[3] Florence Wianny, Magdalena Zernicka-Goetz. Specific Interference with Gene Function by Double-Stranded RNA in Early Mouse Development. Nature Cell Biology 2 (1999): 70—75.
[4] H. Bolton, S. J. L. Graham, N. Van der Aa, P. Kumar, K. Theunis,
E. Fernandez Gallardo, T. Voet, M. Zernicka-Goetz. Mouse Model of Chromosome Mosaicism Reveals Lineage-Specific Depletion of Aneuploid Cells and Normal Developmental Potential. Nature Communications 7 (2016): 11165. Doi:10.1038/ncommsl 1165.
[5] Maria-Elena Torres-Padilla, David-Emlyn Parfitt, Tony Kouzarides, Magdalena Zernicka-Goetz. Histone Arginine Methylation Regulates Pluripotency in the Early Mouse Embryo. Nature 445 (2007): 214—218. Doi:10.1038/nature05458.
[1] С. R. Woese. A New Biology for a New Century. Microbiology and Molecular Biology Reviews 68. No. 2 (2004): 173-186.
[2] Leroy C. Stevens Jr., С. C. Little. Spontaneous Testicular Teratomas in an Inbred Strain of Mice. Proceedings of the National Academy of Sciences 40 (1954): 1080-1087.
[3] L. C. Stevens. Embryonic Potency of Embryoid Bodies Derived from a Transplantable Testicular Teratoma of the Mouse. Developmental Biology 2 (1960): 285-297.
[4] G. B. Pierce, F. J. Dixon. Testicular Teratomas. I. Demonstration of Teratogenesis by Metamorphosis of Multipotential Cells. Cancer 12 (1959): 573-583.
[5] Martin Evans. Origin of Mouse Embryonal Carcinoma Cells and the Possibility of Their Direct Isolation into Tissue Culture. Journal of Reproduction and Fertility 62 (1981): 625—631, https://doi.org/10.1530/ jrf.0.0620625.
[6] M. J. Evans, M. FI. Kaufman. Establishment in Culture of Pluripotential Cells from Mouse Embryos. Nature 292 (1981): 154—156.
[7] G. R. Martin. Isolation of a Pluripotent Cell Line from Early Mouse Embryos Cultured in Medium Conditioned by Teratocarcinoma Stem Cells. Proceedings of the National Academy of Sciences 78. No. 12 (1981): 7634-7638.
[8] D. ten Berge, W. Koole, C. Fuerer, M. Fish, E. Eroglu, R. Nusse. Wnt Signaling Mediates Self-Organization and Axis Formation in Embryoid Bodies. Cell Stem Cell 3. No. 5 (2008): 508-518. Doi: 10.1016/j. stem.2008.09.013.
[9] I. Bedzhov, M. Zernicka-Goetz. Self-Organizing Properties of Mouse Pluripotent Cells Initiate Morphogenesis upon Implantation. Cell 156 (2014): 1032-1044. Doi: 10.1016/j.cell.2014.01.023.
[10] Ibid.
[11] Susanne C. van den Brink, Peter Baillie-Johnson, Tina Balayo, An-na-Katerina Fladjantonakis, Sonja Nowotschin, David A. Turner, Alfonso Martinez Arias. Symmetry Breaking, Germ Layer Specification and Axial Organisation in Aggregates of Mouse Embryonic Stem Cells. Development 141 (2014): 4231—4242. Doi:10.1242/dev.l 13001.
[12] D. ten Berge, W. Koole, C. Fuerer, M. Fish, E. Eroglu, R. Nusse. Wnt Signaling Mediates Self-Organization and Axis Formation in Embry oid Bodies. Cell Stem Cell 3. No. 5 (2008): 508-518. Doi: 10.1016/j. stem.2008.09.013.
[13] R. S. Beddington, P. Rashbass, V. Wilson. Brachyury — A Gene Affecting Mouse Gastrulation and Early Organogenesis. Development Supplement (1992): 157-165.
[14] S. E. Flarrison, B. Sozen, N. Christodoulou, C. Kyprianou, M. Zernicka-Goetz. Assembly of Embryonic and Extraembryonic Stem Cells to Mimic Embryogenesis In Vitro. Science 356 (2017): eaall810. Doi: 10.1126/science.aall810.
[15] N. C. Rivron, J. Frias-Aldeguer, E. J. Vrij, J.-C. Boisset, J. Korving, J. Vivid, R. K. Truckenmiiller, A. van Oudenaarden, C. A. van Blit-terswijk, N. Geijsen. Blastocyst-Like Structures Generated Solely from Stem Cells. Nature 557 (2018): 106-111. Doi: 10.1038/s41586-018-0051-0.
[16] B. Sozen, G. Amadei, A. Cox, R. Wang, E. Na, S. Czukiewska, L. Chappell, T. Voet, G. Michel, N. Jing, D. M. Glover, M. Zer-nicka-Goetz. Self-Assembly of Embryonic and Two Extra-Embryonic Stem Cell Types into Gastrulating Embryo-Like Structures. Nature Cell Biology 20 (2018): 979-989. Doi: 10.1038/s41556-018-0147-7.
[17] Martin A. N owak. Five Rules for the Evolution of Cooperation. Science 314(2006): 1560-1563. Doi: 10.1126/science.l 133755.
[18] Why Mouse Matters. National Human Genome Research Institute, accessed April 5, 2019. URL: www.genome.gov/10001345/impor-tance-of-mouse-genome/.
[19] Nicolas Rivron, Martin Pera, Janet Rossant, Alfonso Arias, Magdalena Zernicka-Goetz, Jianping Fu, Susanne Van den Brink, Annelien Bredenoord, Wybo Dondorp, Guido de Wert, Insoo Hyun, Megan Munsie, Rosario Isasi. Debate Ethics of Embryo Models from Stem Cells. Nature 564 (2018): 183-185. Doi: 10.1038/d41586-018-07663-9.
[20] I. Martyn, T. Y. Kanno, A. Ruzo, E. D. Siggia, A. H. Brivanlou. Self-Organization of a Human Organizer by Combined Wnt and Nodal Signalling. Nature 558 (2018): 132-135. Doi: 10.1038/s41586-018-0150-y.
[21] John Aach, Jeantine Lunshof, Eswar Iyer, George M. Church. Addressing the Ethical Issues Raised by Synthetic Human Entities with Embryo-Like Features. eLife 6 (2017): e20674. URL: https:// elifesciences.org/articles/20674, doi: 10.7554/eLife.20674.
[22] H. C. Ott, T. S. Matthiesen, S.-K. Goh, L. D. Black, S. M. Kren, T. I. Netoff, D. A. Taylor. Perfusion-Decellularized Matrix: Using Nature’s Platform to Engineer a Bioartificial Heart. Nature Medicine 14 (2008): 213-221. Doi:10.1038/nml684.
[23] Rivron et al. Debate Ethics of Embryo Models, 183—185.
[1] 3D Atlas of Human Embryology, Carnegie Stage 7, accessed April 5, 2019. URL: http://3datlas.3dembryo.nl/3DAtlas_CS07-8752-v2016-03.pdf; 3D Atlas of Human Embryology, Carnegie Stage 23, accessed April 5, 2019. URL: http://3datlas.3dembryo. nl/3 DAtlas_CS23-9226-v2016-03.pdf; 3D Atlas of Human Embryology, accessed April 5, 2019. URL: www.3dembryoatlas.com/.
[2] В. S. de Ваккег, К. Н. de Jong, J. Hagoort, К. de Bree, С. T. Besselink, F. E. C. de Kanter, T. Veldhuis, B. Bais, R. Schildmeijer, J. M. Rui-jter, R. J. Oostra, V. M. Christoffels, A. F. Moorman. An Interactive Three-Dimensional Digital Atlas and Quantitative Database of Human Development. Science 354 (2016): aag0053. Doi:10.1126/science. aag0053.
[3] D. A. Jackson, R. H. Symons, R Berg. Biochemical Methodfor Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Орегон of Escherichia coli. Proceedings of the N ational Academy 69. No. 10 (1972): 2904-2909.
[4] CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. National Cancer Institute, accessed April 5,2019. URL: www.cancer. gov/about-cancer/treatment/research/car-t-cells.
[5] M. Saitou, H. Miyauchi. Gametogenesisfrom Pluripotent Stem Cells. Cell Stem Cell 18 (2016): 721-735. Doi:10.1016/j.stem.2016.05.001.
[6] O. Hikabe, N. Hamazaki, G. Nagamatsu, Y. Obata, Y. Flirao, N. Hamada, S. Shimamoto, T. Imamura, K. Nakashima, M. Saitou, K. Hayashi. Reconstitution In Vitro of the Entire Cycle of the Mouse Female Germ Line. Nature 539 (2016): 299—303. Doi:10.1038/na-ture20!04.
[7] Z.-K. Li, L.-Y. Wang, L.-B. Wang, G.-FI. Feng, X.-W. Yuan, C. Liu,
K. Xu, Y.-H. Li, H.-F. Wan, Y. Zhang, Y. F. Li, X. Li, W. Li, Q. Zhou, B. Y. Hu. Generation of Bimaternal and Bipaternal Mice from Hy-pomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell 23 (2018): 665-676, e4. URL: https://doi.Org/10.1016/j. stem.2018.09.004.
[8] Ibid.
[9] J. B. Gurdon. The Developmental Capacity of Nuclei Taken from Intestinal Epithelium Cells of Feeding Tadpoles. Journal of Embryology and Experimental Morphology 10 (1962): 622—640.
[10] J. B. Gurdon. The Egg and the Nucleus: A Battle for Supremacy (Nobel Lecture). Angewandte Chemie (International Edition in English) 52 (2013): 13890-13899. Doi:10.1002/anie.201306722.
[11] Roger Highfield. Scientists ‘Close to Holy Grail’of Stem Cells. Daily Telegraph, August 25, 2006, accessed April 5, 2019. URL: www. telegraph.co.uk/news/1527209/Scientists-closeto-Holy-Grail-of-stem-cells.html.
[12] The Nobel Prize in Physiology or Medicine 1990: Press Release, accessed April 5, 2019. URL: www.nobelprize.org/prizes/rnedicine/1990/ press-release/; E. Donnall Thomas. A History of Haemopoietic Cell Transplantation. British Journal of Haematology 105 (1999): 330-339. Doi:10.1111/j. 1365-2141.1999.01337.x.
[13] N. Amariglio, A. Hirshberg, B. W. Scheithauer, Y. Cohen, R. Loe-wenthal, L. Trakhtenbrot et al. Donor-Derived Brain Tumor Following Neural Stem Cell Transplantation in an Ataxia Telangiectasia Patient. PLOS Medicine 6. No. 2 (2009): el000029. URL: https://doi. org/10.1371/journal.pmed. 1000029.
[14] John Gearhart. Cell Biology: New Potential for Human Embryonic Stem Cells. Science 282 (1998): 1061-1062. Doi:10.1126/sci-ence.282.5391.1061; Eliot Marshall. Cell Biology: A Versatile Cell Line Raises Scientific Hopes, Legal Questions. Science 282 (1998): 1014-1015. Doi:10.1126/science.282.5391.1014.
[15] K. Watanabe, M. Ueno, D. Kamiya, A. Nishiyama, M. Matsumura, T. Wataya, J. B. Takahashi, S. Nishikawa, S. Nishikawa, K. Mugu-ruma et al. A ROCK Inhibitor Permits Survival of Dissociated Human Embryonic Stem Cells. Nature Biotechnology 25 (2007): 681—686. Doi:10.1038/nbtl310.
[16] David Cyranoski. The Cells That Sparked a Revolution. Nature 555 (2018): 429-430.
[17] Roger Highfield. Doug Melton: Finding a Cure for Diabetes. New Scientist, September 3, 2009, accessed April 5, 2019. URL: www. newscientist.com/article/dnl7729-doug-melton-finding-a-cure-for-diabetes/.
[18] A. Plein, A. Fantin, L. Denti, J. W. Pollard, C. Ruhrberg. Erythro-My-eloid Progenitors Contribute Endothelial Cells to Blood Vessels. Nature 562 (2018): 223-228. Doi:10.1038 /s41586-018-0552-x.
[19] S. A. Morris, R. T. Y. Teo, H. Li, P. Robson, D. M. Glover, M. Zer-nicka-Goetz. Origin and Formation of the First Two Distinct Cell Types of the Inner Cell Mass in the Mouse Embryo. Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 6364-6369. Doi:10.1073/pnas.0915063107.