Тайны великих открытий — страница 41 из 58

Следует, однако, отметить, что "нелогичные" ходы воплощает в жизнь все-таки именно логика. Именно Форд первым всерьез занялся анализом трудовых операций, что позволило резко сократить расходы на производство автомобиля.

Используя стратегии, следует все же помнить о том, что, задаваясь лишь, скажем, "механическим" анализом, мы себя в некоторой степени ограничиваем — и потому следует посте анализа всех стратегий изучить связи МЕЖДУ стратегиями. Яркий пример неучета таких связей — Цусимское сражение. Русский флот имел технические преимущества, но бронебойные снаряды на большой дистанции теряли пробивающую мощь, в то время как японские снаряды с "шимозой" (взрывчатка, названная так в честь ее создателя, японского профессора Шимозы. — А.П.), тоже теряя скорость, прожигали этой "шимозой" броню. Для снаряда с "шимозой" скорость и калибр снаряда были не так важны. "Механический" принцип поражения противника японцы заменили на "энергетический".

Нечто подобное произошло много позже в сражении на Курской дуге. Бронированным танкам с мощной броней — "тиграм" и "пантерам" — были противопоставлены не гиганты с еще более мощной защитой, а ПТАБы — разработанные И.А. Ларионовым малогабаритные противотанковые авиабомбы кумулятивного действия. Только за пять дней Курской битвы, используя ПТАБы, летчики 291-й штурмовой авиадивизии уничтожили и повредили 422 вражеских танка.

Любопытно, что ленинградец И.А. Ларионов не был специалистом в области взрывчатых веществ. Наверное, это и помогло ему прийти к своей идее, в которой используется "чужой" подход.

Из всего этого следует сделать вывод: на этапе рассмотрения стратегий анализа надо внимательно определять не только эти стратегии, но и их взаимодействие между собой. В вычислительной технике, к примеру, этот этап носит название "определение подсистем и их интерфейсов".


Может возникнуть вопрос — а так ли уж нужны все эти стратегии? Все обычно решается как-то само собой, в рабочем порядке. Когда возникают проблемы, на них и ищутся ответы.

Верно. Но далеко не всегда. В программе испытаний, которые проводили на Чернобыльской АЭС, не было, в частности, указано, куда в ходе проведения эксперимента нужно отводить излишки горячего пара, так как для турбогенератора он уже не требовался (это относится к "энергетическому анализу"). Отключить систему аварийного охлаждения реактора, по мнению строившего первый энергоблок Чернобыльской АЭС Г. Медведева, можно было "только при отсутствии понимания нейтронно-физических процессов в атомном реакторе" ("физический анализ"). Пожар на крыше пожарные загасили, но о пожаре в самом реакторе никто не подумал, продукты горения и составили основной выброс ("химический анализ"). Сбрасывание мешков с песком на станцию привело к новым выбросам ("механический анализ").

Авария произошла. Далее началась цепь ее последствий, которые не были проанализированы заранее.

1. Точно установить уровень радиации и оценить степень опасности не было возможно, поскольку дозиметры оказались слабыми. Это стало причиной того, что эвакуация населения началась с запозданием.

2. Индивидуальные дозиметры на станции имелись, но находились под замком и, кроме того, не были подготовлены к работе. Борющиеся с последствиями аварии люди не имели представления, какую дозу получают.

3. Последовательность действий во время аварии заранее определена не была. Из-за этого, в частности, следующую смену никто не предупредил об опасности — и она, прибыв на станцию, подверглась облучению.

4. Система автоматического оповещения всех должностных лиц оказалась неисправной. Результат — руководство стало предпринимать действия с запозданием.

5. У вызванного на станцию медперсонала не было даже легких респираторов из ткани. Санпропускник самой станции не работал, на его дверях был замок. Вызванные врачи вынуждены были делать главным образом успокаивающие уколы — на станции не оказалось йодистых препаратов.

6. Поскольку учений не проводилось (кроме противопожарных), персонал оказался не готов к действиям в условиях радиационной опасности. Многие не знали даже, как правильно надевать респираторы из ткани.

7. Вызванные пожарные не имели понятия про радиационную защиту. Некоторые брали выброшенные из реактора куски графита в руки.

И т. д.

И т. д.

И т. д.

В результате — по данным "Гринпис" — в разной степени пострадали 12 миллионов человек.

Ущерб, несомненно, был бы гораздо меньше, если бы разработчики создали "дерево событий". Подобное "дерево" описывает все играющие серьезную роль события, которые могут произойти. Каждому элементу такого дерева эксперты должны присвоить определенный "вес" — и самые "весомые" и потенциально опасные варианты должны быть отражены в инструкциях, а также отработаны, хотя бы в учебном классе.

Но "дерево событий" создается, когда конструкция уже существует. Ему предшествует — еще на стадии создания изделия — "анализ операций" каждого работающего.

Вернемся к тому же Т-34. Командир танка руководил экипажем и одновременно был стрелком-наводчиком. Это было явно большой нагрузкой, и потому в танке Т-34—85 появился еще один, пятый, член экипажа.

Другой пример анализа операций. В Т-34 отсутствовала командирская башенка, и потому командир имел плохой обзор. Порой танки подбивались даже легкими самоходками, которые благодаря малошумности могли подобраться почти вплотную. Сделанная на Т-34—85 командирская башенка немецким самоходкам шансов почти не оставила.

Но анализ изделия на анализе операций не кончается.

Следующей стадией является выявление визуальных несоответствий, то есть поиск очевидных несоответствий в компоновке.

Какие, к примеру, выявились несоответствия в компоновке Т-34? Обнаружилось, что узкий двигатель можно поставить не вдоль танка, а поперек. Это помогло сократить длину танка, повысить его маневренность, уменьшить вес.

Но затем оказалось, что с повернутым двигателем можно также переместить башню в центр танка. Когда танк едет по пересеченной местности, танкисты раскачиваются, как на качелях, — и тем меньше, чем ближе они расположены к центру. Исходя из этих соображений, башню перенесли назад. При этом уменьшилась и вероятность того, что при преодолении препятствий пушка упрется в землю. Это позволило удлинить пушку — а значит, увеличить точность огня и пробивающую способность.

Но когда разгрузили передние катки, появилась возможность усилить лобовую броню. Новая броня имела толщину 120 мм (у Т-34 — только 45 мм).

Новый танк, Т-44, имел столь блестящие характеристики, что было принято решение всем формирующимся танковым бригадам присвоить звание гвардейских. Никто не сомневался, что это звание они оправдают.

Любопытно, что все вышеназванные изменения можно было сделать на пять лет раньше. Даже существовал такой вариант — Т-34М, но в серию уже пошел Т-34, а "лучшее — враг хорошего". Т-44 же был принят на вооружение только потому, что он вобрал в себя еще целый ряд изменений, накопленных за пятилетие.

Аналогичные "методу визуальных несоответствий" методы применяли многие конструкторы и ученые. В своих воспоминаниях о Сикорском Н.Н. Поликарпов отмечает такую особенность конструктора: Сикорский подолгу застывал пред своим аппаратом, его внимательно рассматривая. Это "вглядывание" рождало идеи. Впоследствии Сикорский тщательно проверял эти идеи логикой.

Научный метод Леонардо да Винчи в основном базировался на визуальном исследовании. Он состоял из трех элементов: "1) внимательное наблюдение; 2) многочисленная проверка результатов наблюдения с разных сторон зрения: 3) зарисовка предмета и явления, возможно более искусная, так чтобы они могли быть увидены всеми и поняты с помощью коротких сопроводительных пояснений". (Роберт Уоллэйс. Мир Леонардо.)


Пятая стадия анализа — анализ функций. Этот анализ может быть проведен различными методами; мы коснемся важнейших из них.

1. Первый метод — "метод выявления функциональных несоответствий", то есть поиск несоответствия в назначении деталей конструкции, мешающего действию деталей друг на друга.

Шаровая установка курсового пулемета на Т-34 уменьшала прочность лобовой брони. В Т-44 и последовавших после него танках от шаровой установки отказались.

2. Второй метод анализа функций — "использование вспомогательных функций". Обычно любое устройство выполняет и полезное, и побочное действия. Если подробно расписать все побочные действия и проанализировать их, может выясниться, что вред можно обратить в пользу. Самый простой пример — пороховые газы, которые конструкторы стали использовать для работы автоматического оружия.

Принцип этот, казалось бы, совсем прост — но вот что любопытно: в самолете МиГ-3 патрубки не просто выводили отработанные газы, а создавали при этом дополнительную тягу; в других самолетах этого не было — и это внесло свой вклад в то, что МиГ-3 являлся самым быстроходным одномоторным истребителем мира (его опережал только двухмоторный американский "Лайтнинг"). МиГ-3 на форсаже уходил от "мессершмитов"; выпуск этих самолетов пришлось прекратить потому, что заводы потребовались для выпуска аналогичных двигателей для Ил-2.

…Однажды американец по имени Шон Нельсон забрался в танк и поехал, давя людей и круша автомашины на своем пути.

Перед полицейскими возник вопрос: как быстрее обезвредить этого сумасшедшего?

Против танка нет приема. Кроме… Раз обезвредить танк в целом нельзя, то можно постараться сделать для него невозможной хотя бы какую-нибудь одну операцию. К примеру, можно набросить на стекло смотрового устройства водителя мокрую тряпку. С обычным танком это не проходит, поскольку наблюдение за дорогой осуществляет не только водитель, но и командир танка; одновременно же сидеть за рычагами и наблюдать из башни невозможно, это две разные функции.

Полицейские набросили тряпку, и танк, заехав на ограждение между дорогами, застрял. Но после этого возник вопрос: что делать дальше?