алось четыре. Примеси сгорали в разное время, что меняло характер и режимы плавки.
И вскоре установил, что: в плохом качестве стали, полученной бессемеровским методом, виноваты большое количество кремния и "слишком горячий ход процесса при перегретом чугуне". Чернов определил и те режимы, которые требовались для русского малокремнистого чугуна.
Однажды ученик Чернова подполковник Берсенев привез из Англии большой стальной кристалл, из усадочной пустоты стотонного слитка. Такой кристалл, не встречая препятствий для своего роста со стороны других кристаллов, достигает больших размеров, причем его форма не искажается. На заводе этим кристаллом никто не заинтересовался, и англичане охотно подарили его Берсеневу.
Сейчас изображение этого кристалла можно видеть, наверное, во всех учебниках по сталелитейному делу. Этот кристалл помог Чернову понять образование внутренней структуры стали:
"Одно вещество, более мягкое, более углеродистое, бросает оси, а другое, менее углеродистое, оставаясь в то время еще жидким, тотчас же вслед за тем облепляет ростки".
Из чисто теоретического вывода Чернов сразу сделал практический вывод: для лучшего уплотнения стали наряду с применявшимся способом прессования жидкой стали он разработал метод разливки во вращающиеся изложницы "В самом деле, если при отливке стали в изложницу эту последнюю приводить в быстрое вращательное движение, то растущие нормально к поверхности изложницы разрывные кристаллы не в состоянии будут так сильно развиваться, как это имеет место при спокойном росте, и сталь будет нарастать гладкими, аморфного сложения слоями".
Но и найдя этот метод, Чернов не прекратил научных исследований. Немецкий промышленник Крупп, воспользовавшись "точками Чернова", стал выплавлять сталь, не худшую, чем в России, а затем — и лучшую. А Крупп выпускал и снаряды.
Русский ученый решил выяснить, почему немецкие снаряды оказались лучше русских. Он надрезал снаряд Круппа вдоль так, чтобы потом при помощи клиньев получить правильный его излом. Для анализа требовался не срез, а именно излом. При этом обнаружилась удивительная вещь — внешняя оболочка снаряда резко отделялась от внутренней, причем местами могла совершенно отделяться. Отсюда был сделан вывод, что закалке подверглась лишь внешняя часть снаряда и этой закаленной оболочке придавали не очень прочную связь с внутренней массой. Благодаря этому при ударе о препятствие трещины не распространялись внутрь снаряда и он не разлетался на куски.
Такая идея была совершенно неожиданной — чтобы снаряд меньше разрушался, создать в снаряде сравнительно непрочный слой.
Разгадав главный принцип крупповских снарядов, Чернов предложил свой метод — путем подбора скорости охлаждения и повторных охлаждений получить не одну простую корку твердой стали, а двойную.
Это был совершенно иной принцип, чем у Круша, но в какой-то мере навеянный крупповским снарядом.
Чернов провел опыт с однннадцатидюймовым снарядом.
После нагрева снаряд был погружен в холодную воду на две минуты, затем вынут из воды на полминуты, вторично погружен в воду на три четверти минуты и опять вынуть на полминуты, в третий раз погружен в воду на одну минуту и опять вынут на двадцать секунд, затем его перенесли в горячую ванну с температурой сто восемьдесят пять градусов, где он оставался двадцать минут.
Температура ванны поднялась за это время до двухсот тридцати градусов, и снаряд уже имел по всей массе одинаковую температуру. Зарытый потом в сухую теплую золу, он остывал в течение двадцати четырех часов.
Все эти тщательно рассчитанные температуры и скорости охлаждения и отпуска сделали свое дело: положенный боком на наковальню пятитонного молота, снаряд этот выдержал пятнадцать полных ударов совершенно без всяких повреждений, даже без вмятин в точках удара. Между тем снаряд Круппа разбился при повторном ударе этого пятитонного молота.
Русские снаряды превзошли снаряды Круппа.
Удивительнейшие когда-то были времена — один русский ученый вел поединок со всем миром. И ни разу не проиграл.
Потом возникла новая проблема, которую Чернов снова удачно решил. Каналы стальных орудий рано или поздно выгорали; это считали неизбежным — но когда профессору Михайловской артиллерийской академии А.В. Гальдони один из слушателей задал вопрос "Почему выгорают каналы в стальных орудиях?", он вдруг понял, что с научной точки зрения этим вопросом никто серьезно не занимался. Этот вопрос мало освещался и в зарубежной литературе. А.В. Гальдони обратился к преподававшему в той же академии Д.К. Чернову.
Судя по тому, что в том же году Чернов начал читать курс о выгорании каналов в стальных орудиях, ответ был найден очень скоро. По докладу, сделанному ученым много позже, можно восстановить методику его поиска. От частной задачи он перешел к общей — исследовать разрушение поверхности металлических предметов, когда поверхность оказывается в условиях резких и быстрых изменений температуры поверхности.
После этого он прибег к аналогу, найдя схожий технологический процесс — горячую штамповку. Раскаленная заготовка вкладывается в нижнюю половину штампа, потом накладывается верхняя половина штампа и делается сильный удар молотом. После этого снимают верхний штамп, выбрасывают отштампованную вещь, обливают штамп водой для охлаждения и без промедления штампуют следующую заготовку. После более-менее продолжительной работы на внутренней поверхности штампа появляется сеть трещин.
Но существует и другой технологический процесс — холодная штамповка. При ней сетка трещин не появляется.
Чернов сделал вывод — разница в температуре. Следует определить, при какой именно температуре пороховых газов она начинает влиять на металл. Ученый вычислил эту температуру — около тысячи градусов. Теперь дело оставалось за химиками.
Были у Чернова и другие разработки, но одни из них требовали для своей проверки больших затрат, на которые заводчики не решались, другие же опередили время.
В чем же была причина постоянных успехов Чернова в научной работе? Конечно, не последнее место в них занимает искусство проведения эксперимента. В, казалось, непрерывном процессе охлаждения стали он смог рассмотреть две критические точки, в которых сталь меняет свои свойства. Разделив процесс по этим точкам, он внимательно изучил характеристики стали на каждом этапе. Только после этого он смог сделать конкретные предложения — в общем, тогда еще не создав конкретной теории. Хорошо поставленный эксперимент позволил сделать выводы и без твердого теоретического объяснения.
Только в кристалле увидев физический принцип роста зерен металла, Чернов смог дать научное объяснение — опять же на основе наблюдений.
Определив, что при плавке бессемеровской стали процесс имеет четыре стадии — то есть воспользовавшись своим алгоритмом проведения эксперимента, — он видоизменил продолжительность и характер плавки и выбрал лучший вариант.
"Наблюдение — выявление критических точек — определение характеристик процесса, происходящего между точками — вывод — проверка на опыте — создание новых процессов" — вот его главный алгоритм.
Этап эксперимента иногда может включать в себя моделирование.
Перед строительством Днепрогэса в ЦАГИ был проведен эксперимент, призванный определить возможность судоходства по Днепру после возведения плотины. Макет позволил выявить, что скорость воды чересчур велика. По этой причине в проект были введены коррективы — создали ограждающую дамбу. Без сомнения, если бы эксперимента не было, исправление ошибки после ее обнаружения на натуре потребовало бы огромных средств.
Даже простая модель способна выявить принципиально важный новый эффект. На заре вертолетостроения сотрудник Юрьева — создателя "автомата перекоса" (заднего винта вертолета) Саблин смоделировал поведение воздуха при работе винта вертолета с помощью всего лишь дыма сигареты. Но это позволило выявить неожиданный эффект — сжимание струй за винтом, несмотря на действие центробежных сил. Этот эффект лёг в основу так называемой теории Саблина — Юрьева.
Однако при моделировании часто возникает вопрос о соответствии результатов испытаний на модели истинным. К примеру, при переходе от самолета к модели меньших размеров характер явлений искажается. Поэтому модель для продувки приходится изготовлять в натуральную величину.
Мало кто знает, что перед штурмом Берлина была построена его модель, по которой военачальники учились как лучше воевать в этом городе.
Следующим этапом анализа является количественная оценка. Результат работы изделия требуется выразить в численной форме. После этого определяется либо максимальное или минимальное значение, либо диапазон допустимых значений для выбора какого-то оптимального уровня, при котором должно работать устройство.
При этом сначала выбирается критерий. Часто критерий не определен; в этом случае требуется создать свой — к примеру, расстояние, на котором 90 процентов телезрителей не видят муара на телеэкране.
Следующим этапом анализа является изучение работы изделия на практике.
Результаты нововведений должны изучаться не только на испытательных полигонах, но и в реальной работе. Отзывы тех, кто непосредственно использует продукт конструкторской мысли, — самое главное в анализе. После этих отзывов следует доработка — а возможно, и отказ от устройства.
В нашей стране существует давняя традиция игнорирования обратных связей. С примерами читатель наверняка прекрасно знаком, и приводить их здесь смысла нет.
Вообще же для успешной деятельности обратную связь необходимо ввести. Лучше всего использовать для этой цели вопросник об основных спорных моментах. При этом следует помнить, что опрашиваемые склонны говорить то, что от них ждут (когда я был репортером, мне порой задавали вопрос: "И что мне говорить?"). Поэтому самые важные вопросы следует прятать среди малосущественных — чтобы ответы были спонтанными и естественными. Нужно также непременно задавать вопросы общего характера, чтобы опрашиваемый мог сообщить информацию, о которой задающий вопросы и не подозревает. Дж. Джонс приводит пример результатов подобного опроса: