Глава 14Получение, накопление и передача энергии[34]
Основой Первой и Второй промышленных революций были преобразования в энергетике. Сначала это был переход к использованию энергии пара, а затем – к использованию электроэнергии. Сейчас, в начале Четвертой промышленной революции, энергетика находится на пороге нового исторического перехода: от ископаемых видов топлива к возобновляемым энергоресурсам. Экологически чистые энергетические технологии и более совершенные возможности аккумулирования энергии выходят из лабораторий на производство и завоевывают рынки. С учетом того, что широкая коалиция стран инвестирует средства в прорывные технологии, способные изменить ход истории (такие как термоядерный синтез), уже можно предвидеть контуры нового энергетического будущего.
Всеобщая доступность экологически чистых, доступных энергоресурсов положительно скажется на состоянии окружающей среды и в особенности на населении развивающихся стран, в которых системы электроснабжения не отличаются надежностью или вовсе отсутствуют. Кроме того, применение экологически рациональных энергетических технологий может снизить издержки для компаний и потребителей и преодолеть негативное воздействие на экологию, ставшее результатом промышленных загрязнений прошлого века. Однако, чтобы эти преобразования были успешными, потребуются международное сотрудничество, долгосрочный подход и многосторонний диалог о необходимости инвестиций в технологии и инфраструктуру. Неверные шаги могут помешать всеобщему прогрессу на пути к этому потенциально революционному достижению.
Экологически чистые энергетические технологии, эффективное распределение и аккумулирование энергии в мировом масштабе
Многие технологии Четвертой промышленной революции, по всей видимости, имеют неоднозначные последствия. Наряду с обнадеживающими перспективами они могут вызывать социальное неравенство, безработицу, социальную разобщенность и вред для окружающей среды. Однако применительно к энергетическому сектору положение дел видится более оптимистичным. При условии надлежащего финансирования новые энергетические технологии могут привести к снижению цен, преодолению зависимости от ископаемых видов топлива, порожденной Первой промышленной революцией, и позволят создать экологически рациональное будущее для богатых и бедных, для городского и сельского населения.
Благодаря достижениям в области производства и распределения, достигнутым со времен Первой промышленной революции, человечество получило в свое распоряжение огромные запасы энергии. С помощью мышечных усилий человек способен вырабатывать мощность порядка 100 Вт. Этого достаточно для одной лампы накаливания. Спортсмены могут вырабатывать в три-четыре раза больше. Однако на каждого жителя планеты в среднем приходится мощность более 8000 Вт, а на каждого жителя некоторых развитых стран – более 35 000 Вт{185}. Проблема состоит в том воздействии, которое топливо, сжигаемое для получения этой энергии, оказывает на экологию планеты. По оценкам Управления по энергетической информации США (US Energy Information Administration), к 2040 году общемировая потребность в энергии увеличится почти вдвое и достигнет 39 трлн кВт⋅ч. Большая часть этой потребности будет приходиться на развивающиеся страны, которые пока имеют слаборазвитую инфраструктуру{186}.
Обеспокоенность по поводу климатических изменений нашла отражение в целях в области устойчивого развития (Sustainable Development Goals), сформулированных ООН, и уже подстегнула внедрение технологий возобновляемых источников энергии, таких как солнечная энергетика и ветроэнергетика. В 2015 году объем соответствующих инвестиций составил 265 млрд долл. (рис. 23), хотя в 2016 году имело место падение до уровня в 226 млрд долл{187}. Росту инвестиций способствовало снижение цен на компоненты для солнечной и ветровой энергетики. В 2016 году доля возобновляемых источников в объемах нового производства электроэнергии впервые превысила 50 %, хотя все еще составляла лишь 10 % от общемирового объема производства электроэнергии. Чтобы удовлетворять растущие потребности в энергии, добиться снижения потребления традиционных видов топлива и замедлить климатические изменения, энергетическая отрасль нуждается в дальнейших инновациях.
Рисунок 23. Инвестиции в энергетические мощности за период с 2008 по 2016 г.
Источник: материалы Франкфуртской школы финансов и управления (Frankfurt School of Finance & Management) (2017 г.), на основе данных, представленных на рис. 25
Прогнозисты-оптимисты полагают, что прорывы в технологиях аккумулирования энергии помогут достичь целевых показателей. Однако такие технологии потребуют гораздо более значительного объема инвестиций. В связи с этим крайне важно сохранить ценовой ориентир в условиях продолжающегося падения цен на жидкие виды топлива. Сейчас объем инвестиций в научно-технические разработки в области возобновляемых источников энергии находится на уровне 8–9 млрд долл., что составляет примерно 1/27 от объема всех остальных инвестиционных расходов за 2017 год{188}. Более желательным, согласно оценкам Кэмерона Хепберна (Cameron Hepburn), руководителя программы в области экономики устойчивого развития (Economics of Sustainability) института нового экономического мышления (Institute for New Economic Thinking) школы Оксфорд Мартин (Oxford Martin School), было бы соотношение, близкое к 1:1{189}. При условии надлежащего финансирования новые технологии, такие как биологические батареи, энергоэффективные наноматериалы, модульные блоки аккумулирования энергии, работающие в составе энергосистем, искусственное преобразование биологических отходов и приливные энергетические установки, могут развиваться и дальше.
На разработки в энергетике также будут влиять и другие технологии Четвертой промышленной революции. Искусственный интеллект позволит обеспечить интеллектуальное управление электросетями, способствуя повышению эффективности и снижению издержек{190}. Нанотехнологии, такие как углеродные нанотрубки и нанопористые пеноматериалы или гелеобразные субстанции, будут способствовать повышению эффективности и снижению потерь на всех этапах энергетического цикла, от поставщика до потребителя. Автоматизированные транспортные системы позволят повысить эффективность использования ресурсов за счет оптимизации маршрутов и энергопотребления, а биотехнология способна предложить такие инновации, как бактериальная инженерия и использование энергии фотосинтеза для создания биотопливных элементов{191}.
Пожалуй, самой передовой является технология ядерного синтеза, которая – если она будет работать так, как предполагалось, – позволит в изобилии получать экологически чистую, неисчерпаемую и относительно недорогую энергию. Здесь целевым является 2035 год. К этому сроку, как рассчитывают 35 стран, участвующих в проекте, во Франции будет введен в эксплуатацию международный экспериментальный термоядерный реактор (International Thermonuclear Experimental Reactor, ITER), который станет самым совершенным из всех когда-либо созданных реакторов для ядерного синтеза{192}. Ожидается, что его влияние на промышленные отрасли, экономику и геополитику будет грандиозным. И все же нельзя гарантировать, что эта огромная – объемом 18 млрд долл. – инвестиция в технологию ядерного синтеза будет успешной, поэтому диверсификация в разработке источников энергии представляется весьма разумной. Среди других набирающих силу разработок стоит отметить приливные энергетические установки и более экстравагантные идеи, такие как передача энергии с орбитальных солнечных электростанций при помощи микроволнового излучения{193}.
Какими бы ни были будущие источники энергии, в приоритете также должна оставаться задача эффективного накопления энергии. В частности, поскольку солнечные и ветровые электростанции не могут вырабатывать энергию непрерывно, прогресс в технологиях аккумулирования энергии позволит значительно расширить масштаб применения возобновляемых источников энергии. Технологии аккумуляторов быстро совершенствуются, по крайней мере на лабораторном уровне, а в ближайшие 15–20 лет мы сможем увидеть дальнейшие инновации в области нанотехнологий{194}. Снижение массы и габаритов аккумуляторных источников питания приведет к значительному росту привлекательности и практической полезности источников энергии с нерегулярной отдачей, а также позволит обеспечить электричеством еще 1,2 млрд людей, нуждающихся в нем.
Для раскрытия потенциала требуются совместные усилия
Для того чтобы конкурировать со сложившимися геополитическими и экономическими структурами, образовавшимися вокруг таких отраслей, как нефтяная и газовая, необходимо выработать новые стимулы для сотрудничества в сфере экологически чистых источников энергии. Такие структуры настолько укоренились, что пересмотр сложившейся зависимости от ископаемых видов топлива может породить серьезные системные риски. Падение цен на нефть уже оказало глубокий экономический и социальный эффект на такие нефтедобывающие страны, как Венесуэла, Россия и Нигерия. Прорыв в технологиях аккумуляторных источников энергии, к примеру, может иметь серьезные геополитические последствия для региональной безопасности из-за своего воздействия на налоговые системы и уровень занятости.
Однако, учитывая угрозу климатических изменений, на эти риски необходимо идти. Китай начал активно инвестировать средства в снижение объемов выбросов углекислого газа, но на полноценное воплощение этих усилий потребуется время. Тем не менее в мире растет понимание того, что, если страны будут действовать сообща, технологии позволят ускорить переход к экономике с нулевым уровнем выбросов углекислого газа.
На самом деле самая большая проблема перехода на экологически чистые источники энергии состоит в том, что этот процесс идет слишком медленно. Прежние преобразования энергетических систем затрагивали науку, инфраструктуру, сферу нормативного регулирования и товарные экосистемы. Такие структуры складывались в течение многих поколений, поскольку внедрение материалоемких технологий требовало длительного времени. В условиях, когда рынок ставит краткосрочные цели, переход к экологически чистой энергетике, который требует общество, без поддержки со стороны государства будет идти медленнее. Хорошим примером здесь является Кремниевая долина, предприятия которой на протяжении последних 20 лет были важной движущей силой экономики. Это стало возможным благодаря государственным инвестициям, сделанным в 1960-е и 1970-е годы.
Помимо инвестиций, для достижения экологически рационального будущего также требуется диверсификация. К тому времени, когда термоядерный реактор ITER выйдет на свою пиковую мощность, возобновляемые источники энергии смогут обеспечивать до 50 % производства электроэнергии в Европе{195}. Если следующие 20 лет технологии аккумулирования энергии будут устойчиво развиваться и продолжится инвестирование в инфраструктуру, мы будем уверенно двигаться в направлении экологической рациональности, даже если миллиардные инвестиции в ITER окажутся потраченными впустую. В производстве электроэнергии существуют и другие новаторские подходы, такие как использование потенциала международной кооперации и интеллектуальные сети, обеспечивающие интеграцию рынков и снижение энергозатрат за счет более эффективного распределения электроэнергии.
Перед нами по-прежнему стоят задачи перехода к технологиям возобновляемых источников энергии, снижения объемов вредных выбросов и повышения доступности энергии в развивающихся странах. Экологически чистое производство и распределение электроэнергии станут жизненно важной задачей для столетия, в котором общая численность населения достигнет ошеломляющей численности в 11 млрд человек{196}.
Дэвид Виктор (DavidVictor), профессор Калифорнийского университета, Сан-Диего (UCSD), США
При модернизации любой экономики уровень ее электрификации возрастает. Как правило, в наиболее развитых экономиках почти половина получаемой первичной энергии преобразуется в электрический ток, после чего электроэнергия поступает конечным потребителям по линиям электропередачи. Поскольку потребность в повышении экологичности энергосистем возрастает, ожидается еще более значительный сдвиг в сторону электрической энергии.
По мере того как зависимость общества от электричества растет, возникает вопрос: будет ли энергосистема будущего по-прежнему оставаться такой, какой она была на протяжении прежних 100 лет? В современной энергосистеме крупные центральные электростанции и масса электрогенерирующих установок, использующих возобновляемые источники энергии, такие как парки ветряных электростанций, связаны с потребителями при помощи протяженных линий электропередачи и сложных распределительных сетей, которыми централизованно управляют энергетические компании и другие операторы. В таких энергосистемах задействованы самые крупные на планете машины. Станет ли энергосистема будущего децентрализованной системой, в которой частные потребители энергии будут одновременно и производителями?
Быстрые технологические изменения, характерные для Четвертой промышленной революции, в самом скором времени потребуют от нас выбора одной из этих конкурирующих концепций энергосистемы будущего. С одной стороны, значительное повышение эффективности центральных электростанций и протяженных линий электропередачи (к примеру, в Китае функционирует самая крупная в мире сеть линий электропередачи напряжением 1 млн В) делает централизованные энергосистемы более надежными и экономически эффективными. Еще более сильный интерес вызывает ряд технологий децентрализованного электроснабжения, которые идеально подходят для категории производителей-потребителей. Это, в частности, небольшие турбины и микроэнергетические установки, которые могут использоваться для энергоснабжения промышленных зданий и кампусов, а также еще более компактные тепловые насосы, способные с чрезвычайно высокой эффективностью обеспечивать тепло- и холодоснабжение.
Благодаря появлению недорогих датчиков, высокопроизводительных компьютеров и инструментов для анализа «больших данных», эти многочисленные децентрализованные системы получили возможность функционировать автономно, а потребители обрели больше свободы в отношении выбора нужных им услуг. Стоимость аккумуляторных систем, необходимых для локального накопления энергии и сглаживания пиков потребления, стремительно падает.
Хотя победители этого масштабного соперничества пока еще неизвестны, можно предположить, что технологии децентрализации имеют преимущество и что энергосистема будущего станет гораздо более децентрализованной, чем нынешняя. Хотя центральные электростанции по-прежнему будут играть определенную роль, энергокомпании сейчас внедряют технологии, которые позволят повысить уровень автоматизации и оперативности управления на местном уровне. Это даст возможность увеличить надежность, так что в случае отказа некоторых компонентов энергосистемы (что периодически случается после снежных бурь и других явлений) система местного управления сможет автоматически перестроить свою структуру и сохранить бесперебойное энергоснабжение. Инвестиции в микроэнергосистемы, как и во многие другие составляющие революции в структуре производителей-потребителей, стремительно растут. Некоторые регулирующие органы также принимают новые нормы, специально разработанные для того, чтобы уменьшать финансирование централизованных поставщиков в пользу местных поставщиков и систем управления. Одним из примеров такого подхода является концепция по реформированию энергетического сектора в штате Нью-Йорк («New York’s Reforming the Energy Vision»).
На вопрос, хороша ли такая децентрализация для энергосистемы, довольно трудно ответить. Теоретически децентрализация и более совершенное управление на местном уровне дадут возможность потребителям воспользоваться всеми преимуществами повышения надежности сетей. Расширение возможностей управления со стороны потребителей позволит высвободить рыночные силы, которые слабы или отсутствуют в сегодняшних электроэнергетических системах. Это связано с монополизмом во многих сферах и с тем, что энергосистемы зачастую управляются государственными предприятиями или коммунальными предприятиями, деятельность которых регулируется государством. Возможность микроэкономического регулирования применительно к энергетическим компаниям также может стать благом для директивных органов, которые стремятся направлять субсидии и другие пособия наиболее сильно нуждающимся потребителям. Это важный момент в свете решения задачи предоставления услуг по энергоснабжению всему населению Земли по доступной цене.
И все же, если говорить о мировых энергосистемах в целом, данная концепция остается в значительной мере лишь рабочей гипотезой. Многое может пойти не так. Плохо организованное децентрализованное управление может ухудшить стабильность энергосистем. До настоящего времени централизованные энергосистемы показали достаточную устойчивость к несанкционированным внешним вмешательствам (хакерским атакам), несмотря на ряд инцидентов, таких как взлом элементов энергосистемы Украины в конце 2015 года. Но более децентрализованная система управления может стать уязвимее для злоумышленников. Кроме того, для создания по-настоящему децентрализованной энергосистемы потребуются масштабные инвестиции, возможно еще более значительные, чем для централизованных систем. Чтобы эти инвестиции окупились, потребуются проверенные бизнес-модели и хорошее управление. Хотя децентрализация благоприятствует появлению более экологически чистых технологий, ряд экономически эффективных подходов к децентрализации не предполагает полного отказа от вредных выбросов.
В большинстве микроэнергосистем, к примеру, используются высокоэффективные энергоустановки, работающие на природном газе. Это экологически чистый вид топлива, но, принимая во внимание общемировую задачу свести к нулю выбросы парниковых газов, применение данного вида топлива должно быть резко сокращено (или оно должно быть заменено на безуглеродное).
Важно, чтобы потребители, энергетические компании и директивные органы ответственно отдали себе отчет в том, реальны ли преимущества децентрализации. Поскольку технологии меняются быстро, необходимо иметь возможность корректировать нормативно-правовые положения и соблюдать надлежащий баланс между централизованной и децентрализованной энергетическими системами.
Эта проблема особенно актуальна в ситуации, когда на регионы с высокими темпами роста приходится наивысшая доля общемировых потребностей в энергии (рис. 24). Для того чтобы принимать обоснованные решения в области построения физической инфраструктуры с такими сложными составляющими, как связь, системы управления, средства измерения и технического обслуживания, а также создавать интегрированные международные энергетические рынки, требуется долгосрочный подход, ориентированный на множество заинтересованных сторон. Чтобы ориентироваться на перспективу, нужно сосредоточиться на инвестициях в разработку технологии, полностью свободной от углеродистых соединений, а не поощрять формирование инфраструктуры с низким уровнем выбросов СО2, рассчитанной на ближайшие 20–30 лет.
Рисунок 24. Динамика изменений ВВП и спроса на энергию в некоторых странах и регионах за 2000–2014 гг.
Источник: материалы Франкфуртской школы финансов и управления (Frankfurt School of Finance & Management) (2017 г.), на основе данных, представленных на рис. 25
Как и для других актуальных глобальных проблем, необходима стойкая приверженность государств к договоренностям, учитывающим интересы множества различных кругов. Как отмечается в большинстве исследований, для того чтобы добиться значительного снижения уровня вредных выбросов, требуется строительство капиталоемких электрических сетей. История показывает, что частные компании и правительства готовы к масштабным инвестициям в электрические сети только в том случае, если у них есть уверенность в предсказуемости законодательной и нормативно-правовой базы. Для смягчения международных рисков требуется наличие соглашений, таких как инвестиционные договоры, и арбитражных механизмов, а также координация национальных энергетических законов с международными стандартами.
Как отмечается в докладе Всемирного экономического форума о глобальных рисках 2017 года (Global Risks Report 2017), новые технологии в энергетике занимают завидное место среди группы технологий, негативные последствия от которых считаются наименее вероятными. Одновременно с этим они удерживают второе место среди технологий, обещающих наибольшие выгоды. Если не использовать этот потенциал, это станет катастрофическим провалом в деле соблюдения принципа коллективной ответственности.
1. Четвертая промышленная революция может покончить с мировой зависимостью от ископаемых видов топлива и от процесса производства энергии, сопровождаемого выбросами парниковых газов, которая сложилась в результате предыдущих промышленных революций. Эта задача как никогда актуальна, поскольку по мере роста мирового населения и индустриализации экономики климатические изменения становятся все более заметными, а общемировой спрос на энергию к 2040 году, по прогнозам, удвоится.
2. Чтобы ускорить темпы роста и охватить большее число секторов экономики, необходимо продолжить переход к возобновляемым источникам энергии. Нужно уже сейчас делать долгосрочные инвестиции, чтобы воспользоваться их плодами в предстоящие десятилетия, в особенности это касается быстрорастущих регионов. Инвестиции в научные исследования в сфере возобновляемых источников энергии должны опережать затраты на внедрение. Вместе с достижениями технологий аккумулирования энергии это позволит удовлетворить растущий спрос на электроэнергию.
3. Исследуются новые технологии в энергетике – от использования энергии приливов до термоядерного синтеза, а также передовые материалы и нанотехнологии. Это позволит повысить эффективность и снизить потери энергии. Интеллектуальные сети, дополненные возможностями искусственного интеллекта, а также динамическое перераспределение электроэнергии и использование транспортных средств с аккумуляторным питанием создадут возможность обеспечить широкомасштабное повышение эффективности на всех уровнях.
4. Масштабный переход к возобновляемым источникам энергии порождает опасения для индустрии ископаемых видов топлива, а также создает угрозу для соответствующих давно сложившихся геополитических структур. В этой связи крайне важно организовать коллективное взаимодействие, направленное на смягчение социальных и политических последствий такого перехода.
5. Если мы хотим, чтобы правительства были готовы к долгосрочным инвестициям, требуется сотрудничество всех заинтересованных кругов и всеобщая стабильность. Предсказуемость законодательства и нормативно-правовых баз поможет обеспечить доверие к такому сотрудничеству.
Глава 15Геоинженерия[35]
Идея геоинженерии заключается в целенаправленном эффективном управлении поведением чрезвычайно сложной биосферы Земли. Многие ученые, однако, находят, что технологии, предназначенные для вмешательства в эту область, в лучшем случае являются незрелыми и небезопасными, а в худшем – несут угрозу существованию человечества и могут иметь непредсказуемые и неконтролируемые последствия.
Эту главу не стоит рассматривать как попытку узаконить геоинженерию как практическую методику. Попытки масштабных вмешательств в столь сложную систему, какой является природная среда, будь то намеренное выведение новых биологических видов или уничтожение значительных площадей лесов, часто заканчивались катастрофами. Авторы чрезвычайно озабочены неспособностью прогнозировать так называемые трофические каскадные эффекты и управлять их последствиями.
Тем не менее для борьбы с различными глобальными проблемами, от загрязнения воздуха и засух до глобального потепления, предлагаются именно технологические вмешательства. Так, одно из предложений состоит в том, чтобы разместить в стратосфере гигантские зеркала для преломления солнечных лучей, распылять в атмосфере химические вещества для увеличения количества осадков, использовать машины большой мощности для удаления из воздуха диоксида углерода.
Технологические вмешательства в такие системы возможны, но, учитывая наше ограниченное понимание возможных последствий, такие действия могут нанести нашему миру непоправимый ущерб. Таким образом, геоинженерия – это достаточно противоречивая тема, которая требует создания новых регулирующих структур и вдумчивого изучения целесообразности любых действий, которые могут повлиять на ресурсы природной среды Земли. Это заставляет нас посвятить данной теме отдельную главу.
Может ли технологическое вмешательство напрямую способствовать глобальному потеплению?
В широком смысле геоинженерия – это намеренные вмешательства в природные системы планеты. Некоторые многообещающие направления ее применения: изменение структуры выпадения осадков, создание искусственных источников солнечного света и изменение биосферы при помощи биотехнологий. Однако большинство обсуждений геоинженерии сосредоточено вокруг задачи противодействия изменению климата. Концепция геоинженерии аналогична понятию «терраформирование» (terraforming), которое означает колонизацию человечеством других планет. К примеру, этот термин часто упоминается в дискуссиях в духе научной фантастики об изменении состава атмосферы Марса, чтобы она стала пригодной для долговременного проживания людей.
Хотя методики климатической геоинженерии на настоящий момент по большей части являются теоретическими, они предлагают ответные меры для сдерживания эмиссии парниковых газов в биосферу (рис. 25). К таким мерам относятся ограничение выбросов диоксида углерода, насыщение океана питательными веществами (удобрение океана), строительство искусственных островов и создание природных систем поглощения диоксида углерода за счет широкомасштабной высадки зеленых насаждений (рис. 26). В последнее время стали предлагаться различные методики для снижения температуры на планете. Их можно разделить на две категории: методики для удаления из атмосферы диоксида углерода, направленные на устранение основной причины изменения климата, и методики управления солнечной радиацией с целью отражения части солнечного излучения обратно в космос, что позволит временно ограничить рост температуры. Некоторые рассматриваемые технологии (например, гигантские зеркала и распыление аэрозолей в атмосфере) основаны на идеях, предлагаемых уже давно, однако в настоящее время задумываются и о новых подходах, в которых находит применение ряд технологий Четвертой промышленной революции (например, использование наночастиц и других передовых материалов).
Рисунок 25. Геоинженерия как прямое вмешательство в климатическую систему
Источник: Keith (2002)
Сторонники геоинженерии утверждают, что можно нейтрализовать накопленные за несколько веков загрязнения окружающей среды и экологический ущерб, нанесенный Первой промышленной революцией. Забывая, что история повторяется, они стоят на том, что потенциальные преимущества от снижения угроз для климата и возможность выиграть время для решения проблем эмиссии углекислого газа перевешивают риски появления дальнейших побочных эффектов. Более осмотрительные эксперты считают, что, с учетом ограниченности современных научных знаний, потенциальные негативные побочные эффекты слишком непредсказуемы, а риски неясны. Они указывают на пугающие эффекты домино, которые имели место после естественных нарушений в радиационном балансе Земли. К примеру, в результате извержения вулкана Тамбора в Индонезии, которое произошло в 1815 году, следующий 1816 год в Европе стал «годом без лета», что привело к неурожаю, голоду и болезням.
В любом случае, геоинженерия не должна всерьез рассматриваться как панацея. Чтобы добиться стабильности климата, экономическая и социальная системы Четвертой промышленной революции должны обеспечить достижение нулевой эмиссии соединений углерода, т. е. значительного сокращения общего объема выбросов и противодействия всем остальным загрязнениям за счет удаления диоксида углерода. Достижение этих целей невозможно при условии чисто технического подхода, хотя для решения соответствующих задач потребуются новые технологии и регулятивные меры. В этой связи некоторые поборники геоинженерии полагают, что правящие круги должны сочетать обе эти стратегии, чтобы не допустить еще более тяжких последствий изменения климата.
Глобальная регулирующая структура
Геоинженерия теоретически может принести выгоду для некоторых регионов, но при этом вызывать разрушения, засуху или наводнения в других{197}. Такой сценарий поднимает важные вопросы относительно того, как продвигаться вперед, как соблюсти баланс между приобретениями и издержками и как компенсировать ущерб пострадавшему населению. Сторонники геоинженерии подчеркивают необходимость слаженной межправительственной рамочной структуры регулирования, которая направляла бы процессы исследования и принятия решений для любого случая потенциального внедрения. Несмотря на то что есть общее видение необходимости глобального сотрудничества, на настоящий момент имеются лишь ограниченные элементы такой системы руководства. Параллельно с разработкой собственно технологий необходимо создать полноценную рамочную инфраструктуру, поскольку внедрение технологий без хорошо налаженного межправительственного сотрудничества грозит потенциальными рисками общественным благам.
Янош Паштор (Janos Pasztor), исполнительный директор организации Carnegie Climate Geoengineering Governance Initiative (Инициатива Совета Карнеги по управлению климатической геоинженерией), утверждает, что при отсутствии многосторонних соглашений существует риск, что небольшая группа стран, одна страна, крупная компания или даже состоятельное частное лицо могут предпринять односторонние действия в области климатической геоинженерии{198}. Те, кому не понравятся такие действия и их последствия, могут предпринять ответные меры по изменению климата, что приведет к геотехнологической гонке вооружений{199}. Поскольку развивающиеся страны обладают меньшими ресурсами для изменения климата, может создаться плачевная ситуация, когда население стран, на которых климатические изменения сказались наиболее сильно, окажется беззащитным перед лицом дальнейших экологических потрясений.
Потенциал климатической геоинженерии уже давно является предметом обсуждений в научном сообществе, однако для политических кругов это относительно новая тема. В 2013 году данный вопрос нашел отражение в резюме для политиков Межправительственной группы экспертов по изменению климата (МГЭИК) (Intergovernmental Panel on Climate Change, IPCC){200}. Недавно научные консультанты программы по исследованию глобальных изменений (US Global Change Research Program) убедили Конгресс США выделить средства на общегосударственные исследования в области геоинженерии{201}. В апреле 2017 года Гарвардский университет запустил самую большую и всеобъемлющую на сегодня программу исследований в области геоинженерии. Проект стоимостью 20 млн долл. призван установить, можно ли при помощи технологий воспроизвести эффект охлаждения атмосферы, который имеет место при вулканических извержениях{202}.
Рисунок 26. Подходы к климатической геоинженерии с разбивкой по категориям
Источник: Keith (2002)
* Вызванные деятельностью человека. – Прим. ред.
** Коэффициент отражения поверхности. – Прим. ред
Задачи регулирования, возникающие применительно к предлагаемым геоинженерным методикам, имеют самый широкий спектр, от вопросов контроля и принятия решений до обеспечения эффективного участия всех затрагиваемых сообществ. В современной архитектуре мирового регулирования только Генеральная Ассамблея ООН обладает законным правом предоставлять соответствующим профессиональным международным организациям полномочия на создание рамочной системы руководства и регулирования{203}. Наличие такого мандата является столь же обязательным, как и для миротворческих миссий или для контроля за распространением ядерного оружия. Впрочем, существуют возможности для выработки иных, возможно, лучших подходов, позволяющих охватить все соответствующие заинтересованные стороны.
Любой механизм регулирования, ориентированный на соблюдение интересов множества сторон, должен учитывать следующие вопросы:
• Не слишком ли велика неопределенность в отношении методик геоинженерии, чтобы приступать к их практическому внедрению?
• Как соблюсти баланс между присущими геоинженерии рисками и благоприятными перспективами, с одной стороны, и разнообразными методиками смягчения последствий изменения климата, с другой стороны?
• Какие варианты международного сотрудничества, мандаты, ограничения и директивные указания потребуются в области геоинженерных исследований, чтобы перейти от компьютерного моделирования и анализа различных сценариев в лабораторных условиях к практическим экспериментам в природной среде?
• Как найти баланс между необходимостью снижения общемировой температуры и разнородными региональными и локальными последствиями, которые будут усиливать остроту этических проблем, возникающих между странами и поколениями, и затрагивать аспекты соблюдения справедливости и прав человека?
• Как соблюсти баланс между необходимостью демократического контроля и необходимостью гибко адаптироваться к геополитическим изменениям на протяжении десятилетий, если принимать во внимание, что мероприятия геоинженерии ориентированы на долгосрочные цели, а любое решение относительно ввода в действие геоинженерных технологий должно указывать, каким образом будут регулироваться последующие решения по их изменению или приостановке (например, если методики по управлению солнечной радиацией уже начали применяться, отказ от них приведет ли к быстрому росту температуры)?
Уэнделл Уоллак, научный сотрудник междисциплинарного центра по биоэтике Йельского университета, США
Различные подходы к климатической геоинженерии порождают множество этических, экологических, политических и экономических дилемм. Существуют компромиссы и риски. Глобальное изменение климата можно замедлить, если потребности в энергии будут удовлетворяться при помощи экологически чистых, эффективных и возобновляемых энергоресурсов. Спрос на энергию, источники энергии, глобальное изменение климата и тенденция обращаться к геоинженерным методикам воздействия на климат тесно связаны между собой.
Чтобы хотя бы частично смягчить нарастающее с каждым годом глобальное потепление, необходимо в массовом порядке вводить в действие менее спорные инструменты управления климатом, такие как переработка отходов, посадка лесов для поглощения углекислого газа из атмосферы или окрашивание крыш домов в белый цвет для отражения солнечного света обратно в атмосферу. Некоторые технологические методы, такие как рассеивание сульфатных соединений или наночастиц в верхних слоях атмосферы, гипотетически более опасны, чем та проблема, которую они изначально призваны решить. Кроме того, сторонники сохранения природы и экологически чистой энергии озабочены тем, что иллюзия действенности каких-либо технологических мер против глобального изменения климата может подорвать стремление внести необходимые, но нелегкие поправки в поведение человечества или ослабить политическую волю к использованию экологически чистых источников энергии.
Если мы хотим добиться чего-то большего, нежели краткосрочных местных эффектов, все стратегии, нацеленные на решение проблемы глобального изменения климата, требуют широкомасштабных вмешательств. Даже массовое восстановление лесонасаждений не может возместить ежегодно продолжающуюся вырубку лесов в Амазонии и в других местах мира. Можно построить специальные высокие башни, которые высасывают углекислый газ из атмосферы и изолируют его, но это не даст быстрого эффекта или весомого результата. Масштабное внедрение такого способа удаления диоксида углерода может оказаться еще более дорогостоящим, чем экономические издержки, связанные с соблюдением строгих мер по сокращению выбросов парниковых газов в атмосферу.
Постоянное, из года в год, насыщение верхних слоев атмосферы частицами сульфатных соединений или специально разработанными наночастицами кажется относительно недорогим способом сокращения количества солнечного света, достигающего земной поверхности. Компьютерные модели демонстрируют, что данная форма управления солнечной радиацией позволит снизить ежегодное повышение температуры, имеющее место при глобальном потеплении, на целых 50 %. Это не решит проблему глобального потепления, хотя поможет замедлить темпы его роста. Но не приведет ли постоянное насыщение стратосферы к таким нарушениям климатических условий, которые будут еще более разрушительными, чем глобальное потепление, которое предполагалось подобным способом приостановить? Это нам неизвестно. Без надлежащих тщательных исследований невозможно установить, повлечет ли насыщение стратосферы непредвиденные последствия. Даже экспериментов малого масштаба может оказаться недостаточно, чтобы полностью выявить сложные взаимосвязи между различными слоями атмосферы. Сложные системы могут проявлять себя в непредсказуемых, а порой и разрушительных действиях.
Принимая во внимание политическую деликатность геоинженерных экспериментов, ученые с полным основанием воздерживаются от продвижения этой темы без выработки необходимых международных соглашений. Однако очень сложно достичь договоренности относительно создания международной структуры регулирования, которая бы определяла, какие эксперименты допустимы в природной среде. В отсутствие эффективного международного надзора государства политические силы, не признающие международные нормы, могут начать реализовывать свои собственные геоинженерные проекты для удовлетворения краткосрочных потребностей, игнорируя долгосрочные последствия своих действий. К примеру, учитывая простоту методики насыщения атмосферы особыми химическими соединениями, можно предположить, что одна страна решит применить этот метод для изменения местного климата, не думая о его влиянии на погоду в соседних регионах. Действительно, поскольку климат становится все более важной проблемой, страна может посчитать необходимым действовать самостоятельно в интересах своих граждан.
Некоторые геофизики и экологи выступают против испытаний геоинженерных стратегий. Они отмечают три основные проблемы, связанные с разрешением проводить геоинженерные исследования. Во-первых, инвестиции в геоинженерию будут отвлекать ресурсы от экологически обоснованных подходов, таких как меры по охране окружающей среды и разработке чистых источников энергии. Во-вторых, коллективы исследователей могут превратиться в заинтересованные группы, отстаивающие внедрение любых технологий, которые они разрабатывают. В-третьих, геоинженерия может ознаменовать собой «конец естественной сущности природы». Как только страны и регионы начнут напрямую манипулировать погодными условиями, беспрестанное давление и настоятельная потребность воздействовать на погоду как для местных, так и для глобальных нужд станет постоянным явлением.
Учитывая наше ограниченное понимание климатологии, любые попытки изменения климата при помощи методик геоинженерии могут привести к ряду непродуманных и потенциально катастрофических экспериментов. Когда-то контроль над природой был лишь мечтой ученых, но постепенно эта мечта превратилась в предмет недостаточно обоснованных устремлений. Даже если предположить, что успешное управление погодой является вполне достижимой целью, урегулировать конкурирующие потребности различных регионов и стран будет чрезвычайно сложно.
1. Геоинженерия – это широкомасштабное вмешательство в природные системы планеты. В большинстве случаев, однако, под этим термином понимаются технологические вмешательства (пока еще теоретические), нацеленные на сокращение эмиссии парниковых газов или изменение атмосферных процессов для борьбы с изменением климата.
2. Многие ученые утверждают, что при нынешнем уровне научных знаний вмешательство в климатические системы является опасным и безответственным, в то время как сторонники геоинженерии видят в нем возможность нейтрализовать воздействие человека на климат и окружающую среду, складывавшееся на протяжении столетий.
3. Для того чтобы добиться стабильного климата, т. е. нулевой эмиссии загрязнений, необходимо сократить общий объем выбросов и противодействовать выделениям диоксида углерода. Этой цели нельзя достичь оперативными технологическими мерами, однако технология должна играть важную роль в решении данной проблемы.
4. Любые ответственные шаги в области геоинженерии требуют создания рамочной инфраструктуры для глобального межправительственного сотрудничества. На сегодня существуют лишь ограниченные элементы такой инфраструктуры, а без нее риски для общественных благ становятся заметно выше.
5. Геоинженерия – это новый предмет обсуждения в политических кругах. Это направление очень слабо финансируется, по этой теме ведется мало активной экспериментальной работы. При организации управления этой группой технологий следует учитывать обширный спектр проблем, от полномочий на внедрение технологий до выбора менее рискованных альтернатив вмешательствам, имеющим общемировые последствия.
Глава 16Космические технологии
Велика вероятность, что к 2030 году мы увидим всплеск развития технологий, связанных с освоением космоса. Крупные достижения в области аэрокосмических технологий, астрономических наблюдений, разработки микроспутников, наноматериалов, 3D-печати, робототехники и машинного видения обещают беспрецедентные возможности для исследований, множество научных открытий и большую экономическую отдачу. Извлекать выгоду из того, что происходит за пределами атмосферы, смогут и развитые, и развивающиеся страны. Исследовательские и коммерческие организации будут получать огромные объемы данных, ведущие к появлению совершенно новых способов создания и обмена ценностей. Новые научные знания ускорят прогресс и усилят экологическую восприимчивость, а огромный потенциал коммерческого использования ресурсов, добытых в космосе, изменит промышленную торговлю будущего. Однако всему этому может помешать отсутствие международных соглашений в таких вопросах, как управление космическим трафиком, устранение орбитального мусора, космическая добыча ресурсов и общие нормы поведения в космическом пространстве.
Четвертая промышленная революция и последний рубеж[36]
Четвертая промышленная революция сделает космос доступнее. Коммерческие компании, такие как SpaceX и Blue Origin, стремятся значительно снизить стоимость космических полетов, упростив выход на орбиту. Аэрокосмическая компания BAE Systems инвестировала более 20 млн фунтов стерлингов в компанию Reaction Engine, разрабатывающую технологию SABRE (Synergetic Air-Breathing Rocket Engine, синергетический воздушно-реактивный ракетный двигатель), которая позволит летательным аппаратам совершать выходы на низкую околоземную орбиту с непосредственным возвращением на Землю, не требуя специальных посадочных полос и космодромов{204}. НАСА стремится отправить людей в космос, на Луну и Марс, и SpaceX разделяет это стремление. Новое поколение первопроходцев ждет начала эпохи космического туризма и разработки недр астероидов и ищет пути расширения космического сектора глобальной экономики. Добавим сюда улучшенные возможности телескопов и спутников, как наземных, так и космических, и получим новый взгляд на роль космоса во всех аспектах нашей жизни, от инноваций до взглядов на мир.
В следующие несколько десятилетий добыча производственных ресурсов в космосе может стать реальностью, оправдав ожидания первых инвесторов в коммерциализацию космоса. Кроме того, повышенная доступность космоса приведет к появлению новых индустрий, таких как космические путешествия, очистка орбиты от мусора и разработка платформ виртуальной реальности для «посещения» объектов Солнечной системы. Все эти сценарии помогут снизить нагрузку на земные ресурсы и предотвратить их истощение. Потенциал этой области объясняет, почему инвестиционные компании в одном только 2015 году вложили 1,8 млрд долл. в стартапы, связанные с коммерческим освоением космоса{205}. Эти инвестиции относятся не только к полетам людей в космос, хотя космический туризм будет пользоваться большим спросом, если туры будут предлагаться по разумной цене. Кроме того, для разработки и производства космических скафандров требуются новые и улучшенные материалы{206}, для защиты от солнечной радиации предлагается использовать наноматериалы{207}, а многие новые космические технологии будут получать и использовать данные, позволяющие преобразовать жизнь на Земле.
Затраты, необходимые для производства любых космических технологий, кроме самых передовых, постоянно снижаются. Даже спутники становятся все меньше, а их запуск обходится дешевле. Более доступные данные спутниковой съемки помогут следить за урожаями, дикой природой, численностью населения, цепочками поставок и развитием городов. Сами спутники покроют планету сетями связи, к которым можно будет подключить более четырех миллиардов человек, у которых все еще нет доступа к Интернету. Необходимы новые подходы к управлению нашими действиями и окружающей средой, такие как применение искусственного интеллекта и новых вычислительных технологий для обработки экзабайтов полученных данных – с этой задачей современные компьютеры не могут эффективно справляться. Чтобы человечество смогло получать максимум выгоды от использования этих технологий, потребуются совместные и добросовестные усилия заинтересованных сторон по всему миру.
Например, возможность использовать собранные по всему миру данные для повышения эффективности энергетических и транспортных систем поможет решать проблемы мирового уровня, такие как уменьшение выбросов вредных веществ, оптимальное распределение энергии и ее передача с меньшими потерями. В настоящее время несколько молодых инновационных компаний используют алгоритмы машинного видения для анализа спутниковых снимков и получения информации, полезной для торговли, сельского хозяйства, разработки инфраструктуры и других практических применений. Такие аналитические средства окажут большую помощь тем, кому необходимо принимать решения на основе анализа социальных и экологических данных. Если добавить сюда научные знания, полученные с помощью исследовательских зондов, телескопов, полетов в дальний космос беспилотных, а возможно, и пилотируемых аппаратов, то окажется, что мы стоим на пороге новой эры, в которой понимание места человека на Земле и в космосе будет совершенно иным.
Несмотря на такой потенциал, в докладе о глобальных рисках в 2017 году (GlobalRisksReport2017), представленном на Всемирном экономическом форуме, говорится, что освоение космоса представляется менее выгодным по сравнению с развитием других технологических областей. Это может показаться странным, с учетом того, что для создания спутников, исследования космоса, моделирования климата, развития аэронавтики и наук о Земле требуются передовые технологии и оборудование, не говоря уже об исследовательских задачах, для выполнения которых затеваются такие амбициозные проекты. Однако на это можно посмотреть и с другой точки зрения: необходимы годы многостороннего сотрудничества, чтобы получить результат от инвестиций в технологии, позволяющие активно использовать орбиту нашей планеты для выполнения задач, кажущихся фантастическими и выходящих за пределы понимания большинства людей, если кто-то вообще о них думает.
Вера людей в развертывание технологий в космосе хорошо обоснована. Кроме того, космические технологии представляют собой объединение передовых материалов, вычислительных и энергетических технологий – а все эти технологии занимают верхние места на шкале полезности, представленной в прошлогоднем отчете о глобальных рисках. Стремление к открытиям и получению новых конкурентных преимуществ создаст новые возможности для экономики и общества. Может оказаться, что к 2030 году мы не сможем планировать космические путешествия. Но, возможно, мы сможем управлять планетоходами или орбитальными дронами с помощью устройств виртуальной реальности. Космические технологии уже предоставляют связь почти половине населения планеты и вскоре смогут повсеместно обеспечивать общедоступные возможности коммуникации.
Эллен Стофен (EllenStofan), старший научный специалист НАСА (2013–2016 гг.), почетный профессор Центра исследования опасных явлений Университетского колледжа Лондона, Великобритания
Со времени запуска Международной космической станции (МКС) на ней проведено и еще проводится более 1,9 тыс. исследований в различных областях, включая здоровье человека. На МКС имеется несколько многоцелевых лабораторий с уникальным оборудованием, позволяющим проводить исследования в условиях невесомости. Микрогравитация вызывает в человеческом организме много уникальных биологических эффектов, например изменяет иммунную и сердечно-сосудистую системы, уменьшает плотность костей, ведет к потере мышечной массы и ухудшению зрения. Эти воздействия заставили ученых искать способы уменьшения рисков и расширили наши знания о многих проблемах со здоровьем, с которыми мы сталкиваемся на Земле.
Результаты исследований, ведущихся на МКС, продолжают оказывать влияние на методы и технологии, применяемые во многих областях медицины. Выяснилось, что прием препаратов, относящихся к классу бисфосфонатов, здоровое питание и регулярные физические упражнения позволяют сократить потерю костной массы. Плазма, легко поддающаяся изучению в условиях микрогравитации, помогает заживлять раны и бороться с раком, ускоряя инактивацию опухолей. Текущие исследования роста высококачественных белковых кристаллов в условиях микрогравитации могут привести к открытию более эффективных методов лечения мышечной дистрофии Дюшенна. Это лишь несколько примеров работ, ведущихся на высоте более 200 миль (320 км) над Землей.
Многие из исследований в области человеческого здоровья, ведущихся на МКС международными группами ученых, дали важные результаты и позволили создать новые технологии. Отметим лишь некоторые из разработанных устройств и технологий для спасения жизней, с большим успехом применяющиеся по всему миру: ультразвуковой сканер нового поколения, в настоящее время использующийся на МКС и в отдаленных уголках Земли для быстрого и точного установления диагноза у травмированных или больных людей; портативный прибор NIOX MINO для мониторинга астмы и предотвращения будущих приступов; усовершенствованная технология обнаружения иммунных изменений и остеопороза на ранних стадиях; и даже технологии, изначально не предназначавшиеся для медицинских целей, такие как neuroArm. С помощью роботизированной хирургической системы neuroArm, разработанной с использованием тех же материалов и методов, что и роботизированные манипуляторы Canadarm, применяемые на МКС для перемещения грузов и обслуживания, врачи теперь могут выполнять операции на мозге, в то время как пациенты находятся внутри магнитно-резонансного томографа.
Кроме подготовки полета на Марс, специалисты НАСА сотрудничают с другими правительственными агентствами и частными компаниями, занимающимися поиском методов лечения рака в рамках инициативы правительства США Cancer Moonshot.
Ученые обсуждают возможности изменения иммунной системы, позволяющие лучше понять, как предотвращать заболевания и ускорять их обнаружение и лечение. В поисках способов защиты людей от радиации в космосе исследователи из НАСА разработали технологию, помогающую изучать альтернативные методы лечения рака, – радиотерапию пучками элементарных частиц, при которой опухолевые клетки получают определенную дозу радиации с меньшим ущербом для окружающих здоровых клеток. Это не новая область для НАСА – исследования в области разработки микрокапсул на МКС позволили продвинуться в лечении рака и создать новую технологию производства уникальных микрошариков, содержащих лекарственные препараты, высвобождающиеся через 12–14 дней после попадания в организм.
Благодаря исследованиям, ведущимся на низкой околоземной орбите, мы далеко продвинулись в понимании функционирования человеческого тела на Земле и в условиях микрогравитации, но впереди еще много работы. Чем дольше будет длиться космический полет, тем больше проблем со здоровьем возникнет у людей, и мы должны продолжать искать решения этих проблем совместными усилиями. По мере того как мы раздвигаем границы, появляются новые идеи и партнерские отношения, позволяющие проводить новые исследования и создавать космические технологии во благо всего человечества.
Снижение порога вхождения и повышение планки для достижения успеха
Человеческое общество получило от космических технологий огромную пользу. Спутники позволяют синхронизировать работу международных финансовых сетей, вести мониторинг земного климата, экологически рационально управлять природными ресурсами, поддерживать работу жизненно важных служб и образовательных организаций в отдаленных населенных пунктах, предупреждать о природных катастрофах. Однако космический сектор, как и многие другие, находится на пике крупнейших изменений, вызванных техническим прогрессом. Эти изменения обещают еще больше преимуществ для общества, но лишь при условии решения ряда важных вопросов.
Освоение космоса часто считают передним краем технического прогресса, но в действительности все гораздо сложнее. Огромные правительственные инвестиции в начале космической эры, в 1950-х и 1960-х годах, позволили получить множество научных открытий и инноваций. Сопутствующие технологии положили начало многим отраслям промышленности, включая производство микрочипов и разработку программного обеспечения. Однако высокая стоимость космических запусков и суровые условия космической среды повысили требования к надежности и функциональности, что ограничило инновации и создало очень высокие барьеры для входа в эту область.
Сегодня в космическом секторе появляется множество инноваций, но большинство из них связано с достижениями в других секторах. Например, индустрии микрочипов и программного обеспечения, развившиеся во многом благодаря космической гонке, стали самостоятельными и теперь возвращают «долг» космической индустрии. Производственная инфраструктура, дающая миру смартфоны, ноутбуки и другие вычислительные устройства, позволяет разрабатывать новое поколение более интеллектуальных, быстрых и дешевых спутников и компонентов космических ракет. Облачные вычисления сделали доступными средства обработки и хранения данных – основного продукта работы большинства спутников. Новые технологии, такие как 3D-печать, передовая робототехника и искусственный интеллект, тоже вносят свой вклад в устранение барьеров для производства спутников и раздвижение границ их возможностей. Например, компания Made in Space продемонстрировала возможности 3D-печати на МКС, а компания NovaWurks разрабатывает модульные компоненты спутников, которые могут самостоятельно собираться или изменять свою конфигурацию прямо на орбите.
К преимуществам, предоставляемым другими технологиями, относится также обеспечение финансами и рабочей силой. Технический мир переживает наплыв венчурных инвесторов, которые ищут многообещающие возможности вложения средств, и молодых высококвалифицированных инженеров, желающих решать новые интересные задачи. Многие инвесторы и инженеры выросли, мечтая о космосе, наблюдая за космонавтами или увлекаясь научной фантастикой. Эти целеустремленные специалисты обретают новый интерес, внося вклад в развитие космических технологий. Например, компания Planet – один из стартапов Кремниевой долины, учрежденный бывшими инженерами НАСА, – активно привлекает из ИТ-сообщества талантливых специалистов по программной и аппаратной инженерии.
Результатом такого притока технологий, капитала и людей становятся глубокие изменения и инновации в космическом секторе. Традиционные способы применения космических технологий, такие как удаленное зондирование, коммуникации, точная навигация и временнáя привязка, становятся еще более эффективными. Стоимость проектирования, производства, запуска и обслуживания спутников уменьшается, как и расходы на хранение, обработку и структурирование полученных с помощью этих спутников данных. Одновременно с этим появляются новые возможности, включая более дешевые способы запуска спутников, планы по их производству и обслуживанию прямо в космосе, средства доставки на орбиту грузов и новых компонентов, расширяющих возможности космических аппаратов. И даже добыча в недрах астероидов воды и ценных минералов уже в пределах возможного (рис. 27).
Рисунок 27. Новые компании для полетов в космос и их цели
Источник: НАСА (2014)
Несмотря на все это, изменения в космическом секторе усложняют некоторые существующие проблемы и создают новые. Значительное снижение порога вхождения позволяет государствам и частным компаниям запускать свои космические программы, а технологические достижения на порядки увеличивают число запускаемых спутников. Сегодня более 70 стран владеют или управляют спутниками на земной орбите; недавно в этот список добавились Ирак, Уругвай, Туркменистан и Лаос. В следующие десять лет планируется запуск около 12 тыс. новых коммерческих спутников для широкополосного доступа к Интернету и выполнения других задач. В результате этого усиливается загроможденность орбиты, затрудняющая слежение за космическим трафиком, управление орбитальными аппаратами и предотвращение их столкновений. Радиочастотный диапазон электромагнитного спектра тоже становится все более загруженным по мере того, как растут потребности космических и наземных служб в передаче сигналов. К тому же космическое пространство все чаще используется для решения военных задач и обеспечения национальной безопасности, поэтому высоки шансы на то, что будущие конфликты на Земле распространятся и за ее пределы, создавая угрозу для использования космоса в целом.
Все эти проблемы можно решать, и для этого уже предпринимаются усилия. Государства ведут двусторонние и многосторонние переговоры по некоторым актуальным вопросам и разрабатывают меры по обеспечению прозрачности и надежности, чтобы преодолеть взаимное недоверие. Совместно с частным сектором создаются рекомендации по рациональному долгосрочному использованию космического пространства, включающие требования к уменьшению создаваемого космического мусора, увеличению ситуационной осведомленности в вопросах освоения космоса и предотвращению столкновений орбитальных аппаратов. Однако международному сообществу потребуется больше усилий, чтобы космический сектор смог реализовать свой полезный потенциал в обозримом будущем.
Для разработки технологий в космосе необходимо лидерство и инновационные методы управления в следующих направлениях:
• Создание дополнительных механизмов, позволяющих капиталу участвовать в определении международных рамок регулирования. В настоящее время не существует механизмов для формальной подачи предложений Комитету по использованию космического пространства в мирных целях, созданному в 1959 году для надзора за всеми правовыми нормами, относящимися к деятельности в космосе. В «Деловой двадцатке» – группе корпоративных лидеров, представляющих бизнес-сообщество стран «Большой двадцатки», – необходима аналогичная структура, которая объединяла бы все новые компании, выходящие на космическую арену, и предоставляла платформу для обмена информацией, создания новых возможностей и совместного решения проблем.
• Устранение разногласий между национальными и международными нормами добычи ресурсов в космосе и другой космической деятельности с частным финансированием. С ростом негосударственных инвестиций правительствам необходимо обеспечить соответствие деятельности частных предприятий национальным законам, согласованным с международными нормами. Чем раньше начнут решаться вопросы регулирования, тем добросовестнее будут действовать новые участники.
• Новая система управления космическим трафиком. С ростом числа действующих в космосе организаций усиливается необходимость в надежной системе управления объектами, находящимися на околоземной орбите. Распространенность коммерческих спутников требует коллективного подхода к разработке орбитальных протоколов и норм, необходимых для успешного развития космического сектора.
• Борьба с космическим мусором. Хотя более широкие нормы предусматривают необходимость рационального управления спутниками и отработавшими ракетными блоками, нет никаких формальных механизмов правоприменения, гарантирующих, что все участники будут поддерживать безопасность и чистоту околоземных орбит. При тех скоростях, с которыми движутся объекты на орбите, такие протоколы необходимы для защиты инвестиций и человеческих жизней.
• Возможное отсутствие в небольших государствах необходимых механизмов контроля деятельности, имеющей отношение к космосу, происходящей на их территории. Это может привести к непредвиденным конфликтам, по мере того как все больше государств и негосударственных организаций запускают космические программы. Во всех странах необходимо четкое соблюдение принятых норм поведения в космосе.
1. Для космических и имеющих отношение к космосу технологий наступил переломный момент. По всему миру идет бурное развитие этих технологий, направляемое частными инвестициями и новыми государственными программами, нацеленными на освоение и коммерциализацию космоса. Инженеры и инвесторы, которые ищут способы применения своих способностей и средств, находят их в космическом секторе, который дает широкие возможности для участия в формировании будущего человечества.
2. Годы многостороннего сотрудничества инженеров, регуляторов и инвесторов укрепляют веру в то, что развертывание технологий в космосе относительно безопасно. Необходимы непрерывные совместные усилия по решению важных проблем, таких как увеличение объема космического мусора, неуправляемый космический трафик и отсутствие универсальных норм поведения в космосе.
3. Космический сектор способствовал развитию сопутствующих отраслей, таких как производство микрочипов и разработка программного обеспечения. Однако это замкнутый цикл, и космическая отрасль тоже развивается благодаря достижениям сопутствующих технологий. Мобильные компьютеры, аккумуляторы, 3D-печать и искусственный интеллект помогают повышать эффективность существующих космических технологий и создавать новые.
4. К новым сложностям, возникающим на последнем рубеже, относятся необходимость координации действий новых игроков, входящих в космическую отрасль и выводящих свои аппараты на орбиту, загроможденность пространства новыми спутниками и другими космическими объектами, совместное использование радиочастотного диапазона, определение правил и процедур использования космических ресурсов.
5. Необходимы многосторонние переговоры и соглашения, позволяющие установить доверительные отношения между государствами и частным сектором, разработать нормы использования космического пространства для общего блага, предотвращающие обострение геополитических конфликтов, создать механизмы управления, доступные международному сообществу, в том числе небольшим государствам, и определить рамки поведения в космосе.