Тени разума. В поисках науки о сознании — страница 10 из 14

Напомним условие задачи, поставленной в §5.3. Предлагается показать, что невозможно раскрасить все вершины додекаэдра в БЕЛЫЙ и ЧЕРНЫЙ цвета, соблюдая следующие условия: две «следующие соседние» вершины не могут обе быть БЕЛЫМИ, а шесть вершин, соседних с двумя противоположными (антиподальными) вершинами, не могут быть все ЧЕРНЫМИ. При исключении возможных вариантов раскраски чрезвычайно полезной оказывается симметричность додекаэдра.

Обозначим вершины, как указано на рис. 5.29. Вершины A, B, C, D и E образуют ближайшую к нам пятиугольную грань додекаэдра; дальше, в том же порядке, следуют соседние с ними вершины F, G, H, I и J. Как и в §5.18, соответствующие антиподальные вершины обозначены через A*, …, J*. Для начала отметим, что, согласно второму свойству условия, среди вершин додекаэдра хотя бы одна должна быть БЕЛОЙ — пусть это будет A.

Предположим теперь, что среди непосредственных соседей БЕЛОЙ вершины A имеется еще одна БЕЛАЯ вершина — скажем, B (см. рис. 5.29). Тогда все десять вершин, окружающие эту пару, — C, D, E, J, H*, F, I*, G, J* и H — должны быть ЧЕРНЫМИ, так как каждая из них является следующей соседней по отношению либо к A, либо к B. Далее, возьмем шесть вершин, соседних с вершинами из антиподальной пары H, H*. В этой шестерке должна быть хотя бы одна БЕЛАЯ вершина, значит, БЕЛОЙ будет либо F*, либо C* (или обе сразу). Проделав ту же процедуру с парой J, J*, приходим к выводу, что здесь БЕЛОЙ должна быть либо вершина G*, либо E* (или, опять же, обе сразу). Но это невозможно! И G*, и E* являются следующими соседними по отношению как к F*, так и к С*. Следовательно, вариант, когда у БЕЛОЙ вершины А имеется БЕЛЫЙ же непосредственный сосед, исключается — в самом деле, ввиду симметричности додекаэдра, невозможной оказывается любая пара соседних БЕЛЫХ вершин.

Таким образом, вершина A должна быть окружена исключительно ЧЕРНЫМИ вершинами B, C, D, E, J, H*, F, I* и G, поскольку каждая из этих вершин является по отношению к A либо соседней, либо следующей соседней. Обратим наше внимание на шесть вершин, соседних с вершинами из антиподальной пары A, A*. Очевидно, что одна из вершин B*, E* или F* должна быть БЕЛОЙ, причем, в силу симметричности додекаэдра, неважно, какая именно, — пусть будет F*. Отметим, что вершины E* и G* являются следующими соседними по отношению к F*, значит, они обе должны быть ЧЕРНЫМИ; ЧЕРНОЙ должна быть и вершина H, поскольку она соседствует с F*, а мы только что исключили возможность существования соседних БЕЛЫХ вершин. Однако так раскрашивать вершины нельзя, потому что при этом все соседи антиподальных вершин J, J* оказываются ЧЕРНЫМИ. Вот, собственно, и все доказательство — в классическом мире магические додекаэдры невозможны!

Приложение C: Ортогональность общих спиновых состояний

Предложенное Майораной обобщенное описание спиновых состояний не пользуется широкой известностью среди физиков, хотя оно весьма удобно и геометрически наглядно. Я расскажу здесь вкратце об основных формулах и о некоторых их геометрических приложениях. Мы, в частности, получим необходимые для рассуждения в §5.18 отношения ортогональности, определяющие геометрию магических додекаэдров. Мои описания существенно отличаются от тех, что первоначально сформулировал Майорана [252], приближаясь, скорее, к описаниям, данным в [299] и [396].

Идея заключается в том, что берется неупорядоченное множество из п точек на сфере Римана, каковые точки рассматриваются как корни комплексного полинома степени n, коэффициенты которого, в свою очередь, используются в качестве координат (n + 1)-мерного гильбертова пространства спиновых состояний (массивной) частицы со спином 1/2 n. Как и в §5.10, основными состояниями будем считать различные возможные результаты измерения спина в вертикальном направлении; представим эти состояния в виде одночленов (добавив соответствующие нормирующие множители, чтобы сохранить единичную длину векторов состояний):

|↑↑↑↑…↑↑〉 — xn

|↓↑↑↑…↑↑〉 — n1/2xn-1

|↓↓↑↑…↑↑〉 — {n(n - 1)/2!}1/2xn-2

|↓↓↓↑…↑↑〉 — {n(n - 1)(n - 2)/3!}1/2xn-3

|↓↓↓↓…↓↑〉 — n1/2x

|↓↓↓↓…↓↓〉 — 1.

(Выражения в фигурных скобках — биномиальные коэффициенты.) Таким образом, общее состояние спина 1/2 n,

z0|↑↑↑…↑↑〉 + z1|↓↑↑…↑↑〉 + z2|↓↓↑…↑↑〉 + z3|↓↓↓…↑↑〉 + … + zn|↓↓↓…↓↓〉,

представляется в виде полинома

p(x) = a0 + a1x + a2x2 + a3x3 + … + anxn,

где

a0 = z0a1 = n1/2z1, a2 = {n(n - 1)/2!}1/2z2, … an = zn.

Корням x = α1, α2, α3, …, αn полинома p(x) = 0 соответствуют n точек на сфере Римана, определяющие описание Майораны. Допускается и майоранова точка, задаваемая корнем x = ∞, — южный полюс сферы, — это происходит, когда степень полинома P(x) оказывается меньше n на величину, определяемую кратностью этой точки.

Вращение сферы осуществляется посредством следующего преобразования: сначала выполняем замену

x↦ (λx - μ)(λ'x + μ')—1

(где λλ' + μμ' = 1), а затем избавляемся от знаменателей, умножив все выражение на (μ'x + λ')n. Таким образом, можно получить полиномы, соответствующие результатам измерений (скажем, с помощью установки Штерна—Герлаха) спина в произвольно выбранном направлении, что дает выражения вида

c(λx - μ)p(λ'x + μ')n - p.

Точки, задаваемые отношениями μ/λ и —μ'/λ', являются антиподальными на сфере Римана и соответствуют направлению измерения спина и направлению, противоположному ему. (Это предполагает некий подходящий выбор фаз для состояний |↑↑↑…↑〉, |↓↑↑…↑〉, |↓↓↑…↑〉, …, |↓↓↓…↓〉. Вышеупомянутые свойства и их детальные обоснования удобнее всего рассматривать в терминах 2-спинорного формализма. За подробностями отсылаю читателя к [301], с. 162 и §4.15. Общее состояние спина 1/2 n описывается там через симметрический n-валентный спинор, при этом майораново описание выводится из канонического разложения спинора на симметризованное произведение спиновых векторов.)

Для любой точки α на сфере Римана антиподальной является точка —1/α'. Таким образом, если отразить все майорановы точки, являющиеся корнями полинома

a(x) ≡a0 + a1x + a2x2 + a3x3 + … + an - 1xn - 1 + anxn,

относительно центра сферы, то мы получим корни полинома

a*(x) ≡a'n - a'n - 1x + a'n - 2x2 - … - (—1)na'1xn-1 + (—1)na'0xn.

Пусть состояния |α〉 и |β〉 заданы, соответственно, полиномами a(x) и b(x), где

b(x) ≡b0 + b1x + b2x2 + b3x3 + … + bn - 1xn - 1 + bnxn;

тогда их скалярное произведение имеет вид

β|α〉 = b'0a0 + (1/n)b'1a1 + (2!/n(n - 1))b'2a2 + (3!/n(n - 1)(n - 2))b'3a3 + … + b'nan.

Это выражение инвариантно относительно вращений сферы, что можно непосредственно доказать, используя вышеприведенные формулы.

Применим полученное выражение для скалярного произведения к конкретному случаю b(x) = a*(x), т.е. к случаю двух состояний, майораново описание одного из которых состоит исключительно из точек, антиподальных точкам, составляющим майораново описание другого. Их скалярное произведение равно (с точностью до знака)

a0an - (1/n)a1an - 1 + (2!/n(n -1))a2an