Солнце сильно пригревало и в лесу — под кронами дубков было тепло и влажно, как в теплице Напившиеся крови личинки быстро наверстывали упущенное, и больше того — развитие их шло с меньшими потерями. Но лучше всего обстояло дело у клещей на опушке леса.
Во время ноябрьского контроля изрядно окоченели от холода и мы, и клещи. Как правило, на клещей надо было дохнуть, чтобы заставить их подать какие-то признаки жизни и чтобы узнать, живы ли они вообще. Период активности клещей кончился, пришла пора перевести эксперимент на зимний режим.
А где, собственно, клещи зимуют? Ответа на этот вопрос мы искали в предварительном опыте ещё прошлой зимой. В тех же местах, где мы наблюдали за развитием клещей, заборчиком из листовой стали огородили небольшую площадку. Лист опустили на полметра в глубину, стараясь при этом не повредить почву на площадке, сохранить естественную структуру трещинок и различных полостей от сгнивших корней давно уже не существующих растений и тому подобное. Перед наступлением холодной погоды перенесли на подготовленные площадки клещей всех стадий развития, голодных и напившихся крови: до зимы у них еще было время выбрать себе укрытия для зимовки.
Когда зима была в разгаре и все сковало морозом, мы выкопали на площадках блоки почвы. С этим не было затруднений, потому что верхний слой — наиболее сыпучий и при этом самый важный для нашей цели — промерз насквозь. Разделили блоки на сотни проб и промывали их в теплой ванне, чтобы отделить минеральный компонент от органических. При этом использовали не чистую воду, а насыщенный раствор хлористого кальция: плотность его такова, что всякая частица растительного или животного происхождения всплывает на поверхность земляного месива, в которое одна за другой превращались все пробы. Среди всплывших частиц мы отыскивали клещей: сначала с помощью лупы, затем с помощью эклекторов — простых приборов, в которых все живое, спасаясь от действия тепла, заползает в приставленные к ним пробирки. Результаты оказались интересными, а поскольку счет наблюдаемых клещей шел на тысячи, можно было сделать кое-какие обобщения.
Абсолютное большинство клещей зимовало в верхних слоях почвы — не глубже 5 см. Многие даже проводили зиму на поверхности среды сухой листвы и других остатков растений, в землю вообще не забирались. В основном это были взрослые клещи, и, очевидно, все объяснялось их размерами. Лишь небольшое количество клещей зимовало на глубине до 20 см, куда они проникали через разные трещинки и щели, оставшиеся от отмерших подземных частей растений. Ниже отметки 20 см не обнаружили ни одного клеща.
С учетом этих данных мы и построили основной эксперимент. По весне оказалось, что даже зимой лес, хотя и голый, без листвы, сохраняет защитное действие. Если на лугу от зимнего сна пробудились лишь две трети клещей, то в лесу и на опушке погибло только около одной пятой. Зимой на лугу был намного более суровый микроклимат, но зато на открытом пространстве раньше дала о себе знать весна. Там раньше установилась температура, позволяющая клещам продолжить свое развитие, и те, кто пережил зиму, не преминул сполна воспользоваться этим.
Открылся второй вегетационный сезон, и история с клещами на лугу в летние месяцы снова повторилась. На этот раз особенно пострадали только что закончившие линьку нимфы. Время шло, и первоначально однородные группы клещей распадались на все более мелкие группки, которые объединяла общая судьба. Мы воздержимся от описания дальнейших подробностей, так как трудно не потерять понятность и нить разговора, не впадая при этом в перечисления процентов и уровней значимости отдельных результатов, без чего не обходятся научные сочинения. Четвертый летний сезон был последним в нашем опыте, поскольку все клещи уже завершили круг развития.
Можно было подводить итоги. Пространные протоколы стали пищей для вычислительной машины IBM 370, выдававшей нам лавину результатов. Весь цикл развития нашей опытной популяции (считая от голодного взрослого клеща исходного поколения и до голодного взрослого клеща следующего поколения) прошел за 24–38 месяцев, т. е. за два-три года. В эти временные рамки уложились результаты, полученные на всех трех местах наблюдения, но на лугу они были отчётливо смещены в сторону более быстрого развития. Вместе с тем, как мы уже упоминали, развитие клещей на открытом травянистом пространстве характеризовалось очень большими потерями.
Влияние микроклимата на мозаичность распространения клеща обыкновенного убедительно показал конечный результат эксперимента, и мы не можем удержаться, чтобы не привести его: из одинакового исходного количества 7000 напившихся крови личинок весь цикл развития до взрослой особи прошли: на лугу — всего 125, на опушке леса 688 и в глубине леса 767. К этому надо добавить, что наибольшие численные потери на лугу, происшедшие на стадии развития личинки в нимфу, приходились на месяцы июнь и июль. В общей сложности свое развитие закончили лишь 7,5 % от первоначальных 21 000 напившихся крови личинок (на лугу и того меньше— 1,7 %), и это в условиях, когда каждую особь в буквальном смысле слова холили и к ее услугам без всяких ограничений был источник пищи в физиологически наиболее подходящее время, чего в природе не бывает. Это ответ на вопрос, почему при таких огромных количествах яичек, откладываемых одной самкой, земной шар не переполнен клещами.
Параллельно с главным опытом проводился ряд дополнительных наблюдений, позволивших выяснить частные вопросы: например, как долго могут голодать разные стадии развития клеща, которые не находят соответствующего хозяина, и не теряют ли они способность продолжать свое развитие, если им через какое-то время удастся напиться крови. Нашими наблюдениями подтверждаются соображения других авторов, что цикл развития клеща может растянуться даже на 5–6 лет. В таком случае, однако, быстро возрастают потери.
Вернемся снова к клещам, поселившимся на постоянное жительство в норах и гнездах млекопитающих и птиц. Эти клещи получили тем самым ряд преимуществ, и основное — это интимный контакт с хозяином, обеспечивающий источник питания. Далее к ним можно отнести во многих случаях благоприятные, мало изменяющиеся микроклиматические условия. С другой стороны, этим клещам пришлось и кое-чем поступиться, в том числе и широким кругом хозяев. Приуроченность к одному виду хозяина или самое большее к группе экологически близких видов хозяев потребовала от клеща ряд приспособлений. В целом это можно охарактеризовать как согласование цикла развития клеща с жизненными привычками хозяина.
Приуроченность к гнездам свойственна аргасовым клещам, стала у них почти правилом. Но ее можно обнаружить и у иксодовых клещей — представителей фауны ЧССР. Скорее всего, они попадаются на глаза орнитологам при чистке птичьих будочек — синичников. Другие виды ведут весьма скрытный образ жизни, будь то в гнездах птиц (например, клещ Ixodes lividus в гнездах береговых ласточек) или млекопитающих (Ixodes laguri в норах сусликов).
О биологии их нам известно очень мало, а о медицинском значении не знаем и подавно ничего. И поэтому, закончив свой эксперимент с клещом обыкновенным в Валтице, мы решили — чтобы на деле проверить полученные знания и навыки — аналогичным образом изучить вид Ixodes laguri, который будем именовать клещом сусликов.
Задача оказалась не из легких. Здесь уже недостаточно было просто выйти из нашей полевой лаборатории, чтобы очутиться в среде с привычными для сусликового клеща условиями. В Валтице суслики хотя и живут, но разбросанно, порознь, оттесненные в определенные места. Нам же требовалось сосредоточить их в относительно большом количестве и в течение долгого времени держать под регулярным контролем. С этого и пришлось начать. И вот на поросшей густой травой солнечной площадке, неподалеку от мест, где до этого мы наблюдали за клещом обыкновенным, вырос маленький зоосад. Порой сюда забредали и редкие посетители, изумлявшиеся десяти с виду пустым вольерам: пугливые суслики с приближением людей забирались на полметра в землю. Чтобы понаблюдать за ними в вольерах, надо было держаться так же осторожно, как в дикой природе, иначе спугнешь их.
Вольеры, конечно, ограничивали свободу зверьков, и важно было, чтобы те привыкли к ним. Но еще важнее было, как суслики отнесутся к тому, что мы приготовили им под землей. С помощью проволочной латунной сетки мы соорудили под- земные ходы и гнездовые камеры, по размерам и формам не отличающиеся от описанных в литературе и определенных при раскопке гнезд в природе. Настал день, когда в вольеры запустили отловленных в природе сусликов. Минута напряжения, и первый раунд за нами. Сусликам в предоставленных жилищах понравилось: они выстлали гнезда сухой травой, собранной на поверхности, и вообще вскоре чувствовали себя «как дома». В поведении отдельных зверьков можно было заметить кое-какие различия. Если позволить себе небольшое сравнение с людьми, то одни суслики были дисциплинированны и аккуратны, вели себя как по инструкции и, казалось, сотрудничают с нами. Другие же на протяжении всех пяти лет, пока проходил опыт, оставались неряшливыми дикарями. Но с неволей свыклись все.
В трех выбранных гнездах мы установили датчики температуры и влажности, на этот раз они были подключены к автоматическому измерительному центру, созданному для нас в Институте теории информации и автоматизации Чехословацкой академии наук. Результаты измерений центр печатал на бумаге, наносил на перфоленту для компьютера или высвечивал по нашему требованию на цифровом дисплее. Если же центру что-то не нравилось, он подмигивал нам красными контрольными лампочками.
Вот теперь мы были готовы к работе с клещами. Правда, на этот раз уже не с тысячами, а с десятками, так как получить исходный материал в природе — дело не простое. Но и с десятками клещей хлопот хоть отбавляй. Проблема систематических контролей оказалась настолько утомительной, что мы облегченно вздохнули, только когда удалось завершить наблюдения за всем циклом развития клеща сусликов и установить микроклиматические условия в сусличьих гнездах, влияющие на него. Результаты сопоставили с тем, что выяснили в опыте с клещом обыкновенным. Так мы определили