Тайны Вселенной — страница 56 из 79

ивной реальности. Поэтому и приходится делать соответствующую поправку, чтобы исключительно важная роль математики все же не абсолютизировалась и не приводила тем самым научное познание к крену, чреватому далеко идущими последствиями. Но полностью избежать «волчьих ям» удается не всегда и не всем. Некоторые современные истолкования тяготения — характерный тому пример.

ДВИГАТЕЛЬ ВСЕЛЕННОЙ

В процессе общей работы и дискуссий с В. П. Селезневым удалось найти нетривиальный подход к пониманию природы сил тяготения и той роли, которую они играют во Вселенной. Ниже излагается данная концепция, как она впервые была представлена в нашей совместной и уже цитированной книге «Мироздание постигая: Несколько диалогов между философом и естествоиспытателем о современной научной картине мира» (М., 1989).

В классической механике небесные тела, притягиваясь взаимно с помощью гравитационных полей, движутся под действием сил тяготения и инерции по некоторым орбитам в космическом пространстве, которое отождествляется с пустотой. Однако эта идеальная картина Вселенной не согласуется с реальным состоянием космического пространства. Установлено, что это пространство содержит рассеянные молекулы веществ, атомы, ионы, электроны, фотоны и другие частицы, крупные тела — метеориты и, наконец, — множество различных полей. Плотность распределения этих частиц и полей в пространстве неравномерная, однако при движении больших небесных тел — галактик, звезд и планет — такая «запыленная» среда может оказывать сопротивление. Вследствие этого небесные тела должны постепенно терять свою кинетическую энергию и сближаться под действием сил тяготения. Для Солнечной системы это означало бы, что с течением времени Луна, например, упала бы на Землю, а Земля и другие планеты — на Солнце.

Тем не менее, несмотря на эти условия, небесные тела в течение времени, исчисляемого миллиардами лет, сохраняют параметры своих орбит практически неизменными, а Вселенная в целом существует вечно. Чтобы сохранить подобное почти стационарное состояние Вселенной, необходимо иметь какой-то источник энергии, который позволял бы скомпенсировать расходы энергии, затрачиваемые на сопротивление космической среды. Существует ли он в природе? Этот вопрос является исключительно сложным, но зато — и особенно интересным. По существу, речь идет о том, существует ли некоторый единый механизм — «Двигатель Вселенной», поддерживающий определенное ее состояние.

В первом приближении классическая небесная механика дает на это следующий ответ: Вселенная поддерживается в определенном динамическом равновесии с помощью сил тяготения небесных тел и сил инерции их масс без учета материальности космической среды. Конечно, математическая модель даже такой Вселенной чрезвычайно сложная, но принципиально ее можно описать и даже промоделировать с помощью современных ЭВМ. Однако реальная структура космического пространства создает некоторый эффект торможения движению небесных тел. Небесная механика позволяет исследовать и этот эффект, однако она не дает ответа на вопрос — почему же Вселенная преодолевает торможение движения небесных тел и откуда она находит энергетические ресурсы для восстановления расходуемой энергии? Чтобы выявить подобные энергетические ресурсы, необходимо более детально рассмотреть особенности гравитационного взаимодействия между небесными телами.

Распределенная масса небесных тел приводит к существенному изменению гравитационных взаимодействий между телами. Поскольку каждая материальная частица небесного тела является источником гравитационного поля, результирующее (или суммарное) поле жестко связано с телом и участвует в его вращении вокруг центра масс как одно целое. Это означает, что гравитационное поле не только охватывает значительное пространство вокруг тела, но и вращается вместе с телом, увлекая за собой все другие внешние взаимодействующие материальные объекты. Но вращение гравитационного поля небесного тела само по себе не может служить источником дополнительной энергии. Нужен какой-то дополнительный эффект в небесной механике. И вот здесь-то и требуется сделать еще один шаг в изучении гравитационного поля, основанный на учете влияния относительного движения тел на силу их взаимного притяжения. В статических условиях, когда тела неподвижны относительно друг друга, сила Q0 их взаимного притяжения пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними (закон всемирного тяготения).

Что же произойдет с силой притяжения, если тела будут сближаться или ударяться относительно друг друга с некоторой скоростью V? Поскольку скорость распространения гравитационного поля относительно излучающего тела имеет конечную величину (обозначим С — скорость поля относительно излучающего тела), следовательно, она зависит также и от скоростей относительного движения тел (полагаем, что закон сложения скоростей справедлив для всех материальных объектов, включая и физические поля).

Благодаря этому сила Q гравитационного притяжения будет зависеть не только от масс тел и расстояний между ними, но и от величины относительной скорости V. Установлено, что при сближении тел, летящих со скоростью V, сила их взаимного притяжения Q будет несколько меньше, чем ее статическое значение Q0(QQ0). Зависимость силы Q от скорости V может иметь сложный нелинейный характер.

Между тем зависимость силы взаимного тяготения тел от относительной скорости между ними в классической механике не была учтена. Однако влияние относительного движения тел на физические процессы взаимодействия между ними проявляется повсеместно в природе. В частности, при больших скоростях относительного движения, близких к скорости света, происходят релятивистские эффекты, вызванные существенным изменением сил взаимодействия. Какое же новое качество вносится в небесную механику при количественном изменении сил всемирного тяготения, вызванном скоростями относительного движения тел?

Прежде чем делать широкое обобщение о влиянии скоростей относительного движения тел в небесной механике, необходимо рассмотреть пример, позволяющий уяснить существо данной проблемы для земных условий. Предположим, что наблюдатель находится внутри космического корабля, летящего вокруг Земли в направлении ее вращения по экваториальной круговой орбите с периодом Т более суток (Т>24 часов). Земное гравитационное поле вращается вместе с Землей и совершает один оборот за сутки, обгоняя космический корабль (рис. 106). Рассматривая движение Земли, наблюдатель обнаружит, что поверхность ее восточного полушария будет удаляться от корабля, а западного — приближаться к нему вследствие вращения Земли вокруг своей оси.

Разделим мысленно массу mо Земли на западную и восточную половины полушарий и заменим эти массы на эквивалентные материальные точки (с массами 1/2m0), расположенные в центрах масс полушарий (точки О1 и O2 на расстоянии 1 друг от друга). Если соединить прямыми линиями центры масс земных полушарий и центр массы корабля (точка О с массой m), то образуется равнобедренный треугольник с углом d при вершине (точка О). Сила Q1 гравитационного тяготения западного полушария направлена по линии O1O, а восточного — (Q2) — по линии O2O.

Вследствие суточного вращения Земли с угловой скоростью массы всех частиц восточного полушария будут удаляться от корабля, а западного — приближаться. По этой причине сила тяготения эквивалентной материальной точки восточного полушария (Q2) несколько увеличится, а западного полушария (Q1) — уменьшится. Сумма проекций сил Q1 и Q2 на радиус-вектор, соединяющий центры масс всей Земли и корабля, образуют вектор радиальной силы тяготения Qр. Сумма проекций этих сил на касательную к орбите корабля Qт определяет собой тангенциальную силу. Роль таких сил в динамике движения космического корабля следующая.

Радиальная сила Qр, будучи уравновешенной центробежной силой, создаваемой массой корабля при движении по орбите, обеспечивает определенную величину орбитальной скорости в соответствии с известными ньютоновскими расчетами (скорость обратно пропорциональна корню квадратному из расстояния от центра Земли до корабля). Тангенциальная сила Qт является новым компонентом небесной механики, возникающим при учете угловой скорости вращения распределенных масс небесных тел и относительной скорости их центров масс. Величину этой силы можно определить, зная, что:

w и w1 — угловые скорости Земли (или земного гравитационного поля) и радиус-вектора корабля (линия, соединяющая центры масс корабля и Земли);

Сп — скорость распространения гравитационного поля;

l — расстояние между центрами масс западного и восточного полушарий Земли;

h — расстояние между центрами масс Земли и корабля.

Замечаем, что величина тангенциальной силы зависит от разности угловых скоростей w и w1.

Если Земля вращается быстрее (w>w1), то гравитационное поле обгоняет космический корабль и как бы подталкивает его (сила (Qт>0), увеличивая тем самым орбитальную скорость движения. В случае, если угловая скорость Земли меньше w1, сила Qт меняет свое направление на противоположное (Qт<0) и становится тормозящей.

При w1 = w, когда период орбитального движения корабля равен земным суткам, тангенциальная сила исчезает (Qт = 0).

В реальных условиях космическое пространство может оказывать некоторое сопротивление движению корабля с силой F, которая зависит от плотности окружающей среды, миделя сечения корабля, коэффициента его аэродинамического сопротивления и, конечно, от орбитальной скорости движения. Продольное движение корабля с орбитальной скоростью Vорб. может быть найдено из уравнения динамики Ньютона, в котором сила инерции корабля уравновешивается разностью сил Qт и F. Если Qт>F, ТО Тангенциальная сила превосходит силу сопротивления и скорость Vорб корабля увеличивается. При этом центробежная сила массы корабля также возрастает, в результате чего корабль переместится на более высокую орбиту (расстояние h увеличится). Поскольку сила Qт пропорциональна h-3, увеличение расстояния h приведет к резкому сокращению силы Qт до тех пор, пока она не уравновесится силой F. В этом случае наступит динамическое равновесие: тормозящий эффект окружающей среды будет полностью устранен, а корабль будет двигаться по новой стационарной орбите.