно уступает по силе гравитационному и соперничать с ним просто не в состоянии. А, может быть, оно в самом деле проявляется лишь на ультрамалых расстояниях. Однако не исключено и другое. Вполне возможно, что гравифотонная антигравитация уравновешивается гравискалярным притяжением. И проявляет себя только привычное гравитационное притяжение.
Вот тут-то и появляется надежда на решение антигравитационной проблемы.
Для этого нужно воспользоваться теми ситуациями, когда гравискалярное притяжение слабее гравифотонного отталкивания. Определенные указания на реальность подобной возможности имеются. Весьма точные измерения «постоянной тяготения», проведенные в последние годы на разных высотах над земной поверхностью и в глубоких шахтах, показали, что ее значения в разных точках несколько различаются. Не исключено, что эти различия как раз и объясняются проявлениями антигравитации. Есть и другие обнадеживающие наблюдения.
В принципе возможен и контрольный проверочный эксперимент. Как было отмечено выше, и гравифотонные, и гравискалярные силы должны работать на притяжение. Поэтому в поле тяготения Земли антивещество должно весить больше, чем вещество. Соответствующий эксперимент может быть осуществлен на ускорителях элементарных частиц.
Разумеется, от гравифотонного отталкивания до создания антигравитационного космического корабля еще так же далеко, как от воздушного змея до реактивного авиалайнера. Однако важен сам факт. Главное, что антитяготение, судя по всему, существует. А остальное, как говорится – дело техники.
Кроме того, если бы все, о чем только что говорилось, подтвердилось, мы узнали бы много нового и о структуре нашего пространства.
От гравитации к супергравитации
Как известно, значение научных теорий заключается в том, чтобы намного опережать экспериментальные и наблюдательные исследования. И в этом плане на одном из первых мест в современной теоретической физике стоит теория «симметрии», которые были квалифицированы Е. Вигнером как высший уровень понимания физических явлений, устанавливающий или, лучше сказать, «отражающий» связь между законами природы.
На первый взгляд, понятие «симметрии» выглядит довольно элементарно, с ним хорошо знакомы все, кто проходил курс школьной геометрии. С их проявлениями мы встречаемся буквально на каждом шагу – зеркальная, центральная, осевая… а физики в свое время заинтересовались симметриями в связи с изучением геометрических свойств различных кристаллов. Однако в дальнейшем выяснилось, что симметрии имеют не только чисто геометрический, но и более глубокий смысл – они отражают глубинные, сокровенные физические связи между явлениями. И с этой точки зрения Вигнер совершенно прав!
В современной физике симметрия – это неизменность (или инвариантность) основных свойств материальной системы и происходящих в этой системе процессов и взаимодействий при тех или иных ее преобразованиях, изменениях ее характеристик. Известна, например, симметрия всех явлений природы при замене всех частиц на соответствующие античастицы.
Изучение подобных симметрии позволяет связать доступные наблюдению физические процессы с теми явлениями, которые протекают в глубинах микромира или в отдаленных областях пространства, а также с теми процессами, которые происходили в далеком прошлом, в первые мгновения существования Вселенной.
Еще один пример физической симметрии – симметрия между неподвижными системами и системами, движущимися равномерно и прямолинейно. Да, с точки зрения физики, это тоже симметрия, поскольку (это было замечено еще Галилеем) все физические процессы в таких системах протекают совершенно одинаково и независимо от того, с какой скоростью они движутся.
И вот что важно: каждой симметрии соответствует какая-либо сохраняющаяся физическая величина. Это значит, что симметрии тесно связаны с законами сохранения, определяющими течение любых процессов и явлений и составляющими фундаментальную основу наших физических представлений о природе. Потому-то физики и придают симметриям столь важное значение. Как образно заметил один известный физик, симметрии и законы сохранения выполняют роль железного каркаса, на котором держится все здание физической теории.
Что есть что?
Чрезвычайно важную роль в истории изучения симметрии сыграло одно драматическое событие. Молодой и необыкновенно талантливый французский математик Эварист Галуа в ночь перед дуэлью решил, словно предчувствуя ее трагический исход, изложить на бумаге свои размышления о совершенно новой области науки. Именно в ту ночь и была создана теория симметрии! Так состоялся гениальный взлет человеческого разума, который дал в руки ученым мощное оружие, ставшее фундаментом современной физики силовых полей и элементарных частиц.
Из рассуждений Галуа, в частности, следовало, что каждой симметрии соответствует семейство физических объектов, которые не только имеют общую природу, но и переходят при преобразованиях этой симметрии друг в друга. Более того, формулы, выведенные Галуа, позволяют объединять различные элементарные частицы в замкнутые семейства, названные «мультиплетами». По сути дела, каждый мультиплет – это совокупность различных состояний одной и той же частицы. При этом с помощью теории, построенной Галуа в ту роковую ночь, можно вычислить все мультиплеты, соответствующие данной симметрии, даже те, которые еще не обнаружены экспериментально. Своеобразная «таблица» элементарных частиц, не уступающая по своему значению знаменитой периодической системе Менделеева.
Вот почему открытие каждой новой симметрии необычайно важно для дальнейшего развития физической науки. Возникает реальная возможность проникновения в тайны мироздания.
Калибровочные поля
Обнаружение мультиплетов поставило перед физиками новую задачу: необходимость различать, в каких состояниях находятся в данный момент эти взаимопревращающиеся объекты. Решение было найдено – наложение на систему определенного физического поля. Так, например, наложение электрического поля сразу выделяет «положительные», «отрицательные» и «нейтральные» частицы. Положительно заряженные начинают двигаться к отрицательному электроду, отрицательно заряженные – в противоположном направлении, а нейтральные продолжают вести себя по-прежнему. Сразу становится ясно, «что есть что». Физические поля, способные играть подобную роль, получили название «калибровочных». Они служат своеобразными «сепараторами», сортирующими физические объекты. И не только объекты.
В качестве примера рассмотрим конкретный случай – упомянутую выше физическую симметрию, существующую между неподвижными системами и системами, движущимися равномерно и прямолинейно. С нею связан знаменитый «принцип инерции Галилея» – никакими внутренними наблюдениями и экспериментами невозможно обнаружить, покоится ли данная система или движется равномерно и прямолинейно. Представим себе, что мы находимся в закрытом вагоне, который плавно и совершенно бесшумно перемещается по абсолютно прямым рельсам с абсолютно постоянной скоростью. Без того, чтобы выглянуть в окно или каким-либо иным способом получить информацию извне, мы не сумеем определить, движется наш вагон или стоит на месте.
Однако и такой симметрии соответствует вполне определенное внешнее «калибровочное» поле, с помощью которого можно отличить покой от движения. Это – гравитационное поле. Оно сообщает равномерно и прямолинейно движущимся объектам определенные ускорения. Для покоящихся же объектов это ускорение будет разно нулю. А ускорение всегда можно обнаружить. Более того, наложение гравитационного поля позволяет даже различать равномерные движения с разными скоростями.
Как известно, Эйнштейн, рассматривая гравитационное поле как искривление пространства, пришел к созданию общей теории относительности – одной из величайших научных теорий XX века. Но теперь ясно, что эту теорию можно было бы построить, рассматривая гравитацию как «калибровочное» поле одной из физических симметрии. Это чрезвычайно важное соображение, которое относится не только к прошлому, но и к будущему. Дело в том, что на протяжении многих лет теоретики упорно стараются построить физическую теорию еще более общую, чем теория относительности. В том, что подобная теория в принципе должна существовать, сомнений ни у кого нет. Однако на пути к ней приходится сталкиваться с поистине фантастическими трудностями. А что, если подойти к этой проблеме, так сказать, «с тыла», решить ее с помощью симметрии?..
В поисках универсальной симметрии
Для этого необходимо отыскать в природе некую «универсальную» симметрию, гораздо более общую не только чем «галилеевская», но и чем все известные до этого.
И такая симметрия, судя по всему, обнаружена. В окружающем нас мире существуют элементарные частицы двух типов – «фермионы», из которых состоят вещественные объекты, и «бозоны» – кванты различных физических полей, связывающие вещественные частицы между собой. Казалось само собой разумеющимся, что эти два типа частиц принципиально несводимы друг к другу, что при любых превращениях, происходящих в микромире, фермионы всегда остаются фермионами, а бозоны – бозонами. К такому заключению побуждал физиков и здравый смысл: ведь никто никогда не наблюдал, чтобы окружающие предметы превращались в физические поля, и наоборот, чтобы из полей возникали те или иные вещи. Конечно, в данном случае мы немного «передергиваем» – ведь речь-то на самом деле идет о микропроцессах. Но в конечном счете любой предмет состоит из микрочастиц.
Тем не менее и на этот раз, как уже не однажды происходило в науке, здравый смысл был посрамлен. Физики-теоретики доказали, что симметрия между бозонами и фермионами, видимо, все же существует. У каждого бозона в мире фермионов есть свой «партнер», – соответствующий ему фермион. – Все частицы образуют своеобразные «пары». Если все эти частицы взаимно поменять местами, то все законы природы останутся неизменными. Эту симметрию за ее универсальный и всеобъемлющий характер стали называть «суперсимметрией».
Необходимо, правда, подчеркнуть, что полная суперсимметрия может быть получена лишь при фантастически высоких энергиях. То есть при условиях, существовавших, судя по всему, лишь в самые первые мгновения образования нашей Вселенной, когда температура была необычайно высока.
И тем не менее идея суперсимметрии необычайно плодотворна, она позволяет многое понять в тех физических процессах, которые развертывались на ранних стадиях развития Вселенной.
В частности, с точки зрения суперсимметрии фермионный партнер должен существовать и у кванта гравитационного поля – «гравитона». Это – «гравитино», частица, по-видимому, обладающая достаточно большой массой, в несколько десятков раз превосходящей массу протона, и проявляющая себя лишь на очень малых расстояниях. Под влиянием гравитино поле тяготения должно приобретать неизвестные ранее свойства, для описания которых теория относительности оказывается уже недостаточно «общей», а точнее говоря, непригодной.
Вот тут уже не только возможно, но и просто необходимо дальнейшее обобщение общей теории относительности – построение теории «супергравитации». А соответствующее «суперсимметрии» калибровочное поле, позволяющее отличать бозоны от фермионов, получило название «супергравитационного». Таким образом, на наших глазах рождается теория единого «суперполя»…
Вездесущее вращение
На протяжении настоящей книги мы не раз упоминали о торсионном излучении и торсионных волнах. Однако отношение различных ученых к этой проблеме неодинаково. Некоторые из них считают развитие представлений о торсионном излучении провозвестником нового видения окружающего нас мира и управляющих им законов природы, началом эры новых прогрессивных технологий. Другие, наоборот, полагают, что направление это является надуманным, недостаточно обоснованным как экспериментально, так и теоретически и потому не заслуживающим сколько-нибудь серьезного внимания. А к его сторонникам относятся чуть ли не как к авантюристам от науки…
В подобной ситуации, впрочем, нет ничего необычного. В истории естествознания не раз случалось так, что появление принципиально новых идей встречало резкое сопротивление научного сообщества. И число сторонников намного уступало числу противников. Порой скептическое отношение оправдывалось, и новые «оригинальные» идеи исчезали, не оставляя в науке никакого следа. Однако нередко такие идеи не только оправдывались, но и открывали совершенно новые пути в познании природы, даже служили началом новых научных революций, кардинальных изменений научной картины мира.
Направление, о котором пойдет речь, – спорное. Многое говорит в его пользу. Но есть и заслуживающие внимания возражения и сомнения. И тем не менее отбросить его «с порога» было бы совершенно неправильно. Необходимо все досконально проверить, провести соответствующие наблюдения и эксперименты… Ибо, если идеи, лежащие в его основе, оправдаются, это не только существенно расширит наши знания о мире, но и может открыть эпоху совершенно новых, чрезвычайно прогрессивных энергосберегающих технологий, значительно увеличить практические возможности современного человечества. Стоит рискнуть!
Поэтому, несмотря на различные точки зрения, мы решили подробнее рассмотреть торсионную проблему. Она заслуживает этого еще и потому, что если предположения ее сторонников оправдаются, современная наука получит эффективное «оружие» для преодоления пространства и времени.
Торсионные волны
Несколько лет назад в Москве был проведен эксперимент, который, быть может, ознаменовал собой приближение новой эпохи в области средств связи… На первом этаже одного из домов в Ясеневе, расположенном в нескольких сотнях метров от кольцевой автомобильной дороги, был установлен передатчик сигналов, несущих двоичную информацию. Приемник этих сигналов находился тоже на первом этаже дома в районе площади Дзержинского на расстоянии 20 километров от передатчика. По пути передаваемые сигналы должны были пройти через большое число железобетонных зданий, представлявших собой армированные железобетонные конструкции, причем арматура этих сооружений по условиям производства строительных работ была заземлена. Кроме того, из-за естественной кривизны земной поверхности по чти половину расстояния, разделявшего передатчик и приемник, передаваемые сигналы должны были пройти через толщу земли. Для обычных радиосигналов подобные препятствия оказались бы непреодолимыми.
Однако уже в первой серии экспериментов выяснилось, что переданные сигналы не только дошли до приемника, но были приняты без каких-либо искажений. С точки зрения обычной радиотехники, подобный результат выглядел совершенно удивительным, тем более что потребление энергии передатчиком составило всего около 30 милливатт. Это в 10 раз меньше, чем потребление энергии лампочкой от карманного фонаря с плоской батарейкой. Для сравнения стоит также отметить, что мощность радиопередатчиков на подобных трассах достигает десятков и сотен киловатт, а в описанной ситуации и этого скорее всего было бы недостаточно.
Во второй серии экспериментов передатчик был доставлен в точку приема и передача тех же самых сигналов была повторена. И было установлено, что по своей интенсивности принятые на этот раз сигналы в среднем совпадали с теми, которые передавались с расстояния 20 километров.
Это означало, что в первом эксперименте сигналы проходили свой путь, не испытывая ослабления ни от расстояния, ни от преодоления препятствий.
Что же представляли собой сигналы, с помощью которых передавалась информация в описанных экспериментах? Какова была их физическая природа?
Опыт изучения различных явлений, в первую очередь в области физики, убеждает в том, что любые изменения, происходящие в окружающем нас мире, неизбежнс порождают определенные следствия. Так, появление каких-либо масс неизбежно приводит к возникновению полей тяготения – гравитационных полей, а движение электрических зарядов – к образованию полей электромагнитных. С появлением общей теории относительности Эйнштейна обнаружилась глубокая связь между геометрическими свойствами пространства и силами тяготения – гравитацией. И с тех пор стали предприниматься многочисленные попытки «геометризации» и других физических полей. В 1922 году французский математик Э. Картан обратил внимание на особую роль еще одной геометрической характеристики – «кручения», то есть искривления пространства, вызванного вращением. Физические поля, которые при этом возникают, получили название «полей кручения» или «торсионных полей». Но на протяжении довольно длительного времени считалось, что торсионные воздействия настолько слабы, что не могут внести сколько-нибудь заметного вклада в наблюдаемые явления.
При этом, однако, сопоставление торсионных полей с другими физическими полями производилось путем сравнения так называемых констант взаимодействия, присущих этим полям. Для очень сильных ядерных взаимодействий эта константа равна единице, у полей электромагнитных она составляет 1/137, а у гравитационных – около 10-40. Для торсионных же полей «константа взаимодействия» оценивалась величиной, меньшей, чем 10-50.
Именно исходя из этого и делался вывод, что эффективность проявления торсионных полей настолько ничтожна, что их практически невозможно наблюдать. Однако при этом не учитывалось то существенное обстоятельство, что константа, о которой идет речь, справедлива только для так называемых статических торсионных полей. Для тех же случаев, когда вращение сопровождается излучением торсионных волн, она вообще не определена. И в принципе могут существовать торсионные поля, способные вызывать достаточно мощные эффекты.
Изучением таких торсионных полей занимается с 1989 года специализированная научная организация, руководителем которой является А.Е. Акимов.
В эксперименте, о котором было рассказано выше, в качестве излучения, переносившего информацию от передатчика к приемнику, и были использованы торсионные волны. Эти эксперименты показали, что торсионное излучение обладает практически абсолютной проникающей способностью и может беспрепятственно преодолевать самые сложные препятствия. Поэтому интенсивность принимаемых торсионных сигналов и не зависит от поглощения, а следовательно, и от расстояния.
В 1995 году в Московском Экспоцентре проходила Международная конференция по телекоммуникациям, в которой приняли участие представители крупнейших мировых фирм, работающих в этой области. На заключительном пленарном заседании А. Акимов выступил с докладом «Торсионные коммуникации и средства связи третьего тысячелетия». Этот док лад затем был опубликован в сборнике материалов конференции. И поскольку с того времени ни в научных публикациях, ни в сообщениях патентных организаций не появлялось никаких материалов, свидетельствующих о том, что в этом направлении в мире есть какие-либо аналогичные разработки, тем самым однозначно устанавливается приоритет России как родины торсионной связи.
Первые генераторы торсионных полей представляли собой специальные устройства, в которых использовались электрические процессы, связанные с вращением, например, вращение по окружности потоков ионов или вращение электромагнитных полей. При этом использовалась обычная радиоэлектронная аппаратура, с помощью которой формировались путем соответствующей модуляции те сигналы, которые предстояло передать. Но в передатчике эти сигналы подавались не на усилители мощности и антенну, как при обычной радиопередаче, а на торсионный генератор, который преобразовывал модулированные электрические сигналы в торсионные.
В приемном же устройстве осуществлялось обратное преобразование зарегистрированных сигналов в электрические, которые затем усиливались стандартными средствами, применяемыми в обычной радиотехнике.
Космическая связь
Таким образом, открываются поистине небывалые перспективы в области дальнейшего развития средств связи. И прежде всего – космической. Во-первых, для торсионной космической связи не нужны мощные передатчики, потребляющие значительные количества электроэнергии, и громоздкие дорогостоящие антенны. Во-вторых, затраты энергии для торсионной космической связи – ничтожно малы.
Но самое главное состоит в другом. В настоящее время из-за конечной скорости распространения электромагнитных волн радиосигналы затрачивают на преодоление космических расстояний весьма ощутимые промежутки времени. Уже от Луны радиосигнал идет около 1,5 секунды. А от космического аппарата, который находится на поверхности Марса, – от 4 до 20 минут в зависимости от взаимного расположения наших планет. Вследствие такого запаздывания оператор, пере дающий различные команды на борт космической станции, которая находится в районе Марса, получает сообщения об их исполнении лишь спустя заметные промежутки времени. Это обстоятельство сильно затрудняет управление космическими аппаратами. Торсионные же сигналы распространяются в пространстве практически мгновенно!
Долгое время ученые считали, что никакие физические излучения не могут распространяться со сверхсветовыми скоростями. Однако физикам давно было понятно, что запрет сверхсветовых скоростей в теории относительности Эйнштейна не доказывается, а является одним из ее исходных постулатов. Более того, некоторые современные фундаментальные физические теории не могут обойтись без признания возможности сверхсветовых скоростей. Отказ же от этих теорий неизбежно привел бы к тому, что современная теоретическая физика утратила свою целостность и стройность.
Но дело не только в теории. В целом ряде экспериментов сверхсветовые скорости наблюдаются реально. В 1985 году в журнале «Успехи физических наук» – весьма уважаемом в мире науки издании, сообщалось о существовании около 20 астрономических объектов, в том числе звезд, которые движутся относительно Земли со скоростями, превосходящими скорость света. И в последующем ни в нашей, ни в зарубежной научной литературе эти данные никем опровергнуты не были.
Как уже говорилось, в теоретической физике популярна теория «физического вакуума». Как говорил известный физик-теоретик Я. И. Померанчук, «вся физика – это физика вакуума», образно говоря, физический вакуум – это своеобразная «скрытая» форма материи, которая при определенных условиях способна рождать «вещественные» элементарные частицы.
Московский физик-теоретик Г. Шипов создал теорию физического вакуума, согласно которой торсионные поля непосредственно с ним связаны и могут распространяться в пространстве без потери интенсивности и со сверхсветовой скоростью.
И хотя торсионные волны не переносят энергии, их информационная емкость поразительно велика. В свете этих соображений, в частности, можно предположить, что высокоразвитые внеземные цивилизации, если они действительно существуют, используют для космической связи именно торсионные волны, которые в качестве носителей информации обладают целым рядом существенных преимуществ перед электромагнитными излучениями. И не исключено, что с развитием торсионных приемных устройств нам, наконец, удастся обнаружить искусственные сигналы других космических цивилизаций.
В настоящее время осуществляется завершающая стадия экспериментальных работ с заводскими образцами и лабораторными макетами аппаратуры торсионной связи. И не исключено, что уже в ближайшем будущем появится возможность приступить к их практическому внедрению.
Вероятно, одними из первых потребителей подобных устройств станут различные коммерческие структуры для обеспечения внутренних линий связи. Дело в том, что торсионные средства связи абсолютно недоступны для каких-либо проникновении извне и тем самым гарантируют стопроцентную надежность и конфиденциальность.
Необходимо отметить, что создавая средства торсионной связи, ученые стремились обеспечить в будущем плавный переход от существующей радиоаппаратуры к торсионной. Поэтому такая аппаратура совместима с действующей радиоаппаратурой.
Есть все основания предполагать, что XXI век станет веком торсионных коммуникаций и средств связи.
«Торсионные» ожидания
С помощью торсионных полей открывается возможность понять многие явления, связанные с человеческим сознанием. В настоящее время ученые располагают значительным количеством фактов, так или иначе связанных с психофизическими явлениями. Однако соответствующая теория, которая соотносила бы эти факты с современной физической наукой, пока не разработана. Между тем в принципе это вполне возможно, так как и психофизические явления и современная физика представляют различные стороны окружающей нас реальности.
Еще в 1991 году А.Е. Акимов высказал мысль о том, что концепция торсионных полей может оказаться ключевой и для решения психофизической проблемы. И есть основания надеяться, что теория «торсионных волн» сумеет объяснить многие явления, связанные с деятельностью сознания.
И поскольку организм человека сам является источником торсионных излучений, то со временем с их помощью можно будет находить различные отклонения в работе отдельных органов и даже корректировать их состояние.
Наконец, стоит отметить, что приемниками торсионных излучений могут служить фотографические эмульсии, а также многие другие материалы. В физике известно явление так называемой поляризации, то есть накопления зарядов на каком-либо веществе. Оказалось, что с помощью торсионных полей можно в некоторых веществах изменять ориентацию спинов. И при определенных условиях такая «торсионная поляризация» будет очень долго, а возможно и на протяжении неограниченного времени, сохраняться. В принципе ее можно расшифровать.
Работы в этом направлении ведутся, хотя сказать с определенностью, когда эти исследования будут завершены, пока не представляется возможным. Но если удастся достичь успеха, не исключено, что появится поистине фантастическая возможность визуализировать информацию, содержащуюся в торсионных структурах некоторых объектов, и получать «фотографические» изображения минувших, в том числе уникальных исторических событий. Так было бы в высшей степени интересно расшифровать, например, информацию, записанную торсионными полями на знаменитой «плащанице», и, быть может, получить изображение Христа!
В области торсионных полей уже получены весьма перспективные результаты, которые охватывают все основные сферы деятельности современной цивилизации – энергетику, транспорт, средства связи и коммуникации, медицину, а также производство различных материалов.
Масштабы практического применения торсионных технологий выглядят неправдоподобно огромными. Однако напомним, что явление электромагнетизма используется человечеством не менее широко – в транспорте, энергетике, связи, в том числе космической, вычислительной технике, ускорителях элементарных частиц, индукционных печах в металлургии, в СВЧ-печах в быту, в физиотерапии в медицине и т.д. и т.п. – и это никого не смущает.
И хотя в настоящее время результаты исследований в области торсионных полей носят спорный характер, шансы на то, что «торсионные ожидания» оправдаются, все же есть – и немалые. И если то, о чем говорилось выше, хотя бы частично подтвердится, то можно будет согласиться с А.Е. Акимовым, по мнению которого мы вступаем в XXI век, владея некой суммой новых технологий – торсионных технологий. И они должны если не полностью, то по крайней мере в значительной степени прийти на смену существующим.
Глава 4КОСМИЧЕСКАЯ МИССИЯ ЧЕЛОВЕЧЕСТВА
От «хаоса» к «порядку»
Теперь вернемся к вопросу о том, почему мы появились в этом мире, какую роль призваны играть разумные существа в процессе «движения» материи и информации во Вселенной и каково предназначение человечества в мироздании?
В этом плане обращает на себя внимание любопытное и весьма неординарное высказывание одного из крупнейших современных физиков-теоретиков Стивена Вейнберга: «Чем понятнее кажется нам Вселенная, тем очевиднее бесцельность ее существования»…
Однако если согласиться с тем, что нашу Вселенную спроектировал и создал Космический Разум (независимо от того, какова его природа), предусмотрев появление в ней разумных существ, то логично предположить, что у этой акции была определенная цель и человечеству уготовлена какая-то определенная миссия. В чем она может заключаться? Однозначно ответить на этот вопрос современная наука пока не в состоянии. Но, как заметил Д. Уилер, «однажды дверь, конечно, отворится и мы увидим сверкающий механизм нашего мира во всей его простоте и совершенстве. Взаимосвязь законов природы заставляет поверить, что за всем этим что-то есть».
Что же находится за той «дверью», о которой говорит Уилер? Точно мы этого не знаем, однако достижения физики и астрофизики последних десятилетий позволяют высказать на этот счет некоторые соображения.
И здесь мы вновь обратимся к уже знакомому нам «второму началу термодинамики» и связанному с ним росту энтропии. Напомним, что согласно этому закону любая замкнутая физическая система переходит от состояний менее вероятных к более вероятным, то есть от «порядка» к «хаосу». И, следовательно, «хаос» более вероятен, чем «порядок».
Как мы уже отмечали, в неживой природе при благоприятном стечении обстоятельств иногда происходят процессы самоорганизации, сопровождающиеся уменьшением энтропии и повышением уровня организации тех или иных природных систем.
Но совершенно удивительной способностью сознательно создавать маловероятные состояния обладает человек. Почти все, что нас окружает, чем мы пользуемся на каждом шагу, – это результат работы разума и рук человека. Здания, самолеты, машины, ракеты, автомобили, станки, космические корабли – все эти и многие другие объекты не могли бы образоваться сами собой в результате случайного сцепления атомов и молекул. Их создал человек.
Так, может быть, именно в этом – в борьбе с накоплением энтропии и хаоса и состоит предназначение человечества, причем не только в условиях Земли, но и в космических масштабах. И именно для этого появление разумных существ во Вселенной было предусмотрено тем «сознательным началом», которое стояло у ее истоков.
Возможно, человек и другие разумные обитатели Вселенной потребовались Космическому Разуму именно для поддержания стабильности космических процессов, в качестве реальных практических исполнителей его замыслов.
Но не проще ли было запрограммировать такую Вселенную, в которой «второе начало термодинамики» вообще не действует? И тогда не понадобилось бы вести специальную борьбу с накоплением энтропии и хаоса.
В принципе не исключено, что по каким-то неизвестным нам причинам существование такой Вселенной, к тому же отвечающей и всем другим требованиям, просто невозможно. Даже для сверхмогущественного Космического Разума. Быть может, его способности тоже в какой-то степени ограничены…
А, может быть, Космический Разум просто предусмотрел для разумных обитателей Вселенной некое постоянное занятие, задание, необходимость выполнения которого не позволила бы им разочароваться в своем бессмысленном существовании…
Нельзя исключить и другую версию. Вполне возможно, что на каком-то этапе Космическому Разуму понадобились разумные партнеры для обмена информацией и оригинальными идеями.
В конце концов главное даже не в том, «кто» или «что» сотворил нашу Вселенную и земную жизнь – Бог или Космический Разум, или Космическое Информационное Поле, или сама материя. Поскольку земная разумная жизнь реально существует и способна эффективно бороться с энтропией и в самом деле призвана играть во Вселенной ту роль, о которой говорилось, то напрашивается ряд весьма важных выводов.
О возможности управления космическими процессами
Стивен Вейнберг, по-видимому, все-таки ошибался, не усмотрев в существовании Вселенной никакой целесообразности. Если верно то, о чем говорилось выше, то Вселенная была создана с вполне определенной целью: обеспечить появление и существование человека. А сам человек был создан для поддержания ее стабильности и борьбы с хаосом.
Но в таком случае человечеству в будущем предстоит заниматься активной антиэнтропийной и стабилизирующей деятельностью в масштабах Вселенной.
Однако тогда оно неизбежно столкнется по меньшей мере с двумя принципиальными трудностями. Во-первых, с грандиозностью космических процессов, не идущих ни в какое сравнение с весьма ограниченными масштабами деятельности современных разумных обитателей Земли. И, во-вторых, с невозможностью быстрого преодоления огромных космических пространств, обусловленной запретом теории относительности на распространение любых взаимодействий со сверхсветовыми скоростями.
Способен ли человек при нынешних и даже перспективных научно-технических возможностях с этими трудностями справиться?
Необходимо также принимать во внимание, что любое уменьшение энтропии и хаоса в некоторой области пространства Вселенной, в том числе и направленное на стабилизацию космических процессов, может происходить, как уже было отмечено выше, лишь за счет увеличения энтропии в какой-либо другой области Вселенной (Мироздания). А это может привести к таким нежелательным изменениям космической среды, которые могут по своим масштабам значительно превзойти осуществленную, благодаря действиям человечества, стабилизацию. И вызвать отрицательные экологические последствия и даже экологические катастрофы космического масштаба. Так что любые вмешательства человека в космические явления должны быть всесторонне продуманы и рассчитаны заранее. А для этого наших современных знаний явно недостаточно.
Поэтому первой задачей является более глубокое изучение закономерностей космических процессов и законов Вселенной. Необходимо научиться как можно более точно рассчитывать последствия любых изменений, происходящих в тех или иных регионах космоса, независимо от того, произошли ли они естественным путем или были вызваны вмешательством человека.
Но возникает и еще одна проблема: как быть с энергетикой космических процессов, не идущей ни в какое сравнение с масштабами тех энергетических явлений, которые связаны с практической деятельностью современного человечества? Тут могут выручить несколько обстоятельств.
Очень многие космические процессы носят так называемый курковый характер. Достаточно сравнительно небольшого толчка в нужном месте и в нужный момент, чтобы существенно изменить их дальнейшее течение. Подобно тому, как легкое нажатие на спусковой крючок мощного артиллерийского орудия способно произвести выстрел.
Конечно, когда речь идет о космических процессах, то возникает закономерный вопрос: каким образом этот «спасительный» толчок осуществить, принимая во внимание грандиозность Вселенной и масштабы происходящих в ней явлений?
Согласно современной синергетике (об этой науке более подробно речь пойдет в следующей главе), в так называемых бифуркационных точках (то есть в «точках ветвления» нелинейных физических процессов) достаточно весьма незначительных, минимальных воздействий, чтобы изменить траекторию развития тех или иных процессов!
Кроме того, исследования так называемых нелинейных сред, а это практически все среды, существующие в природе, показали, что каждая такая среда в результате «саморазвития» может переходить лишь в одно из определенных состояний. А в какое именно – зависит от «начальных условий». Чуть-чуть изменяя эти условия, можно в принципе достичь желаемых целенаправленных изменений космической среды в значительных масштабах.
Так что в перспективе человек, досконально изучив закономерности физических и космических процессов и научившись с большой точностью рассчитывать их дальнейшее развитие, сможет путем изменений условий в тех или иных точках Вселенной оказывать необходимое направленное воздействие на физическую «обстановку» в различных регионах космоса.
Наконец, есть, как мы знаем, предположение, что при определенных условиях информация способна оказывать на материальные объекты и процессы непосредственное воздействие. Иными словами, не исключено, что существует возможность корректировать течение космических явлений с помощью соответствующих информационных воздействий.
Если все эти надежды оправдаются, то останется только научиться передавать необходимую информацию в отдаленные районы космоса со сверхсветовой скоростью, а еще лучше мгновенно.
Возможно, этого реально удастся добиться, если необходимая информация будет передаваться через физический вакуум, на который запрет сверхсветовых скоростей не распространяется. К тому же, судя по тем исследованиям, о которых мы уже говорили, видимо, существует и подходящий носитель информации – торсионное излучение.
Можно предположить, что, располагая соответствующими знаниями о течении космических процессов, человечество рано или поздно научится корректировать их ход с таким расчетом, чтобы избежать нежелательных ситуаций и опасностей, о которых говорилось выше.
Реальность и модели
Если прав Налимов и человеческий мозг является «главным оператором» семантического поля мэона, а это семантическое поле действительно обладает теми возможностями, которые ряд современных исследователей ему приписывает, то это означает что человеческая психика в самом деле способна воздействовать на реальность, на происходящие события.
В этой связи определенный интерес представляют теоретические исследования философа и математика В. Лефевра, работающего в настоящее время в США.
В своей книге «Алгебра совести» Лефевр строит модель человека, главной отличительной особенностью которого является умение выбирать между Добром и Злом. И считает, что подобная модель позволит раскрыть некоторые общие свойства человека, как неотъемлемого элемента Универсума.
В то же время он пытается сконструировать для описания процессов, протекающих в человеческом мозгу, аналогию с работой тепловых машин. По мнению Лефевра, подобная интерпретация позволяет обнаружить еще неизвестные науке законы психофизики.
Современное естествознание рассматривает два основных варианта объяснения появления в природе разумного существа – человека. Это либо случайное стечение благоприятных обстоятельств, в том числе соответствующих внешних условий, сложившихся во Вселенной и на нашей планете, либо такое изначальное устройство нашей Вселенной, которое предусматривало на определенном уровне ее эволюции возникновение человека в качестве необходимого этапа в развитии материи.
Описывая деятельность сознания, Лефевр проводит аналогию с работой тепловых машин, в которой существенную роль играют такие фундаментальные законы природы, как законы сохранения и второе начало термодинамики. Он считает, что это обстоятельство является решающим аргументом в пользу второго из упомянутых вариантов.
Таким образом, опираясь на «модель человека», в которой главную роль играет чисто моральный выбор между Добром и Злом, мы приходим к фундаментальным законам физики. Сам Лефевр считает подобный результат, к которому приводит последовательность, казалось бы, чисто логических рассуждений – неожиданным и даже «странным». Но если вспомнить об органической связи между законом возрастания энтропии и хаоса и теми принципами морали и нравственности, которым следует человечество, то никакой неожиданности и тем более странности в подобном выводе нет. Напротив, заключение, к которому приходит Лефевр, с этой точки зрения выглядит не только вполне закономерным, но и углубляющим наше понимание «космической природы» тех принципов морали и нравственности, которым мы стремимся следовать в жизни.
Лефевр также выдвинул гипотезу о том, что «сознание» является «эволюционным элементом» человеческой личности, который, в ходе своей дальнейшей эволюции, должен приобрести «космические функции». При этом Лефевр опирается на примеры, взятые из истории эволюции жизни на Земле. Действительно, немало фактов свидетельствует о том, что те или иные признаки, возникавшие у представителей некого вида для обеспечения второстепенных, не имеющих большого значения функций, в дальнейшем в процессе естественного отбора приобретали решающее значение, обеспечивая выживание определенных особей. Так, выяснилось, что крылья, появившиеся у некоторых насекомых, первоначально имели небольшую длину и при возникновении как полезного признака предназначались лишь для воздушного охлаждения тела. И в условиях потепления климата они обеспечивали преимущественную возможность выживания тем экземплярам, у которых они играли роль своеобразного «вентилятора». Но в дальнейшем полезным признаком, обеспечивающим выживание, стала их увеличившаяся длина, создавшая возможность для полета.
Развивая свою гипотезу, Лефевр высказал предположение о том, что сознание – это не что иное, как «зародыш» будущего эволюционного процесса, в ходе которого современные разумные существа постепенно трансформируются в гигантские тепловые машины космических масштабов, способные обеспечивать пополнение Вселенной тепловой энергией и тем самым противостоять процессу накопления энтропии и наступлению «тепловой, смерти» нашего мира.
Однако, по нашему мнению, гораздо логичнее и естественнее рассматривать процесс дальнейшей эволюции функций и возможностей человеческого сознания несколько иначе, а именно: поскольку наличие разума позволяет человеку сознательно создавать маловероятные состояния и бороться с накоплением энтропии и хаоса именно таким путем, то со временем человек приобретет возможность соответствующим образом корректировать процессы космического масштаба в рамках Вселенной…
Глава 5ЗАГЛЯНЕМ В БУДУЩЕЕ
Будем стараться иметь космический взгляд на вещи и оценивать настоящую и будущую судьбу человечества, основываясь на познании всей Вселенной, а не Земли только.
Человек живет больше жизнью космоса, нежели Земли.
Современное человечество достигло чрезвычайно важного этапа в своем развитии. С одной стороны, благодаря бурному прогрессу науки и техники, ему теперь по плечу свершения не только глобальных, но и космических масштабов. С другой стороны, те же факторы способствовали созданию оружия массового уничтожения, применение которого может привести к гибели человечества, а также к разрушению окружающей среды. Существует также опасность всеобщей экологической катастрофы, в результате которой наша планета может оказаться непригодной для обитания.
К счастью, события последнего времени дают основания для оптимизма. Человечество стало всерьез осознавать реальность-возникающих угроз и предпринимать соответствующие усилия для их предотвращения. Сделаны первые шаги к ликвидации оружия массового уничтожения, все большее значение придается в международном масштабе решению экологических проблем.
Если так будет продолжаться и дальше и новое мышление с его гуманистическими идеалами победит окончательно, то можно ожидать, что человечество, освобожденное от страха перед будущим и от бремени непомерных военных расходов, в короткие сроки добьется колоссальных успехов. Расцветет наука, будут побеждены практически все болезни, существенно продлен творческий век человека, новые технологии избавят людей от постоянной заботы об источниках сырья и энергии, поистине глобальных масштабов достигнет компьютеризация, будут созданы «интеллектуальные машины», по своим мыслительным возможностям ни в чем не уступающие человеку и способные избавить его от любых повседневных забот.
Разумеется, как совершенно справедливо отметил в свое время А. Зельманов, картина будущего, которую пытается нарисовать человек, – во многом иллюзорна. Но одно – бесспорно: XXI столетие будет неразрывно связано с наукой.
Изучаем, сравнивая
Одним из эффективных методов научного исследования является «метод сравнения» – сравнения интересующих нас процессов или объектов со сходными процессами или объектами, которые протекают или находятся в иных условиях. Можно также сравнивать различные состояния одного и того же процесса или объекта. Но если мы располагаем интересующим нас процессом или объектом лишь в единственном числе и с ним на протяжении длительного времени ничего не происходит, если он практически не изменяется, то это значительно усложняет задачу его научного исследования.
Как известно, одним из наиболее сложных явлений окружающего нас мира является жизнь, живая материя, живые организмы и прежде всего разумные, и присущий им «феномен сознания».
Живых форм на нашей планете великое множество, и это обстоятельство, конечно, облегчает изучение жизни вообще и связанных с ней закономерностей. Но разумные существа как явление фактически существуют на Земле в «единственном экземпляре». И это значительно усложняет исследование некоторых общих свойств жизни, ее общих закономерностей. Возможно, именно по этой причине наука о человеке сталкивается с очень многими нерешенным и даже загадочными проблемами – в первую очередь уже упомянутой «проблемой сознания»!
Мы уже отмечали, что явления космического порядка приобретают смысл и значение только тогда, когда они соприкасаются с человеком – наблюдателем и участником этих процессов, прямым или косвенным. Без человека Природа и материя вообще, и Вселенная в частности, просто мертвы!
То же самое относится в полной мере и к таким формам существования материи, как пространство и время. Человек обитает в пространстве и во времени, не может существовать вне их и, образно говоря, как бы одушевляет их. Поэтому наша книга о пространстве и времени – это книга в том числе и о человеке. Может быть, в первую очередь о человеке.
В то же время «проблема человека» – намного сложнее всех остальных проблем, которые стоят перед современным естествознанием. Изучение человеческого сознания – процесс более трудоемкий, чем изучение свойств Вселенной. Мы имеем в виду природу сознания, особенности его функционирования, его взаимодействия с различными формами пространства, времени, материи и информации, а также его роли и значения в мироздании.
Задача значительно упростилась бы, если бы мы располагали информацией о различных формах разумной жизни во Вселенной и конкретных условиях ее обитания и существования. Но, к сожалению, никаких прямых сведений о жизни во Вселенной в распоряжении современной науки пока что нет. И поэтому единственный выход из положения – по крайней мере на данном этапе развития науки – состоит в том, чтобы построить теоретическую модель внеземной жизни, жизни во Вселенной, и именно такую модель использовать для сравнения с жизнью на Земле.
Создавая подобную модель, мы можем опираться на наши достаточно глубокие знания о Вселенной, о ее свойствах и закономерностях. Это позволяет нам рассчитывать на то, что наша модель будет не слишком сильно отличаться от реального положения вещей.
В дальнейшем же, по мере накопления новых фактов и выявления различных неизвестных ранее деталей, построенная нами теоретическая модель внеземной жизни будет по степенно углубляться и уточняться, а это позволит приблизиться к решению нашей основной задачи…
Все это сказано, чтобы убедить читателей в том, что проблема жизни во Вселенной и внеземных цивилизаций, несмотря на полное отсутствие каких-либо конкретных данных о других разумных существах, имеет очень важное значение для современного естествознания, и не только для получения новой информации о космических явлениях, но и для исследования проблемы жизни и разума вообще.
Перед человечеством стоит еще одна чрезвычайно важная задача – избрать оптимальный путь своего дальнейшего развития, совершив при этом как можно меньше ошибок и постаравшись избежать «тупиковых направлений», связанных с потерей драгоценного времени и неоправданными жертвами и страданиями людей.
Если цивилизаций во Вселенной достаточно много, то можно предположить, что в своем развитии они шли разными путями, и, сравнивая эти пути и достигнутые результаты, мы могли бы воспользоваться их опытом и почерпнуть кое-что и для себя – выбрать наиболее эффективные, оптимальные направления дальнейшего прогресса.
Правда, некоторые писатели-фантасты развивают идею, согласно которой каждая космическая цивилизация должна сама испытать все варианты и научиться существовать самостоятельно, делая надлежащие выводы из собственных ошибок – образно говоря, «сама набить себе шишки». Однако подобная точка зрения выглядит достаточно архаично. Она естественна для замкнутых в себе обществ, у которых отсутствует возможность обмениваться информацией с другими подобными себе структурами. В современную же эпоху, эпоху построения информационного общества с разветвленными каналами связи и развитием информационных технологий, подобная идея выглядит не только устаревшей, но и ведущей к общественному регрессу. Она уже в принципе не соответствует современному миропониманию.
И потому даже теоретическое моделирование существования разумных обитателей Вселенной, сети других космических цивилизаций, способно значительно облегчить решение многих задач, стоящих перед современным человечеством.
Если исходить из того, что мы не одиноки во Вселенной и что различные космические цивилизации закономерно возникли в процессе развития материи – «поодиночке», то их обитатели могут существенно отличаться друг от друга, в том числе и от нас, по своему строению, облику, образу жизни, а также интеллектуальным способностям. В этом случае можно допустить, что пути развития космических цивилизаций достаточно сложны и они скорее всего ненамного могли опередить в своем научно-техническом развитии нашу земную цивилизацию. И что именно этим объясняется загадочное «молчание космоса». В таком случае рассчитывать на то, что удастся воспользоваться их примером, чтобы избрать наиболее эффективные пути собственного дальнейшего развития, и, тем более, на какую-либо их помощь нам не приходится.
Тогда мы должны смириться с тем, что еще очень долго будем предоставлены сами себе и что единственным возможным выбором для человечества является уже испытанный нами метод «проб и ошибок», и надеясь только на самих себя, стремиться совершать как можно меньше просчетов и неправильных действий.
Но в принципе возможен и иной вариант. Если верны соображения относительно «бинарной» структуры Вселенной и существования Космического Разума, создавшего материальную природу и человека, и предназначившего разумных обитателей Вселенной для управления процессами космического порядка, борьбы с накоплением энтропии и «хаоса», то ситуация с «молчанием космоса» выглядит совершенно иначе. Мы вправе предположить, что за многие миллиарды лет целый ряд цивилизаций под руководством Космического Разума достиг такого уровня научно-технического развития (уровня сверхцивилизаций), который далеко опередил современные возможности землян. В пользу подобного предположения говорит тот факт, что несмотря на обилие во Вселенной различных катаклизмов, космических взрывов и выбросов, сопровождающихся выделением огромных энергий, все же какой-либо общей сколько-нибудь заметной тенденции к деградации Вселенной не наблюдается. Процессы самоорганизации, способные выравнивать положение в глубинах Вселенной, если и происходят, то не в тех масштабах, которые могли бы обеспечить необходимую стабилизацию космических процессов в рамках Вселенной как целого. Исследования И. Пригожина в области так называемых диссипативных процессов, связанных с нарушением равновесных состояний и дальнейшим формированием «порядка» из «хаоса», также не позволяют рассчитывать на то, что подобные процессы могут охватить собой всю Вселенную. Остается предположить, что стабильность в столь широких масштабах способен обеспечить только «разумный фактор». То есть цивилизации, достигшие соответствующего уровня развития и способные практически решать задачу, предначертанную Космическим Разумом.
В таком случае «молчание космоса» можно объяснить тем, что по крайней мере достаточное число цивилизаций уже достигло необычайно высокого уровня научно-технического прогресса и решило целый ряд задач, которые не только позволяют им успешно управлять космическими процессами, но и делают практически невозможным их обнаружение теми средствами, которые в настоящее время имеются в нашем распоряжении.
К числу таких задач могут относиться: во-первых, – использование для передачи информации недоступных нам носителей информации – прежде всего потоков нейтрино и гравитационных волн, то есть излучений, обладающих колоссальной проникающей способностью, а также излучений, мгновенно распространяющихся в физическом вакууме. Нельзя исключить и возможность направлять в пространство Вселенной потоки информации вообще без помощи каких-либо материальных носителей. То есть осуществлять акции, которые нам в настоящее время вообще представляются чисто фантастическими и реально вряд ли осуществимыми. Кстати, именно с помощью таких информационных потоков сверхцивилизации могли научиться непосредственно управлять космическими процессами практически без затраты колоссальных энергий. А во-вторых, не исключено, что высокоразвитые космические цивилизации могли решить задачу концентрирования отработанной тепловой энергии, с тем, чтобы она вновь могла выполнять полезную работу. Тем самым они избавились бы полностью от тепловых отходов, которые другие космические цивилизации должны были бы неизбежно обнаружить.
Выдвигая свою версию о «великом молчании» космоса, И.С. Шкловский и другие сторонники аналогичной точки зрения исходили из того, что энергетическая деятельность сверхцивилизаций неминуемо была бы замечена на значительном расстоянии, независимо от того, хотят они этого или нет. Дело в том, что согласно второму началу термодинамики, любые энергетические операции неизбежно связаны с возникновением теплового излучения в окружающее пространство, с рассеянием энергии.
Одна из эквивалентных формулировок второго начала состоит в том, что оно отвергает возможность существования так называемого вечного двигателя второго рода – то есть такого устройства, которое может собирать и концентрировать рассеянную, отработанную тепловую энергию и переводить ее в активную форму, способную вновь совершать полезную работу. Из этого следует, что любая космическая цивилизация, перерабатывающая свободную энергию, должна «выбрасывать» в окружающее пространство неизбежные термодинамические «отходы» в виде теплового излучения. Таким образом, какого бы уровня развития космическая цивилизация ни достигла, она не может не обнаружить себя температурным излучением. И чем выше уровень цивилизации, чем выше ее энерговооруженность, тем скорее подобное излучение может быть обнаружено, даже в том случае, если его пытаются как-то маскировать. Расчеты показывают, что «скрыться» от подобных наблюдений в доступном нашему изучению объеме Метагалактики практически невозможно. На этом и основывается в определенной степени вывод некоторых астрономов и астрофизиков об уникальности нашей земной цивилизации.
Есть, однако, и несколько иное, чисто физическое, объяснение отсутствия температурного излучения сверхцивилизаций.
История физики знает немало примеров, когда у тех или иных физических законов, казавшихся всеобъемлющими, неожиданно обнаруживались границы применимости.
Вообще, как заметил английский философ и математик Бертран Рассел, с тех пор, как мы стали доказывать «очевидные утверждения», многие из них оказались ложными. Аналогичную мысль высказал и современный физик-теоретик Е. Вигнер. «Вероятно, физические теории, которые мы в настоящее время считаем доказанными, – писал он, – в действительности являются ложными, поскольку они противоречат более общим теориям, которых мы еще не знаем… Ясность нередко бывает обманчивой – это одна из форм полного тумана…»
Парадоксально? Да. И в то же время отражает реальное положение вещей. Еще один впечатляющий пример того, как виртуальное становится реальным.
И как это ни трудно и даже ни страшно предположить, может случиться так, что и второе начало термодинамики справедливо лишь в определенных пределах, и при некоторых реальных условиях превращение рассеянной энергии в энергию, способную снова производить работу, принципиально возможно.
И хотя изложенные соображения основываются всего лишь на чисто гипотетической модели распространенности разумной жизни во Вселенной и возможной деятельности ее разумных обитателей, они могут дать земной науке и технике определенные ориентиры. Если допустить, что другие космические цивилизации успешно решили упомянутые проблемы – это означает, что такие проблемы принципиально разрешимы, что они не вступают в противоречие с объективно действующими законами природы. И, следовательно, есть смысл и для нашей земной науки сконцентрировать определенные усилия на решении алогичных задач. Тем более что в принципе могут существовать и другие теоретически оправданные заманчивые ориентиры.
В связи с этим, впрочем, возникает вполне закономерный вопрос: почему именно наша земная цивилизация оказалась «в хвосте» действующих в современной Вселенной цивилизаций? Именно в самом «хвосте», то есть скорее всего на последнем месте. Ведь если бы существовали космические цивилизации примерно нашего уровня научно-технического развития, то они попытались бы завязать межкосмические контакты примерно теми же методами, которые использовало в последние годы земное человечество. И подобные попытки такого рода, вероятнее всего, были бы нами обнаружены.
Но все-таки, почему мы последние? Если это действительно так, то можно предположить, что Космический Разум наращивал число космических цивилизаций постепенно, всякий раз учитывая накопленный в результате подобных действий опыт. И стремясь при этом сделать каждую очередную цивилизацию более совершенной, дееспособной и могущественной, чем предыдущая.
В этом случае можно надеяться на то, что если мы в самом деле «последние», то нам уготовано блестящее с точки зрения нашей «космической карьеры» будущее. Но при этом необходимо понимать, что оно не наступит само собой. Поэтому не следует обольщаться радужными надеждами и «сидеть в ожидании сложа руки». Необходимо активно действовать.
И в этой связи стоит серьезно отнестись к предположению о том, что Космический Разум пытается установить с современным человечеством контакт, используя для этой цели отдельных, избранных им людей…
Вот почему проблема поиска космических цивилизаций и попытки теоретического осмысления этой проблемы являются для человечества не просто романтическим и несколько авантюрным увлечением, но фактически представляют собой один из вариантов наиболее перспективных направлений дальнейшего развития.
Сравнительно недавно появились некоторые обнадеживающие факты, связанные с поиском искусственных сигналов других космических цивилизаций, опирающиеся на теоретические разработки В. Лефевра. В частности, на его гипотезу об аналогии человеческого сознания с работой тепловых машин.
Развивая эту гипотезу, Лефевр теоретически пришел к заключению, что разумные существа, принадлежащие различным космическим цивилизациям, должны обмениваться между собой информационными сигналами, имеющими форму так называемой двойной геометрической прогрессии. А именно такой прогрессии, в основании которой лежат два числа, затем последовательно умножаемые на один и тот же множитель (например, в основании – 3 и 5, множитель – 4. Тогда прогрессия будет выглядеть следующим образом: «3, 5, 12, 20, 48, 80 и т. д.).
В дальнейшем Лефевр занимался этой проблемой совместно с известным московским астрономом Ю.Н. Ефремовым. Им удалось выяснить, что в нашей Вселенной есть объект, заслуживающий с этой точки зрения определенного внимания. Речь идет о так называемом Быстром Барстере.
Вообще Барстер – это двойная система, которая состоит из обычной и нейтронной звезды, обращающихся вокруг общего центра масс. Под воздействием мощного притяжения нейтронного компонента в такой системе происходит бурное истечение газа с поверхности обычной звезды на нейтронную. При оседании этой струи на поверхность нейтронной звезды происходят периодические термоядерные вспышки, сопровождающиеся всплесками рентгеновского излучения.
Однако у Быстрого Барстера, который имеется в виду, то и дело происходят какие-то быстрые вспышки иной природы, длящиеся по нескольку недель. Исследователям удалось обнаружить работу, опубликованную около Шлет назад, в которой было показано, что профиль рентгеновского излучения этих «внеочередных вспышек» как раз подчиняется закону «двойной геометрической прогрессии». Возникает вопрос: не являются ли излучения, о которых идет речь, искусственными сигналами какой-то космической цивилизации?
Более того, оказалось, что в упомянутых излучениях присутствует два выраженных «пика», соотношение между величинами которых не только остается постоянным, но и приближается с точностью до второго десятичного знака к знаменитому «золотому сечению».
Не исключено, разумеется, что мы просто столкнулись с очередным любопытным совпадением, каких в природе немало. И все же, полученный результат заслуживает того, чтобы над ним по крайней мере задуматься. Тем более что до настоящего времени никаких излучений из глубин Вселенной, напоминающих искусственные сигналы, обнаружить не удалось…
Человек сегодня и завтра
Автор: В последние годы одним из центральных объектов научного исследования стал человек. Но человек – это не просто «разумное существо», живая биологическая система, а часть окружающего нас мира, Вселенной, свойства которой во многом определены фундаментальными физическими законами. И для описания которой применяются современные математические методы. Поэтому хотелось бы познакомиться с точкой зрения физиков и математиков на некоторые проблемы, связанные с человеком. И прежде всего выяснить, каково будущее человека? Не угрожают ли ему какие-либо серьезные опасности, в том числе космического порядка?
Лесков: В истории нашей планеты не однажды возникали кризисные периоды в состоянии биосферы, сопровождавшиеся массовой гибелью биологических видов. Последний мощный кризис такого рода произошел, вероятно, около 65 миллионов лет назад и был, по-видимому, вызван столкновением Земли с каким-то крупным небесным телом – астероидом или ледяным ядром кометы. Это привело к гибели гигантских ящеров и к кардинальным изменениям в животном и растительном мире нашей планеты. При этом в принципе нельзя исключить возможность того, что очередная глобальная катастрофа подобного масштаба когда-нибудь поставит на грань выживания и вид Homo Sapiens.
Автор: Но, видимо, существуют и опасности, связанные с развитием самого человечества?
Лесков: И даже более серьезные и реальные! Согласно расчетам, предельная величина антропогенного давления на биосферу не должна превышать 1% от полной производительности биосферы. Между тем уже в настоящее время она достигает 10%. Это, к сожалению, прямой путь к эпохе кризисов и экологических катастроф. И что особенно опасно, в процессе движения по такому пути будет возрастать опасность техногенного воздействия на генофонд человека. С точки зрения так называемой теории катастроф, монотонное нарастание частоты мутаций может привести к скачкообразному изменению генотипа Homo Sapiens.
Автор: И чем это может грозить?
Лесков: В принципе даже уничтожением вида.
Автор: Но, может быть, еще не поздно что-то изменить, выработать рациональную стратегию выживания?
Лесков: Поздно бывает тогда, когда появляются реальные признаки приближающейся катастрофы. В этом случае, как утверждает теория, остановить процесс разрушения устойчивого состояния уже невозможно – он идет слишком быстро.
Автор: А просматриваются ли уже сейчас какие-либо реальные угрозы генофонду человека?
Лесков: К сожалению, просматриваются. Я имею в виду появление вируса, вызывающего СПИД. А также вируса Т-лейкоза, сообщения о котором стали появляться в последнее время. А этот вирус даже опаснее, чем вирус иммунодефицита – внедряясь в клетки живого организма, он превращает их в злокачественные.
Автор: Но ведь опасные эпидемии случались и раньше. Однако при всей своей разрушительной силе они не оказывали влияния на геном человека.
Лесков: Не исключено, что вирус иммунодефицита – первый вирус, который способен это сделать.
Автор: Но ведь логично предположить, что появление этого вируса каким-то образом связано с неблагоприятными условиями жизни современного человечества – растущей плотностью населения, свободой половых отношений и т. д. То есть опять-таки, как и в других экологических бедствиях, виноваты сами люди. С этой точки зрения, для биосферы сам человек является своеобразным паразитом.
Лесков: Увы, это так. А если в процессе эволюции какой-либо вид паразитирует на среде своего обитания, не сумев к ней приспособиться, то в конечном счете их обоих ждет гибель. И первые признаки ответной реакции биосферы, того, что она может нанести человеку ответный удар, – уже существуют.
Автор: И куда же может быть направлен подобный удар?
Лесков: Чтобы одолеть человека, лучше всего лишить его разума, разрушить его интеллект. Но что это такое – «интеллект», мы доподлинно не знаем. Скорее всего, сознание невозможно свести только к физико-химическим процессам, происходящим в мозгу. Убеждение в том, что все явления жизни, утверждал академик В.И. Вернадский, будут объяснены физико-химическими явлениями до конца – это не более, чем вера, вытекающая из идеологической установки, а вовсе не из научного обобщения эмпирической информации. В действительности, на первое место выступают явления, связанные с духовной деятельностью человека.
Автор: Иными словами, природу сознания нельзя свести к двум известным субстанциям – душе и телу?
Лесков: Да, оно ближе к чему-то третьему, «третьей субстанции», которую мы пока еще не смогли понять. Возможно, эта субстанция как-то связана с «бинарной» структурой нашей Вселенной. Не исключено, что Вселенная содержит два «слоя реальности» – материальный и информационное или семантическое поле.
Автор: Но согласно существующим представлениям информационное поле должно иметь материального носителя.
Лесков: Можно предположить, что носителем семантического поля является одна из разновидностей физического вакуума – так называемый мэон. Стоит напомнить, что физический вакуум – это сложный квантово-механический объект, своеобразная «скрытая» форма материи, способная при определенных условиях рождать вещественные частицы. Кроме того, напомню, что физический вакуум обладает рядом удивительных свойств. Если, например, в обычном мире действует 2-е начало термодинамики, в соответствии с которым происходит необратимое вырождение энергии и накопление энтропии, определяющее направление «стрелы времени», то в физическом вакууме 2-е начало термодинамики не действует и поэтому «стрела времени» в нем отсутствует. Иначе говоря, прошлое, настоящее и будущее в физическом вакууме как бы сосуществуют.
Но самое удивительное состоит в том, что перечень необычных свойств физического вакуума почти в точности совпадает с перечнем свойств сознания. Так, может быть, именно физический вакуум и есть та «третья субстанция», о которой я уже говорил. И именно из физического вакуума в наш мозг поступает различная информация. Российский математик В. Налимов ввел представление о сознании, как «операторе смыслов». А согласно моей гипотезе, первичная структура этого оператора как раз связана с мэоном.
Автор: Поясните, как все это связано с опасностью разрушения сознания в результате антропогенной деятельности человека.
Лесков: Если во Вселенной действительно существует такой уровень реальности как смыслообразующий мэон и если от его смыслообразующего воздействия зависит эволюция биосферы, то, благодаря антропогенному воздействию, возможен и обратный процесс – энтропийное загрязнение семантического пространства мэона. Это загрязнение, в свою очередь, ощутит на себе биосфера. И ответит соответствующим ударом по тому же мэонному каналу. А, как утверждает теория катастроф, подобный процесс может приобрести необратимый характер.
Автор: И от этого может пострадать психика человека? Каким образом?
Лесков: Сейчас невозможно предугадать, каким именно будет конкретный механизм этого критического воздействия на психику. Но следует иметь в виду, что именно психика является нашим наиболее нестойким элементом. И от такого удара, если он когда-нибудь будет нанесен, человечество вряд ли уже оправится.
Автор: Но так ли неизбежна грядущая деградация человека? К.Э. Циолковский и В.И. Вернадский считали, что со временем человек станет сознательно управлять собственной эволюцией и сумеет найти выход из тупиковых ситуаций.
Лесков: В принципе это возможно. Но в таком случае, образно говоря, человеку придется принести в жертву свой собственный геном. То есть использовать для собственного выживания методы генной инженерии, иначе говоря, с одной стороны – кардинальным образом изменить самого себя, а с другой – создавать всевозможные искусственные органы с электронным управлением и всемерно развивать компьютеризацию всех форм генетической деятельности. В этом случае откроется заманчивая перспектива довести продолжительность человеческой жизни до естественного биологического предела.
Автор: Почему-то о генной инженерии все говорят с опаской, как о чем-то, что необходимо в интересах человечества запретить. Но ведь уже известно, что очень многие задачи, связанные с человеком, возможно решить именно методами генной инженерии. Недавно появилось сообщение о том, что английские генетики обнаружили ген, при помощи которого человека можно без вреда для него погрузить в состояние анабиоза. И это, с одной стороны, позволит продлевать жизнь смертельно больных людей до той поры, когда будут разработаны соответствующие способы лечения, а с другой – преодолевать в космических кораблях огромные космические расстояния. И, согласитесь, что это гораздо перспективнее, чем замораживание живых людей в специальных морозильных установках с неизвестным исходом подобных акций… А если осуществится то, о чем вы только что говорили, то возникает и такой вопрос: возможен ли следующий шаг? Обеспечить продление жизни на неопределенно долгий срок?
Лесков: Думается, что приблизиться к правильной постановке подобной задачи можно на основе «мэон-биокомпьютерной» модели сознания. Эта модель предусматривает принципиальную возможность отделения мэонных «реплик-отражений» сознания от атомно-молекулярной структуры человеческого тела. И их последующего достаточно устойчивого существования. Такие «реплики» можно было бы попытаться «пересаживать» на другие аналогичные структуры. Например, в мозг иммунночистого организма, выращенного методом клонирования, то есть выращенного искусственным путем из клеток ткани самого человека. Подобным способом человек в случае утраты своего тела мог бы получить новое тело.
Автор: А не приведет ли замена тела к радикальной перестройке личности данного человека?
Лесков: В принципе подобная опасность существует. Однако многие крупные нейрофизиологи считают, что сознание того или иного субъекта автономно относительно его тела.
Автор: Вернемся, однако, к идее автоэволюции, или, точнее, к модернизации самого человека.
Лесков: Я хочу подчеркнуть, что пока что эта гипотеза относится к области так называемой фантастики для ученых.
Автор: Но допустим, что в будущем нейрофизиологам и биотехнологам, а также генетикам удастся решить задачу перестройки генома человека. Можно ли предусмотреть, в каком направлении в подобной ситуации будет дальше развиваться «генноинженерная мысль»?
Лесков: Думаю, что возможны такие направления: обогащение индивидуального сознания информацией непосредственно от компьютерных банков информации; выведение принципиально новых сортов растений и пород животных; перекодирование личности и приобретение субъектом желательного набора качеств; подключение индивидуального сознания к мозгу дублера, находящегося на дне океана или на поверхности другой планеты. И даже восстановление особо ценных личностей, оставивших богатое творческое наследие, то есть практически «воскрешение умерших».
Автор: Однако не приведет ли «автоэволюция» к выходу на очередную тупиковую ветвь эволюции? Ведь и раньше предлагались всевозможные спасительные сценарии грядущего – от построения искусственной биосферы до переселения земного человечества на крупномасштабные космические станции. Но совершенно ясно, что по тем или иным причинам ни один из этих «спасительных проектов» не будет реализован. Можно ли предложить что-либо более весомое и осуществимое?
Лесков: Такой сценарий был предложен академиком В.И. Вернадским – ноосферизация человеческой деятельности. Если человечество вступит на этот путь эволюции, то ему будет гарантирован минимальный уровень риска возникновения кризисных ситуаций. Что же касается основной функции ноосферы, то она, на мой взгляд, будет состоять в творческом адаптировании человеческой деятельности к реальным условиям, что отнюдь не исключает и автоэволюции человека, о которой говорил и В. Вернадский. Разумеется, речь идет о весьма отдаленной перспективе с обязательным соблюдением всех гарантий безопасности.
Предсказания «абсолютного» мозга
С приближением третьего тысячелетия появилось множество всевозможных прогнозов и предсказаний о том, какие события ожидают человечество в XXI веке.
И прежде всего на память приходят удивительные предвидения загадочного Нострадамуса, самым впечатляющим из которых, пожалуй, можно считать предсказание, что необычная «империя», которая возникнет в начале XX столетия, просуществует около 70 лет. Однако, несмотря на уникальность и, казалось бы, поразительную точность этих прогнозов, в их достоверности можно все-таки усомниться. Во-первых, необходимо иметь в виду, что пророчества Нострадамуса, прежде чем достичь нашего времени, прошли «через руки» множества толкователей и комментаторов, которые нередко довольно существенно изменяли их первоначальный смысл. Но главное – почти все эти предсказания были сделаны в неопределенной форме, допускавшей различные толкования, в зависимости от реального развития событий.
Хотя, конечно, полностью отрицать способность Нострадамуса анализировать будущее и предвидеть повороты исторических судеб государств и их правителей было бы слишком самонадеянным. В конце концов об этой области человеческих возможностей мы еще очень мало знаем…
Но еще больший интерес вызывают предсказания наших современников. И, пожалуй, одним из наиболее впечатляющих научных прогнозов относительно событий, ожидающих земную цивилизацию и земную науку в обозримом будущем являются предсказания выдающегося английского физика-теоретика Стивена Хокинга. Хокинг – человек совершенно необычной судьбы. В результате тяжелой болезни, перенесенной в юношеские годы, он оказался практически полностью парализованным и навсегда прикованным к инвалидному креслу. Заниматься научным творчеством и общаться с окружающими Хокинг может лишь с помощью специально разработанной для него высокосовершенной компьютерной системы.
Нельзя не признать, что он является одним из самых выдающихся и оригинально мыслящих физиков-теоретиков XX столетия, и не отдать должное его личному мужеству, которое позволяет ему, несмотря на тяжелый недуг, сохранять удивительную ясность ума, силу воли и даже чувство юмора.
Хокинг, при всей своей необычности, достаточно скромен. Отвечая на вопрос, не думает ли он, что его можно сравнить с Ньютоном или Эйнштейном, он сказал: «Меня можно отнести к популярному типу сумасшедших ученых или ископаемых гениев, или, я бы сказал, физически сомнительных гениев, чтобы быть точным. А как гения вроде Ньютона или Эйнштейна я себя не воспринимаю».
В марте 1998 года по приглашению американского Президента Билла Клинтона Хокинг принял участие в своеобразной околонаучной вечеринке, состоявшейся в Белом доме. Именно тогда Стивен Хокинг и обнародовал свой прогноз будущего…
Выслушав лекцию Хокинга, вице-президент США Альберт Гор назвал его «Кассандрой нашего времени». Действительно, мозг Хокинга работает идеально, и не случайно многие специалисты и журналисты окрестили предсказания, о которых идет речь, прогнозами «абсолютного мозга», по аналогии с фантастическим марсианским «абсолютным мозгом», придуманным еще в XIX столетии знаменитым писателем-фантастом Гербертом Уэллсом.
Согласно предсказаниям Хокинга, уже через какие-нибудь сто лет внешний вид Земли как небесного тела должен кардинальным образом измениться. Из-за общего перегрева атмосферы и перепроизводства электроэнергии Земля из «голубой планеты» превратится сперва в желтую, а затем в яркооранжевую.
В то же время в истории развития человека наступит новая эра – период планируемой эволюции. Благодаря этому, потомки современного человека будут обладать отменным здоровьем и долголетием. А средняя продолжительность человеческой жизни приблизится к 120 годам.
Однако и у этого, казалось бы, радужного прогноза есть «обратная сторона». По мнению Хокинга, дальнейшее неконтролируемое развитие генной инженерии приведет к созданию неизвестных ранее вирусов-мутантов, паразитирующих на человеке, поэтому люди вынуждены будут уже на протяжении следующего столетия эвакуироваться за пределы Солнечной системы в другие миры. Если же сделать это не удастся, человечество будет обречено на гибель. При этом к обычным биологическим вирусам присоединятся вирусы компьютерные, которые могут превратиться в самостоятельную форму жизни…
Наконец, Хокинг считает, что спустя примерно 10 миллиардов лет расширение нашей Вселенной прекратится и она начнет сжиматься. Вследствие этого произойдет поворот времени – оно потечет в обратном направлении, со всеми вытекающими из этого последствиями.
Поскольку предсказания Хокинга произвели ошеломляющее впечатление на мировое общественное мнение, журналисты задали ему вопрос: кто он такой? Своеобразная мыслящая «антенна», способная улавливать сигналы из будущего? Или от высокоразвитых внеземных цивилизаций? Или от некоего гипотетического Высшего Мирового Разума? И передавать современному человечеству полученную таким образом информацию?.. Однако Хокинг никогда не дает на подобные вопросы сколько нибудь определенного ответа. В частности, на вечере в Белом доме он заявил весьма уклончиво: «Я сказал пока не все…»
Но основные предсказания Хокинга относились к сфере науки.
Будущее науки глазами Стивена Хокинга
Одной из самых важных и актуальных проблем современного естествознания, с точки зрения Хокинга, является разработка Последней теории или Теории Всего, как он сам ее называет и о создании которой мечтает на протяжении многих лет.
В своей книге «Краткая история времени» он пишет: «Если мы действительно откроем Последнюю теорию, то со временем ее основные принципы станут доступны пониманию каждого, а не только нескольким специалистам. И тогда все мы, философы, ученые и просто обычные люди, сможем принять участие в дискуссии о том, почему так произошло, что существуем мы и существует Вселенная. И если будет найден ответ на такой вопрос, это будет полным триумфом человеческого разума, ибо тогда нам станет понятен замысел Бога».
Говоря о Последней теории, Хокинг имел в виду теорию «супергравитации», о которой мы уже подробно говорили и которая должна объединить все известные современной физике четыре фундаментальные взаимодействия – электромагнитное, сильное или ядерное, слабое с участием нейтрино и гравитационное. По мнению Хокинга, такая теория с вероятностью 50 на 50 процентов будет построена в ближайшие двадцать лет.
Хокинг утверждает, что создание Последней теории наконец завершит стройное здание теоретической физики. «Мы узнаем основные законы, которые управляют Вселенной, – говорил он в Белом доме. – Но не думаю, что, открыв эти законы, мы остановимся на каком-то уровне в их использовании. Из Последней теории не следует существование предела для сложности систем, которые мы можем создавать, и именно в направлении раскрытия этой сложности, по моему мнению, и пойдет основное развитие в следующем тысячелетии».
А так как наиболее сложной из всех известных нам систем является человек, то скорее всего главной практической задачей науки станет перестройка его ДНК с целью усовершенствования генома человека. И даже в том случае, если генная инженерия будет формально запрещена, из этого ничего не получится, так как генотехникой животных и растений заниматься все равно будут. И рано или поздно кто-то перенесет полученный опыт и на человека…
Хокинг убежден, что усовершенствование генома человека неизбежно. Дело в том, что развитие и усовершенствование ЭВМ подчиняется экспоненциальному закону – их сложность и быстродействие удваиваются каждые 18 месяцев. Таким образом, эволюция компьютеров происходит значительно быстрее эволюции биологических систем.
В декабре 1999 года знаменитая компания IBM опубликовала план создания самого быстрого в мире суперкомпьютера стоимостью около 100 миллионов долларов, предназначенного для исследования процессов, происходящих при образовании белков. Это уникальное устройство, по мнению IBM, позволит, наконец, серьезно заняться изучением различных болезней и создать эффективные и безвредные лекарства.
Новый суперкомпьютер RS/6000 будет называться Blue Gene и производить более одного квадриллиона операций в секунду! Это примерно в 1000 раз превосходит возможности вычислительной машины Deep Blue, одержавшей в 1997 году победу над чемпионом мира по шахматам Гарри Каспаровым!
Хокинг предполагает, что между биологическими и электронными интеллектуальными системами начнется борьба за лидерство, острое соревнование. «Я ожидаю, – говорит он, – что как в биологической, так и в электронной сферах сложность будет нарастать со стремительной скоростью и на основе подобных соображений делает вывод о том, что наступающая эпоха неизбежно будет весьма динамичной, она «должна характеризоваться большими изменениями, которые будут сопровождаться напряженностью и нестабильностью». В третьем тысячелетии нас ожидают фундаментальные перемены!
Но человечество, предупреждает Хокинг, может и не дожить до этой великой эпохи. Ибо предстоящее чревато опасностями. Нашей цивилизации угрожает демографический взрыв, исчерпание минеральных энергетических ресурсов, а также глобальная экологическая проблема. «Весьма реальна опасность, – утверждает Хокинг, – что мы уничтожим все на этой планете, так как наша техническая мощь для этого достаточна. И даже если мы не истребим самих себя, то остается возможность впасть в примитивное и жестокое варварство». Однако люди, надеется Хокинг, сумеют справиться с этими опасностями…
О создании Последней научной теории ученые мечтали давно. Еще Декарт верил, что рано или поздно удастся сформулировать такие «начала науки, из которых будут выведены все истины, которые из них можно извлечь». В то же время Декарт считал, что пройдут столетия, прежде чем будет достигнут столь высокий уровень мудрости и совершенства.
В конце XVIII столетия казалось, что эта задача решена, поскольку физикам удалось создать стройное здание классической физики.
Как мы уже отмечали, иной точки зрения придерживались в конце XIX века последователи и сторонники классической механики. А. Лежандр, например, отзывался о Ньютоне так: «Это был не только величайший, но и самый счастливый гений, потому что систему мира можно установить только один раз».
Однако последовавшие открытия заставили ученых отказаться от этой мысли. Появились термодинамика, статистическая физика, а также теория электромагнитных явлений. Эти достижения буквально революционизировали физическую науку, теорию. И к концу XIX века многие физики вновь стали надеяться, что их работа близка к завершению. Остались лишь две нерешенные проблемы – распределение энергии в излучении черного тела и трудности, возникшие при попытках обнаружения эфира. В связи с этим профессор Жолио советовал своему ученику Максу Планку выбрать для себя более интересное и перспективное занятие, чем теоретическая физика.
Ирония истории заключалась в том, что именно Планк в 1900 году стал одним из создателей квантовой механики, сыгравшей лидирующую роль в науке XX столетия. А решение проблемы эфира привело к появлению еще одного фундаментального направления – теории относительности.
Тогда же А. Эйнштейн предпринял попытку, объединив гравитацию с электромагнетизмом, создать Последнюю теорию.
Теперь о том же мечтает Хокинг. Он полагает, что после этого физикам останется лишь заняться ее различными приложениями, например, в области так называемых сложных систем.
Кстати, о сложных системах. Есть основания предполагать, что теория таких систем, которая в известном смысле стоит над всеми другими науками, будет играть особую роль в науке XXI столетия.
В своих прогнозах Хокинг, между прочим, исходит из того, что мир в своей основе достаточно прост, и сложность его описания является недостатком современных фундаментальных научных теорий. Однако, судя по всему, «сложность» представляет собой не менее фундаментальную характеристику окружающего нас мира, чем основные типы физических взаимодействий.
Как считает доктор физико-математических наук Л.В. Лесков, создать Теорию Всего – это значит достичь такого фундаментального уровня описания, исходя из которого можно чисто логическим путем вывести все явления. Однако такое «абсолютное знание» оказалось бы вневременным и надвременным. Но оно не соответствует реальному миру, одной из фундаментальных характеристик которого является существование «стрелы времени».
Если даже предсказания Хокинга оправдаются и Теория Всего будет разработана, то это все же не будет означать, что научное познание окружающего нас мира полностью завершено. По мнению Лескова, из теории, которую Хокинг рассматривает как Последнюю, не следует существование предела сложности как природных систем, так и тех систем, которые мы сами можем создавать. И скорее всего, именно по пути раскрытия этой сложности пойдет основное направление науки XXI столетия.
Дело в том, что включение в динамику известных нам сложных систем явлений необратимости, а также вероятностных процессов, на основании Последней теории Хокинга, к сожалению, не может быть выполнено.
Вневременные законы физики, замечает по этому поводу И. Пригожий, не могут считаться «подлинным отражением фундаментальной истины физического мира, ибо такая истина делает нас чужими в этом мире и сводит к простой видимости множество различных явлений, которые мы наблюдаем».
А это значит, что действительно универсальная теория должна обязательно учитывать необратимость во времени и вероятностные процессы (так называемую динамическую неустойчивость). Теория, не учитывающая этих факторов, не может стать Теорией Всего, так как реальная Вселенная эволюционирует, и потому необратимость и вероятность являются ее фундаментальными свойствами.
Характерно высказывание на этот счет английского астрофизика Роджера Пенроуза, сотрудничающего с Хокингом, но тем не менее, не принимающего его атемпорального видения Вселенной. В своей книге «Новый разум императора» он пишет: «По моему мнению, наша современная картина физической реальности, особенно в том, что касается природы времени, чревата сильнейшим потрясением, еще более сильным, чем то, которое вызвали теория относительности и квантовая механика в их современной форме».
Кроме того, атемпоральный характер Последней теории Хокинга в форме супергравитации – не единственная причина, в силу которой ее нельзя считать универсальной. Дело еще и в том, что традиционные представления о четырех основных физических взаимодействиях, судя по всему, не являются исчерпывающими. Речь идет о существовании пятого – «торсионного взаимодействия», связанного с вращением и кручением, о котором мы говорили выше.
После лекции в Белом доме Хокинга спросили, какого наиболее впечатляющего научного открытия можно, по его мнению, ожидать в обозримом будущем? Таким открытием, ответил он, будет скорее всего то, чего мы не ожидаем, иными словами, это должно быть совершенно удивительное открытие такого же типа, какие в прошлом приводили к великим революциям в науке!
Но, как считает Лесков, такое открытие, видимо, уже совершилось – это раскрытие поразительных свойств физического вакуума!
Последняя теория, о которой мечтает Хокинг, неизбежно окажется бессильной и перед проблемой взаимодействия между духом и телом, то есть проблемой сознания. А, судя по всему, решение этой проблемы будет непосредственно связано с достижениями современных теорий физического вакуума. Между тем Последняя теория, о которой говорит Хокинг, не имеет к этой области природных явлений никакого отношения. И уже по одному этому ее нельзя рассматривать как Теорию Всего…
Лесков ссылается на высказывание Германа Гессе о том, что от гремящего хаоса окружающего мира со всей его пугающей сложностью человеку иногда хочется укрыться за ясными и неподвластными бегу времени картинами простых мифов. Не является ли многовековая мечта ученых о Последней теории, которая поставит наконец точку в поисках Абсолюта, спрашивает Гессе, тайным отражением стремлению людей к спокойствию и устойчивости?
Анализируя выбор научных проблем, который сделал Хокинг, и его подход к этим проблемам, можно предположить, считает Лесков, что на уровне подсознания он руководствовался именно такими мотивами.
Но если любые прогнозы будущего науки носят предположительный и во многом недостоверный характер, то в чем вообще смысл подобных попыток? На этот вопрос ответил немецкий философ Карл Ясперс: «Прогнозы должны вводить нас в сферу возможного, намечать отправные точки нашего плана и наших действий, открывать перед нами далекие горизонты, усиливать наше ощущение свободы сознанием возможного».
Мы постараемся придерживаться этих принципов при описании тех возможных путей, которыми пойдет наука в новом столетии.
Глазами синергетики
Как мы уже говорили, в природе при определенных условиях могут происходить процессы самоорганизации. Возникающие при этом самосогласованные «кооперативные» процессы изучаются особым научным направлением, получившим название «синергетики».
Синергетика охватывает большой круг разнородных явлений, относящихся к компетенции различных наук – физики, астрофизики, химии, биологии, а также к социальным процессам. И все эти явления носят нелинейный характер. Это значит, что уравнения, которые их описывают, допускают множество различных решений. Иными словами, будущее подобных систем неоднозначно, и в «точках ветвления» линий их эволюции, так называемых точках бифуркации, реализуется та траектория их дальнейшего развития, которая связана с минимальным накоплением энтропии или ее убыванием. При этом ход дальнейшей эволюции может определяться малейшими изменениями начальных условий. Даже весьма незначительные их колебания могут приобретать решающее значение!
В «точках бифуркации» фундаментальное значение могут приобретать сравнительно незначительные события, своеобразные «мелочи». В частности, раньше идеологи исторического материализма убеждали нас в том, что ходом эволюции человечества управляют в основном исторические закономерности, а личности способны оказывать на течение событий лишь незначительное влияние. Однако с точки зрения синергетики «мелочи» могут оказывать на то, что произойдет в дальнейшем, радикальное воздействие.
Из всего этого следует, что однозначно предсказать будущее принципиально невозможно. Но различные сценарии дальнейшего развития исторических событий можно попытаться себе представить. И при этом необходимо искать ответ не на традиционные вопросы, волновавшие наших предков: «что делать» и «кто виноват?», а на вопрос: «чего не делать». Иными словами, речь должна идти о том, чтобы определить некий «коридор» разрешенных возможностей, по которому надо двигаться, пытаясь при этом определить, к чему такое движение может привести. Это и есть тот новый подход, который соответствует синергетическому и нелинейному мышлению.
Синергетический подход коренным образом меняет привычную картину окружающего нас мира. От детерминизма классической физики XIX столетия, исключавшей случайность и рассматривавшей эволюцию как процесс без отклонений, возвратов и побочных линий, мы пришли к совершенно новому образу реальной действительности – миру диссипативных систем. А согласно Пригожину, диссипация – это своеобразный «рычаг» для трансформирования прежней (старой) структуры той или иной системы – в новую. Таким образом, оказывается, что «хаос», несмотря на присущую ему разрушительность, в то же время обладает и конструктивными свойствами. А диссипативные процессы являются важнейшей составляющей самоорганизации.
Из всего этого следует чрезвычайно важный вывод, имеющий колоссальное практическое значение! Чтобы вывести нелинейную систему на так называемый атрактор, то есть некое предельное состояние, которое не зависит от начальных условий и их возможных неконтролируемых колебаний и которое является для данной системы наиболее выгодным, необходимо применить в точках бифуркации так называемое резонансное воздействие. Как правило, не принудительно-силовое, а пусть незначительное, но осуществленное в нужное время и в нужном «месте». Иначе говоря, необходимо настраивать диссипативные системы на оптимальное собственное развитие и лишь «подталкивать» их к этому. Подобный подход можно сравнить с таким методом борьбы с болезнями, когда вместо сильнодействующих лекарств медики стараются активизировать защитные силы самого организма.
Таким образом, с точки зрения синергетики будущее многовариантно. И задача состоит в том, чтобы из всех возможных сценариев будущего выбрать самый желательный и определить наиболее эффективные способы его реализации. То есть такую систему воздействий на социальную систему, которая побудила бы ее самостоятельно выбирать в бифуркационных точках те траектории развития, которые должны естественным образом приводить к нужному нам атрактору. Именно такой подход, а не насильственные силовые методы, должен стать главной стратегией наших политиков и экономистов.
Синергетический подход позволяет выявить новые важные грани феномена информации, осознать ее глобальную роль в системе мироздания.
В частности, стало понятно, что даже очень слабые информационные воздействия в точках ветвления различных процессов (в так называемых точках бифуркации) могут влиять на траектории дальнейшего развития этих процессов.
Это еще раз говорит о том, что информационные воздействия могли играть весьма важную роль как в период формирования нашей Вселенной, так и в решении одной из будущих проблем человечества – проблемы управления процессами космических масштабов.
Таким образом, информация – это не только мера выбора одной из возможных траекторий развития того или иного процесса, но и мера сложности данной системы, важнейшая характеристика ее внутреннего разнообразия, мера порядка, противостоящего хаосу.
Синергетический подход позволяет по-новому взглянуть и на роль информации в преодолении хаоса в природе и обществе. Дело в том, что с позиций синергетики хаос (как показал И. Пригожий) – это не только стадия полной дезорганизации и разрушения той или иной структуры, системы, процесса или явления, но и необходимое условие для реализации возможности рождения процесса развития новых систем, в том числе и более упорядоченных и высокоорганизованных.
Органическое сочетание синергетического и информационного подходов к подобным проблемам служит еще одним свидетельством того, что информационные факторы противостоят накоплению энтропии и хаоса. Они не только непосредственно стоят на пути дезорганизации движения материи, но и способствуют ликвидации хаоса и неравновесных состояний в ситуациях, когда они уже получили значительное развитие.
Некоторые исследователи связывают утверждение синергетики о многовариантности будущего и возможности оказывать на него влияние в бифуркационных точках с помощью малых воздействий со свойствами времени…
По их мнению, время – это как бы извилистая дорога, проложенная по пересеченной местности. И на этой дороге оно постоянно разветвляется. Именно эти точки ветвления и являются, с точки зрения синергетики, «точками бифуркации».
А отсюда следует, что развитие наших судеб и вообще будущее любых дел и свершений – тоже многовариантно и полностью зависит от того, какие действия предпримет человек или люди, от которых зависит дальнейшее развитие тех или иных событий в точках бифуркации.
Между прочим, древние мудрецы Востока тоже утверждали, что каждому появившемуся на свет человеку дано несколько судеб (почему-то они считали, что их минимум – шесть – от наилучшей до наихудшей) и что человек получит ту судьбу, какую заслужит выбором, сделанным на ее «развилках».
По сути то же самое утверждает и современная синергетика. Но в таком случае возникает вопрос: как выбрать в точках бифуркации наиболее выгодное продолжение и соответственно произвести нужное, оптимальное воздействие, которое обеспечит продвижение по наиболее выгодному пути?
Большинство людей прибегает в подобных ситуациях к помощи логических рассуждений, к мобилизации своих интеллектуальных возможностей и ресурсов. Но такой подход может привести к успеху только при наличии достаточной информации, а ее, как правило, обычно не хватает. Другие рассчитывают на интуицию. И это далеко не худший вариант, поскольку не исключено, что интуитивные озарения связаны с обменом информацией с семантическим полем мэона или Космическим Разумом, для которых будущее отнюдь не является тайной за семью печатями.
Третьи, подобно А.С. Пушкину, придают решающее значение приметам. Четвертые прибегают к разного рода гаданиям, начиная от раскладывания карт до гаданий на кофейной гуще.
Наконец, более современные «специалисты» пытаются использовать для составления нетрадиционных прогнозов компьютерные системы. И некоторые уже достигли на этом пути определенных успехов. Так, например, судя по сообщениям, появляющимся в печати, кандидат биологических наук Е.А. Файдыш считает, что современные математические методы в сочетании с новейшими открытиями в области физики «открывают ранее недоступные возможности настройки на разнообразные образы виртуального будущего».
Однако, прибегая к помощи гаданий (причем гаданий любого рода), человек подвергает себя очень серьезной опасности.
В современной науке есть специальный термин – «самоорганизующие прогнозы». Речь идет о таких прогнозах, которые самим фактом своего существования способствуют их реализации. Имеются в виду события, которые произошли только благодаря тому, что были предсказаны.
Одним из ярких примеров самоорганизующих прогнозов может служить вывод, к которому в свое время пришел В.И. Ленин о возможности победы социализма и даже коммунизма в одной отдельно взятой стране. Этот вывод послужил стимулом для большевиков, организовавших Октябрьскую революцию в России и пытавшихся построить в СССР социализм, а затем и коммунизм. Но чем это завершилось, сейчас всем хорошо известно. Вот к каким последствиям могут приводить прогнозы, в которые люди поверили.
Все сказанное справедливо и по отношению к отдельным людям. В этом случае предсказания, способствовавшие своему осуществлению, часто называют «эффектом Эдипа».
Согласно одной из самых популярных легенд Древней Греции, у царя Фив Лайя должен был родиться сын. Но когда Лай обратился за советом к Дельфийскому оракулу, тот сообщил ему, что он погибнет от руки своего сына. Под влиянием этого предсказания Лай решил избавиться от вскоре родившегося ребенка. Он вызвал раба и поручил ему отвезти младенца в лес и там оставить его на растерзание диким зверям. Однако раб пожалел невинного ребенка и вместо того, чтобы выполнить приказ Лайя, передал малыша знакомому пастуху – рабу коринфского царя Полиба. А тот, в свою очередь, отнес ребенка своему господину. Полиб же, будучи бездетным, решил усыновить мальчика и сделать его своим наследником. Так Эдип вырос в семье коринфского царя, считая Полиба и его жену своими родителями.
Достигнув юношеского возраста, Эдип (так назвал приемного сына царь Полиб) отправился за советом к Дельфийскому оракулу. И услышал ужасное пророчество. Ему было предсказано, что он убьет своего отца и женится на собственной матери. Чтобы избежать столь злой судьбы, Эдип решил не возвращаться в Коринф и, покинув Дельфы, отправился куда глаза глядят. Дорога, которую он избрал, вела в Фивы. По пути он встретил царя Фив Лайя, между ними произошла ссора, и Эдип, не зная, что Лай является его отцом, убил его.
А как раз в это время на Фивы обрушилась беда. На дороге в Фивы поселилось ужасное чудовище – Сфинкс с головой женщины, с туловищем льва и с гигантскими крыльями. Он останавливал каждого путника и требовал решить загадку, а затем убивал, так как никто не мог дать правильный ответ. Тогда Эдип решил избавить фиванцев от кровожадного чудовища. Он отправился к Сфинксу, решил предложенную им загадку и уничтожил его.
Совершив этот подвиг, Эдип вернулся в Фивы. Горожане избрали его царем, и он женился на вдове Лайя Иокасте, то есть на своей матери.
В конце концов Эдип, узнав о том, что произошло на самом деле, ослепил себя, а Иокаста покончила жизнь самоубийством. Что касается его дальнейшей судьбы, то на этот счет существует целый ряд различных легенд, но главное в другом. Если бы царь Лай не поверил предсказанию Дельфийского оракула и не решил убить родившегося ребенка, то не произошли бы и все последующие события. В частности, Эдип не убил бы Лайя и не женился на Иокасте…
Можно привести еще немало примеров подобных «самоорганизующих прогнозов», которые осуществились только потому, что однажды были сделаны и кто-то в них поверил.
Так, один писатель, побывавший в Тибете, рассказал весьма поучительную историю. Какой-то богатый американец, коллекционировавший старинные вещи, путешествовал по этой удивительной горной стране. Однажды на дороге ему повстречался путник – не то бродяга, не то странствующий монах. Американец заметил на груди странника необычный талисман и через переводчика предложил продать приглянувшуюся вещицу за приличную цену. Путник отрицательно покачал головой и сказал, что эта вещь для него священна и не продается ни за какие деньги. Американец решил, что тот торгуется, и прибавил цену. Монах вновь отверг это предложение. Американец стал уговаривать странника, но тот не соглашался. Однако талисман так понравился коллекционеру, что он решил заполучить его во что бы то ни стало. Поняв, что добром ничего не добиться, американец приказал своим спутникам силой отобрать у монаха драгоценную вещицу. Сначала тот попытался оказать сопротивление, но поняв, что это бесполезно, выпрямился, скрестил руки на груди и дал снять с себя злополучный талисман. Он с презрением отшвырнул деньги, брошенные ему американцем, и, вперив в него горящий ненавистью взгляд, произнес глухим голосом: «Будь ты проклят! И знай, что тебе не уйти из этих гор! Ты найдешь здесь свою смерть!»
Когда переводчик, заикаясь от страха, передал эти слова американцу, тот презрительно рассмеялся и, тронув коня, поехал своей дорогой…
Однако с того самого дня спутники коллекционера стали замечать, что их хозяин заметно изменился. Он сделался молчаливым, а на привалах подолгу сидел в стороне от всех, молча рассматривая талисман. А когда до конца путешествия оставалось всего два-три дня, на перевальной тропе лошадь американца, самая спокойная и надежная в маленьком караване, неожиданно оступилась и сорвалась в пропасть, увлекая за собой седока. Мрачное пророчество странствующего монаха исполнилось…
Как это могло случиться? Обратимся за ответом к рассказу знаменитого английского писателя Оскара Уайльда «Преступление лорда Артура Севиля».
Один молодой лорд был приглашен в гости в светский дом, где в этот вечер присутствовал приехавший в Лондон знаменитый прорицатель… По линиям их рук он рассказывал гостям о состоянии их дел и предсказывал будущее. Прорицатель находился в Англии всего несколько дней, не знал никого из присутствующих и поэтому точность его заключений действительно поражала воображение. Все наперебой старались подойти к нему и выслушать предсказание. Молодой лорд не был суеверен, он не верил ни в какие гадания и прогуливался в сторонке, скептически посмеиваясь. Когда же прорицатель удовлетворил всех, желавших узнать свою судьбу, молодой человек, шутки ради, тоже подошел к нему и протянул руку. Прорицатель профессиональным жестом повернул к себе ладонь, но, взглянув на нее, изменился в лице и неожиданно сказал: «Прошу меня извинить, сэр, но вам я гадать не буду…»
Лорд, удивленный этим странным отказом, стал настаивать. Прорицатель упорно отказывался, не желая даже объяснить, в чем дело. Тогда к просьбе лорда присоединились все присутствующие. Прорицатель уступил. После этого он сообщил молодому человеку, что ему предстоит стать убийцей, лишить жизни другого человека… Вообще лорд, как уже было сказано, не верил в гадания, но мрачное пророчество почему-то произвело на него сильное впечатление. Он даже решил отложить свою женитьбу, чтобы не подвергать невесту опасности стать женой убийцы, и забросил все свои дела. Жизнь молодого человека сделалась невыносимой. Мысль о предстоящем убийстве не давала ему покоя, ожидание становилось мучительным. У него появилось желание, чтобы неизбежное совершилось как можно быстрее. И тогда он решил действовать. После долгих мучений и раздумий он решил убить кого-нибудь, чтобы избавиться тем самым от рокового предсказания. Но все его попытки оканчивались неудачей. Судьба словно смеялась над ним…
В конце концов в отчаянии он однажды вечером вышел на берег Темзы, решив, что убьет первого встречного. Был туманный лондонский вечер. Набережная была пустынной. Вдруг он заметил впереди идущего человека, догнал его, ударил по голове, а труп сбросил в реку… А на следующий день выяснилось, что первым встречным оказался тот самый прорицатель, который предсказал молодому человеку его судьбу.
Можно предположить, что своим остроумным рассказом Оскар Уайльд не только хотел высмеять суеверия, связанные с гаданиями, но и показать, как вера в исполнение всяких предсказаний и пророчеств сковывает волю человека, вынуждает его неправильно оценивать обстановку, принимать неверные решения и совершать ошибки, которые могут привести к трагическому исходу!
Так, в частности, произошло и с американским коллекционером в Тибете. Он поверил в предсказание странствующего монаха. А поверив, стал бояться смерти, бояться совершить ошибку, способную привести его к гибели. Боязнь сделала все его действия, в том числе и управление лошадью, неуверенными. А неуверенность в горах – самая большая опасность, которая грозит путешественнику…
И вообще, суеверный страх, когда он овладевает человеком, неизбежно сковывает его по рукам и ногам, держит в жестокой узде его мысль, мешает ему жить и творить…
Человечество и время
Автор: Известно, что на ранних стадиях развития нашей планеты на ее поверхности сложилась очень опасная экологическая обстановка, по существу – экологический кризис, который едва не привел к всеобщей экологической катастрофе и гибели первичной биоты – так называемых архебактерий и прокариотов.
Урсул: Выход из этого кризиса нашла сама природа, создавшая зеленые растения, способные осуществлять фотосинтез и усваивать солнечную энергию, как говорил К.А. Тимирязев, «выполнять космическую функцию». Именно тогда на Земле появилась кислородная атмосфера и возникли биосферные циклы. И сейчас главная задача, на мой взгляд, заключается в том, чтобы как можно шире использовать космические факторы – энергию, сырье, пространство и т. д.
В частности, можно создать орбитальные солнечные электростанции, которые будут преобразовывать солнечное излучение в электроэнергию и передавать ее на Землю. На таких станциях можно будет установить и огромные зеркала из светоотражающей пленки и с их помощью освещать определенные районы нашей планеты, Например, для того, чтобы ликвидировать полярную ночь или скорректировать климатические условия. Разумеется, практическое осуществление подобных акций потребует весьма тщательной и всесторонней предварительной экологической проработки.
Автор: А нельзя ли найти и более радикальное решение энергетической проблемы? Как известно, во всех термодинамических процессах, в соответствии со вторым началом термодинамики происходит рассеяние тепловой энергии, которая фактически обесценивается. Благодаря этому любая энергетическая операция неизбежно связана с испусканием в окружающее пространство теплового излучения, которое уже невозможно «собрать» и вновь перевести в активную форму и заставить совершать полезную работу.
Однако вся история естествознания убеждает нас в том, что явления, невозможные в одном «круге» физических условий, поскольку они противоречат действующим в этих условиях законам природы, нередко оказывались возможными за пределами этого круга. Как заметил известный английский философ и математик Бертран Рассел, с тех пор как мы стали доказывать утверждения, представлявшиеся нам и без того «очевидными», – многие из них оказались ложными. Аналогичную мысль высказал и выдающийся современный физик-теоретик Е. Вигнер. Вероятно, физические теории, которые мы в настоящее время считаем доказанными, писал он, в действительности являются ложными, поскольку они противоречат более общим теориям, которых мы еще не знаем…
Урсул: В самом деле, есть одно явление, которое наводит на мысль, что «утилизация» отработанной тепловой энергии является возможной и не противоречит еще неизвестным нам законам! Я имею в виду ситуацию, сложившуюся в процессе поиска внеземных цивилизаций. Поиска, который, несмотря на все усилия, до сих пор не увенчался успехом. Выдвигая свою версию объяснения «великого молчания» космоса, И.С. Шкловский и его сторонники исходили из того, что энергетическая деятельность высокоразвитых космических цивилизаций неминуемо была бы замечена даже на весьма значительном расстоянии, независимо от того, хотят ли этого такие цивилизации или нет.
Дело в том, что любая космическая цивилизация, перерабатывающая свободную энергию, должна «выбрасывать» в окружающее пространство термодинамические отходы в виде теплового излучения. Таким образом, какого бы уровня развития космическая цивилизация ни достигла, она не может не обнаружить себя температурным излучением. И чем выше ее энерговооруженность, тем скорее подобное излучение может быть обнаружено, даже в том случае, если его пытаются как-то маскировать! Соответствующие расчеты показывают, что скрыться в этом отношении от наблюдений во всем доступном нашему излучению объеме Метагалактики практически невозможно! На этом соображении и основывался вывод Шкловского об уникальности земной цивилизации. Но что, если…
Автор: Вы хотите сказать…
Урсул: Именно. Что второе начало термодинамики, как и некоторые другие законы природы, справедливо лишь в известных пределах. И при определенных условиях превращение рассеянной энергии в энергию, способную вновь производить работу, принципиально возможно?
Автор: Иными словами, возможно существование вечного двигателя второго рода?
Урсул: В такой ситуации космическая цивилизация на определенном уровне своего развития могла бы возможность, о которой идет речь, обнаружить и соответствующим образом ею воспользоваться. А значит, создавать такие системы и осуществлять такие физические процессы, которые в обычных условиях вторым началом запрещены. Цивилизация, решившая подобную задачу, в принципе не рассеивала бы отработанную энергию в космическое пространство, а вновь и вновь ее «концентрировала» и многократно использовала для своих практических нужд.
Автор: Вы предлагаете рассуждать «от противного»? Предположим, что космические цивилизации существуют. А это – весьма вероятно! Тогда они должны проявлять себя в энергетическом отношении. Если же ничего подобного не наблюдается, то не значит ли это, что они нашли возможность «обходить» второе начало? Не есть ли таким образом «молчание космоса» – указание на ограниченность наших современных термодинамических представлений?
Урсул: И если это так, то вполне возможно, что и земная наука со временем сумеет отыскать способ утилизации рассеянной, отработанной тепловой энергии.
Автор: И это навсегда решило бы животрепещущую энергетическую проблему человечества!.. Но уж если мы с вами вступили в область, граничащую с научной фантастикой, нельзя ли научиться управлять тяготением? Иначе говоря, овладеть антигравитацией? А почему нет? Ведь электрические заряды бывают как положительными, так и отрицательными. Это представляется естественным с точки зрения диалектики – как единство противоположностей. Почему же «гравитационные заряды» могут только взаимно притягиваться?
Урсул: Если оставаться в рамках общей теории относительности Эйнштейна, то антигравитация невозможна в принципе! Дело в том, что в основе этой теории лежит утверждение, согласно которому «гравитационные заряды» любых тел равны их массам. Но отрицательных масс, как известно, не бывает. Значит, не могут существовать и отрицательные «гравитационные заряды».
Автор: Значит ли это, что никакой надежды на овладение антигравитацией не существует в принципе?
Урсул: Надежда, как говорится, умирает последней. В последние годы физики обнаружили нечто такое, что, быть может, открывает реальный путь к победе над тяготением. Оказалось, правда пока на теоретическом уровне, что в природе существует не одно поле тяготения, а целых три его разновидности. И каждое из них обладает своими особыми свойствами! Это, во-первых, хорошо нам известное обычное поле тяготения. Его «элементарные порции» получили название гравитонов. Гравитоны всегда движутся со скоростью света и обладают, как известно, колоссальной проникающей способностью. Сквозь тело Земли или Луны они проходят без малейшего ослабления. Два других поля получили названия «гравифотонное» и «гравиркалярное», а их кванты соответственно – «гравифотоны» и «гравискаляры». В отличие от гравитонов, эти кванты обладают вполне ощутимыми массами. На очень небольших расстояниях эти три поля сливаются друг с другом, образуя единое «супергравитационное поле». Однако на достаточно больших расстояниях происходит их «расщепление», они становятся независимыми.
Автор: Это что – чистая теория?
Урсул: Пока – да. Но к подобному заключению приводят самые различные исходные соображения. В теоретической физике подобная ситуация обычно свидетельствует о достоверности полученного вывода. Так вот, самое интересное состоит в том, что гравискалярные силы, как и силы обычного тяготения, могут быть только притягивающими. А гравифотонные – как притягивающими, так и отталкивающими. В тех случаях, когда взаимодействующие массы состоят из вещества и антивещества – они обладают гравифотонным притяжением. А тела из обычного вещества – гравифотонным отталкиванием.
Автор: Это представляется довольно странным. Ведь в таком случае все окружающие нас предметы должны разлетаться в разные стороны. Но ведь ничего похожего не происходит?
Урсул: По-видимому, это объясняется тем, что гравифотонная гравитация значительно слабее обычного притяжения и не может с ним «соперничать». Однако не исключено, что гравифотонное отталкивание компенсируется гравискалярным притяжением. Гравифотонный «плюс» и гравискалярный «минус» уравновешивают друг друга. И проявляет себя только обычное тяготение.
Автор: Как же в таком случае воспользоваться антигравитацией?
Урсул: Дело в том, что в принципе возможны ситуации, когда гравискалярное притяжение оказывается слабее гравифотонного отталкивания.
Автор: А насколько такие ситуации реальны?
Урсул: Определенные указания на (подобную возможность имеются. Весьма точные измерения «постоянной тяготения», выполненные на протяжении последних лет на разных высотах над земной поверхностью и в глубоких шахтах, показали, что ее значения в разных точках несколько различаются! Не исключено, что эти различия как раз и являются проявлениями антигравитации. Существуют и другие обнадеживающие наблюдения.
Автор: А нельзя ли поставить такой контрольный эксперимент, который не оставлял бы на этот счет никаких сомнений?
Урсул: В принципе это возможно. Как я говорил, в случае антивещества и гравискалярные и гравифотонные силы должны согласованно работать на притяжение. Поэтому в поле тяготения Земли антивещество должно «весить» больше, чем вещество. Соответствующие проверочные эксперименты можно осуществить на ускорителях элементарных частиц.
Разумеется, от гравифотонного отталкивания до создания антигравитационного космического корабля так же далеко, как от воздушного змея до авиалайнера. Однако важен сам факт. Главное то, что антитяготение в природе реально существует. А остальное, как говорится, дело техники…
Автор: И еще один вопрос. Не кажется ли вам, что пришла пора, когда достижения современного человечества в области освоения космоса должны кардинальным образом повлиять на современный стиль научного мышления? Сделать его «космическим»?
Урсул: Да, такой стиль уже формируется. И соответствующее этому стилю «космическое сознание». Их характерными особенностями является осмысление того факта, что человечество представляет собой неотъемлемую часть Вселенной. Существенно важное значение имеет и понимание той связи, которая, судя по всему, существует между космическим предназначением человечества и его современными действиями…
Мы вступаем в XXI век
Человечество вступает в третье тысячелетие нашей эры. И хотя это событие носит в значительной степени условный характер, реальная обстановка в современном мире складывается таким образом, что рубеж между XX и XXI веками должен стать в известной мере переломным. Поэтому вполне естественно задуматься над тем, каким может оказаться для земной цивилизации в целом и для России, в частности, грядущее столетие.
К сожалению, основные футурологические концепции XX века – как марксистская, так и либерально-демократическая, оказались несостоятельными в своих попытках прогнозировать будущее. Главные исторические повороты завершающегося столетия они предвидеть не смогли. Что же касается реального положения дел, то приходится признать, что современная цивилизация не обеспечивает в глобальном масштабе ни нормальных условий жизни человека, ни устойчивости существования жизни на Земле. Вот к чему пришло человечество в итоге нескольких тысяч лет своего развития.
Стало очевидным, что необходимо избрать какой-то иной путь технологического развития, обеспечивающий выживание человечества, иначе земная цивилизация потерпит крах в глобальном масштабе.
Вне всякого сомнения, наиболее привлекательным из всех выглядит «ноосферный сценарий», предложенный в свое время академиком В.И. Вернадским. По мнению известного российского ученого академика Н.Н. Моисеева, если высшим научным достижением XVII столетия можно считать создание классической механики Ньютоном, а XIX столетия – создание эволюционной теории Ч. Дарвиным, то в XX столетии – это разработка В. Вернадским учения о ноосфере…
Характерными особенностями этого учения являются рассмотрение в органическом единстве социального и экономического факторов, а также анализ мировой истории и развития мировой системы как единого социоэкологического комплекса. Основной функцией антропосферы, возникшей с появлением человека, является, по Вернадскому, креативная, а в наше время производственно-техническая и научно-техническая деятельность, изменяющая, преобразующая и эксплуатирующая окружающую среду. Ноосфера – это сфера разума, преобразовательные возможности которой сравнимы с геологическими факторами…
Особо следует подчеркнуть, что в то время как все утопические системы прошлого манипулировали не с живыми людьми, а с некоторой абстракцией человека (например, с человеком «коммунистического завтра» или с «идеальным человеком» и т.п.), Вернадский старался поставить во главу своей системы интересы обычного живого человека. И устойчивость ноосферы он рассматривал в связи с творческим потенциалом каждого отдельного человека и интересами социума как целостной системы. Это делает учение Вернадского особенно жизнеспособным и привлекательным.
Впрочем, справедливость требует отметить, что некоторые ученые считают учение о ноосфере мечтой, весьма далекой от реальности. Чем вызвано такое расхождение во мнениях? По-видимому, с одной стороны, незавершенным характером самой теории, а с другой – ее недостаточным экологическим обеспечением. Прояснить ситуацию позволяет синергетический подход.
С точки зрения синергетики, основная функция ноосферы состоит в креативной, творческой, научно-производственной и адаптирующей деятельности в интересах расширения гомеостаза, то есть устойчивости этой системы и освоения новых экологических ниш. При этом, однако, эффективность техногенной деятельности не должна превышать адаптационных возможностей биосферы в целом и региональных биоценозов в частности. И еще – необходимо добиваться того, чтобы скорость перестройки информационных структур не отставала от скорости развития техносферы.
Как мы уже знаем, устойчивость биосферы обеспечивается так называемым принципом Ле Шателье – Брауна, согласно которому при любых внешних воздействиях внутри системы начинают действовать факторы, компенсирующие возникающие изменения. Однако с развитием креативной деятельности человечества эта «охранная функция» принципа «Ле Шателье – Брауна» фактически была ликвидирована. Из этого следует, что если мы хотим обеспечить устойчивую совместную эволюцию (коэволюцию) социума и природы, то должны ввести в эту систему искусственные обратные связи, способные предотвратить «раскачку» возникающих неустойчивостей и предохранить от разрушения окружающую среду…
В современной «теории катастроф» есть «принцип хрупкости хорошего». Все «хорошее» должно удовлетворять набору каких-либо требований. Если хотя бы одно из них не выполняется – «хорошее» превращается в «плохое». Это и означает, что «хорошее» хрупко – его очень легко разрушить. При этом нарушения устойчивости, как правило, происходят скачкообразно. Как утверждает теория катастроф, плавные изменения параметров системы в какой-то момент могут вызвать резкий скачок в ее состоянии – катастрофу.
В XIX столетии в Америке утвердилась капиталистическая формация. И в настоящее время в единой глобальной мировой системе она занимает ведущие позиции. Этой системе, однако, присущи многие противоречия. Но главным, так сказать системообразующим противоречием, то есть таким противоречием, которое формирует капитализм как живую развивающуюся систему, является противоречие между двумя сторонами капитала: капиталом как функцией и капиталом как субстанцией. С одной стороны, капитал – это все, что можно продать: товар, овеществленный труд, производительные силы и т. д. С другой – это производственные отношения, государство, политические партии и т. п. При этом функционализация капитала всегда обгоняла субстанциональный фактор. В конечном счете именно это и превратило капитализм в мировую систему. В настоящее время на долю транснациональных корпораций приходится около 40% производства общепланетарного продукта и около 90% вывоза капитала.
Но сейчас, когда происходит переход к информационно-технологическому укладу, основной функцией становится информация. Развертывается процесс функционализации субстанции. Тем самым системообразующее противоречие капиталистической формации постепенно снимается. И если в недавнем прошлом кризисы, которые переживал капитализм, носили структурный характер и поэтому со временем преодолевались, то ситуация, складывающаяся в настоящее время, выглядит намного серьезнее. Ибо, лишившись системообразующего противоречия, капитализм как формация обречен на исчезновение. Любопытно, что «могильщиком» капитализма оказался не пролетариат, как предсказывал Маркс, а научно-технический прогресс. Таким образом, тот самый научно-технический прогресс, который был стимулирован капиталистической системой, привел к отрицанию его системообразующего противоречия. И это должно привести к преобразованию капиталистической системы в нечто иное, но во что именно, мы пока не знаем…
Что можно в сложившейся ситуации сказать о ближайшем будущем человечества, в том числе и России? С точки зрения синергетики, ключом к пониманию будущего являются так называемые параметры порядка. От них зависит поведение социальной системы. К их числу относятся энергетический и экологический параметры, а также материальное благополучие населения. Что касается энергетического параметра, то в настоящее время в России производится около 6 киловатт на душу населения. Это меньше, чем в США, но сравнимо с производством энергии в европейских странах. Однако положение дел не столь благоприятно, как может показаться на первый взгляд. Дело в том, что уровень необходимого производства энергии в немалой степени зависит от размеров страны и среднегодовой температуры. Если учесть эти факторы, то, как показывают расчеты, в России должно производиться около 16 киловатт на душу населения.
Поскольку человечество представляет собой неустойчивую систему, то возможны различные сценарии его обозримого будущего. Это справедливо и для нашей страны. И если учесть ту ситуацию, в которой сейчас находится Россия, то далеко не все возможные сценарии ее развития в XXI столетии являются благоприятными для нас. В частности, нельзя исключить превращения России в сырьевой придаток более развитых стран, или в государство «третьего мира» и даже сползание к средневековью. Возможен в принципе и распад Российской Федерации на отдельные независимые образования. Например, специалисты в США подсчитали, что в современной России существует 79 очагов потенциальных конфликтов.
Поскольку в ноосфере могут возникать различные неустойчивости, то ее фундаментальным свойством должен стать сложный режим автоколебаний. И задача ситуационного управления будет заключаться в том, чтобы удерживать амплитуду подобных колебаний в разумных пределах. В противном случае вся система может «пойти вразнос».
Если попытаться применить все сказанное к России, то прежде всего необходимо оценить, какие из тех реформ, которые сейчас обсуждаются, отвечают «ноосферному подходу»?.. Прежде всего, необходима радикальная военная реформа – если ее не провести, нам никогда не найти средств, чтобы выполнить все остальное. И больше всех в осуществлении такой реформы заинтересована сама армия, ибо если ее не провести, то у нее не будет ни техники, ни здоровых солдат, ни денег. Нужна также реформа государственного управления. Сокращение численности аппарата, который за время существования РФ увеличился по сравнению с тем, что было в Советском Союзе. Необходима децентрализация управления, делегирование ряда управляющих функций на уровень регионов. Речь должна идти и о кардинальной реформе системы образования, поддержке науки и культуры, об аграрной реформе, реформе здравоохранения и об эффективных мерах по защите окружающей среды. При этом особое внимание должно быть уделено системе образования. Не будет образования – не будет ничего. Только образованные люди способны обеспечить реальное продвижение в сторону ноосферы. Что же касается науки и культуры, то без их дальнейшего развития бессмысленно говорить и о системе образования.
Ноосфера – это принципиально новый уклад. И переход к нему реален лишь при условии, что будет обеспечен соответствующий технологический рывок. Россия обладает колоссальным научно-техническим потенциалом, который мы еще не успели потерять, и если мы сумеем воспользоваться существующим «заделом», то сможем реально приступить к движению по ноосферному пути.
Еще один фактор, угрожающий существованию земной цивилизации, – загрязнение атмосферы, Мирового океана и вообще накопление вредных отходов, а также сокращение площади лесов, полей и степей и наступление пустынь. По данным специалистов, ежегодно на Земле в результате действия этих факторов исчезает не менее одного вида животных и одного вида растений. Подобная скорость исчезновения видов живой природы примерно в 10 000 раз выше, чем в эпоху исчезновения динозавров. Все это вместе взятое может привести к таким изменениям внешней среды, что не останется ниши для обитания человека.
Наконец, четвертым фактором нарастающей опасности является комплекс внутренних противоречий. В недрах капиталистической формации происходят крупные структурные изменения – в развитых странах это становление информационно-технологического уклада.
Растет роль транснациональных корпораций (ТНК). В настоящее время около 400 тысяч таких корпораций обеспечивают выпуск около 40% мирового валового продукта.
Происходит интенсификация хозяйственной деятельности, наблюдается свободное перетекание капиталов из одних стран в другие. Менее развитые страны при этом теряют капиталы, ресурсы, а также талантливых людей.
Как считает Лесков, существует целый ряд фактов, которые свидетельствуют о том, что капитализм завершил свою историческую миссию и у него больше нет «точек роста». Достигнув точки «бифуркации», эта система теряет устойчивость. И надвигающийся кризис можно преодолеть только путем качественных изменений. Наступает время «постиндустриальной цивилизации».