Тени разума. В поисках науки о сознании — страница 8 из 14

Новая физика, необходимая для понимания разумаВ поисках невычислительной физики разума

4. Есть ли в классической физике место разуму?

4.1. Разум и физические законы

Все мы (как телом, так и разумом) принадлежим Вселенной, которая беспрекословно подчиняется — причем с чрезвычайно высокой точностью — невероятно хитроумным и повсеместно применимым математическим законам. В рамках современного научного мировоззрения уже давно принимается как данность тот факт, что физическое тело человека находится с упомянутыми законами в полном согласии. А разум? Многим глубоко неприятна мысль о том, что нашим разумом управляют все те же математические законы. И все же если нам придется проводить четкую границу между телом и разумом — первое подвержено действию математических законов физики, а второму дозволено быть от них свободным, — то неприятность никуда не денется, а лишь сменит название. Разум человека, вне всякого сомнения, оказывает влияние на то, как именно действует его тело, а физическое состояние этого самого тела не может, в свою очередь, не влиять тем или иным образом на разум. Сама концепция разума, не предполагающая способности разума хоть как-то воздействовать на собственное тело или испытывать какое-либо воздействие с его стороны, представляется довольно бессмысленной. Более того, если разум — не более чем «эпифеномен» (то есть некое явление, неразрывно связанное с физическим состоянием мозга, но совершенно пассивное), побочный продукт деятельности тела, никак на это тело не влияющий, то получается, что разуму отводится роль беспомощного и бесполезного созерцателя. Если же разум способен повлиять на свое материальное тело таким образом, что тело сможет действовать вопреки законам физики, то под угрозой оказывается точность и общая применимость этих законов. Таким образом, придерживаться в данном случае целиком и полностью «дуалистической» точки зрения (согласно которой законы, управляющие разумом и телом, никак между собой не связаны и друг от друга не зависят) весьма и весьма непросто. Даже если предположить, что управляющие действиями тела физические законы допускают некоторую свободу, в рамках которой разум может каким-то образом влиять на поведение тела, то тогда и сама эта свобода в данном конкретном проявлении должна являться немаловажной составной частью вышеупомянутых физических законов. Неважно, какие именно законы управляют деятельностью разума и с помощью каких средств мы будем эту деятельность описывать, — все они непременно должны являться неотъемлемой частью того грандиозного механизма, что управляет всеми прочими материальными проявлениями нашей Вселенной.

На это нам скажут{57}, что если мы будем рассматривать «разум» просто как очередную вещественную сущность — пусть даже отличную от обычной материи и построенную на иных принципах, — то совершим, ни много ни мало, «категориальную ошибку». А в качестве доказательства приведут аналогию, в соответствии с которой материальное тело сравнивается с физическим компьютером, а разум — с компьютерной программой. В самом деле, подобные аналогии порой оказываются весьма конструктивными — там, где они уместны, и, безусловно, в тех случаях, когда очевиден риск возникновения путаницы между концепциями разного уровня, необходимо что-то предпринимать. Тем не менее, одного лишь указания на возможную «категориальную ошибку» явно недостаточно для того, чтобы разрешить вполне реальную проблему взаимоотношений разума и тела.

Кроме того, между некоторыми физическими концепциями и в самом деле можно установить равенство, хотя на первый взгляд может показаться, что при этом неизбежно возникает нечто вроде категориальной ошибки. Примером может послужить знаменитая формула Эйнштейна E = mc2, которая устанавливает эффективное равенство энергии и массы. Налицо явная категориальная ошибка — масса есть мера вещественных, материальных объектов, тогда как энергией, как правило, называют несколько туманную абстрактную величину, которая характеризует потенциальную способность к выполнению работы. И все же формула Эйнштейна, связывающая эти две концепции, по сей день остается краеугольным камнем современной физики, а ее справедливость была неоднократно подтверждена экспериментально на примере самых разных физических процессов. Еще более поразительный пример мнимой категориальной ошибки в физике возникает в связи с концепцией энтропии (см. например, НРК, глава 7). Определение энтропии крайне субъективно, поскольку она представляет собой, в сущности, лишь некий придаток к понятию «информация»; в то же время энтропия оказывается связана и с другими, более «материальными» физическими величинами посредством вполне точных математических соотношений{58}.

Равным образом, я не вижу причин, способных запретить нам хотя бы попытаться рассмотреть концепцию «разума» с точки зрения возможности ее наглядного соотнесения с другими физическими концепциями. В частности, понятие разума непременно должно включать в себя «сознание», неразрывно связанное с вполне определенными и весьма специфическими физическими объектами (с живым и бодрствующим человеческим мозгом, по меньшей мере), так что можно предположить, что какое-никакое физическое описание этого феномена окажется в конечном счете возможным; при этом совершенно неважно, насколько далеки мы от его понимания в настоящий момент. Один шаг к такому пониманию мы сделали в первой части книги: сознательное понимание должно, помимо прочего, сопровождаться некоей неалгоритмической физической активностью, — если, конечно, следовать логике представленных рассуждений и умозаключений, т.е. если мы готовы принять точку зрения, сходную, скорее, с C (ради чего, собственно, я все это и затеял), нежели с любой из остальных (A, B и D, см. §1.3). Я прошу тех читателей, кого не убедили мои предыдущие аргументы, не покидать нас еще некоторое время и хотя бы взглянуть на те неведомые края, к исследованию которых нас побуждает C. Мы обнаружим, что открывающиеся перед нами возможные варианты вовсе не так бесперспективны, как, казалось бы, можно было ожидать; многое в этих краях и само по себе представляет немалый интерес. Надеюсь, что по завершении наших изысканий упомянутые читатели с большей благосклонностью отнесутся к предложенным в первой части книги аргументам (и оценят, наконец, их красоту и мощь). Отправимся же в путь — вслед за нашей путеводной звездой C!

4.2. Вычислимость и хаос в современной физике

Точность и область применимости физических законов, по современным оценкам, чрезвычайно велики, однако в этих законах нет ни единого намека на процессы, которые невозможно моделировать вычислительными методами. Тем не менее, мы все же попробуем отыскать в дозволенных законами пределах место для той таинственной невычислительной активности, которая каким-то образом оказывается необходимой для функционирования наших с вами мозгов. Отложим на некоторое время дискуссию о возможной природе такой невычислимости. Есть все основания полагать, что природа эта чрезвычайно хитроумна и неуловима, и мне бы не хотелось застрять в самом начале, увязнув в рассмотрении всех непременно связанных с нею тонкостей. Мы вернемся к этому вопросу позже (§§7.9, 7.10). Достаточно сказать, что для хоть какого-то движения вперед нам потребуется нечто существенно отличное от тех картин, что рисуют существующие на данный момент физические теории, будь они классическими или квантовыми.

В классической физике мы можем в любой выбранный момент времени указать все необходимые для определения физической системы данные, дальнейшая же эволюция этой системы не только целиком и полностью определяется указанными данными, но и может быть по ним вычислена с помощью эффективных методов «тьюрингова» вычисления. По крайней мере, такое вычисление возможно в принципе, при соблюдении двух взаимосвязанных условий. Первое условие заключается в возможности адекватной оцифровки исходных данных — с тем, чтобы мы могли с достаточной степенью точности заменить непрерывные параметры теории соответствующими дискретными параметрами. (В сущности, такая замена обычно и производится при компьютерном моделировании классических систем.) Второе условие связано с тем фактом, что многие физические системы являются хаотическими — в том смысле, что вычисление дальнейшего поведения такой системы с хоть сколько-нибудь приемлемой точностью требует совершенно непомерной точности исходных данных. Выше (см., в частности, §1.7, а также §§3.10, 3.22) мы уже рассмотрели такие системы довольно подробно и пришли к выводу, что хаотическое поведение в дискретно действующей системе не приводит к той «невычислимости», которая нас в данном случае интересует. Хаотическая (дискретная) система, пусть и сложная для вычисления, остается все же системой вычислимой, о чем свидетельствует тот факт, что подобные системы, как правило, исследуются и моделируются посредством электронных компьютеров! Первое условие связано со вторым, поскольку в хаотической системе ответ на вопрос о том, какую степень точности дискретной аппроксимации к непрерывным параметрам теории следует полагать «адекватной», зависит от того, намерены мы вычислять действительное поведение системы или достаточно будет и типичного. Если только последнее (а как я показал в первой части, большего, коль скоро речь идет об искусственном интеллекте, по всей видимости, и не требуется), то нет нужды беспокоиться о том, что наши дискретные аппроксимации окажутся несовершенными, а малые погрешности в исходных данных приведут к огромным отклонениям в последующем поведении системы. Если нас и в самом деле занимает лишь типичное поведение, то вышеприведенные условия не оставляют места для сколько-нибудь серьезной возможности возникновения в любой чисто классической физической системе невычислимости требуемого (в соответствии с рассуждениями, представленными в первой части книги) рода.

Не следует, впрочем, сбрасывать со счетов возможности наличия в действительном хаотическом поведении какой-нибудь непрерывной математической системы (моделирующей некое реальное физическое поведение) процессов, воспроизвести которые с помощью дискретной аппроксимации в принципе невозможно. Я ни о чем подобном никогда не слышал, однако даже если такая система где-нибудь и существует, создателям искусственного интеллекта (в том виде, как мы понимаем его сегодня) от нее никакого проку не будет, поскольку все современные разработки в этой области опираются как раз на дискретное вычисление (т.е. на вычисление скорее цифровое, нежели аналоговое; см. §1.8).

В квантовой физике, наряду с детерминированным (и вычислимым) поведением, описываемым уравнениями квантовой теории (в основном, уравнением Шрёдингера), присутствует и некая добавочная степень свободы, целиком и полностью случайная по своей природе. С формальной точки зрения, уравнения квантовой теории не являются хаотическими, однако отсутствие хаоса возмещается наличием вышеупомянутых случайных ингредиентов, дополняющих детерминистскую эволюцию. Как мы могли убедиться (в частности, в §3.18), такие чисто случайные ингредиенты также не в состоянии обусловить необходимую неалгоритмическую активность. Таким образом, ни в классической, ни в квантовой физике (в их теперешнем понимании) для невычислительного поведения требуемого типа просто нет места, поэтому если нам нужна именно невычислительная активность, то искать ее следует где угодно, но только не здесь.

4.3. Сознание: новая физика или «эмергентный феномен»?

В первой части я показал (на конкретном примере математического понимания), что феномен сознания возникает лишь при условии протекания в мозге неких физических процессов невычислительного характера. Следует, впрочем, допустить, что подобные гипотетические невычислительные процессы должны протекать и в неодушевленной материи, поскольку живой человеческий мозг, в конечном счете, из этой самой материи и состоит и подчиняется тем же физическим законам, каким подчиняются все неодушевленные объекты во Вселенной. Таким образом, перед нами встают два вопроса. Первый: почему феномен сознания проявляется, насколько нам известно, лишь в мозге (или в той или иной связи с мозгом) — при том, что полностью исключить возможность присутствия сознания и в других достаточно сложных физических системах нельзя? И второй вопрос: чем объяснить тот факт, что такой, казалось бы, важный (пусть и гипотетический) ингредиент, как невычислительное поведение, — к тому же непременно, согласно нашему допущению, присутствующий (по крайней мере, потенциально) в физической активности всех материальных объектов — умудрился ни разу до сих пор не попасться на глаза физикам?

Ответ на первый вопрос, несомненно, имеет какое-то отношение к сложной и изощренной организации мозга, однако какой бы ни была эта организация, сама по себе она еще не может служить достаточным объяснением. Согласно выдвигаемым мною здесь идеям, организация мозга происходит из необходимости реализации невычислительной активности в рамках физических законов; прочая же материя в подобной организации не нуждается. Эта картина разительно отличается от более общепринятого (совпадающего, по большей части, с точкой зрения A) взгляда на природу сознания{59}, в соответствии с которым осмысленное осознание представляет собой своего рода «эмергентный феномен», т.е. свойство системы, естественным образом возникающее по достижении этой системой достаточной степени организационной и функциональной сложности и не требующее для своего возникновения запуска каких-то новых фундаментальных физических процессов, принципиально отличных от тех, что уже известны из наблюдений за поведением неодушевленной материи. В первой части я пришел к иному выводу: для возникновения сознания одной лишь сложности мало, мозг должен быть организован именно так, чтобы в нем могли протекать предполагаемые невычислительные физические процессы. Более детальные комментарии относительно возможной природы такой организации я приведу позже (§§7.4-7.7).

Что касается второго вопроса, то, действительно, следует предположить, что следы интересующей нас невычислимости непременно должны присутствовать (на некоем неразличимом уровне) и в неодушевленной материи. Однако физика «обыкновенной» материи не оставляет (по крайней мере, на первый взгляд) места для такого невычислительного поведения. В дальнейшем я попытаюсь объяснить подробнее, каким образом это невычислительное поведение могло остаться незамеченным и как оно согласуется с современными наблюдениями. Пока же, думаю, будет полезно рассмотреть один феномен из уже известной физики — совершенно посторонний, но не лишенный некоторых весьма близких аналогий. Хотя данный физический феномен не связан (непосредственно, по крайней мере) с каким бы то ни было невычислительным поведением, он очень похож на наш гипотетический невычислимый ингредиент в ином отношении — его совершенно невозможно обнаружить даже при тщательном наблюдении поведения обыкновенных объектов. На соответствующем уровне он, впрочем, проявляется и, как выяснилось, коренным образом изменяет наше представление о том, как устроен мир, — по сути определяя тем самым дальнейшее направление развития науки в целом.

4.4. Эйнштейнов наклон

Со времен Исаака Ньютона и до наших дней физический феномен гравитации — вместе с замечательно точным математическим его описанием (впервые представленным Ньютоном в полном виде в 1687 году) — играет в развитии научной мысли одну из ключевых ролей. После окончательного утверждения математического аппарата гравитация могла служить (и послужила) прекрасной моделью для описания самых разных физических процессов; при этом предполагалось, что движения тел в неподвижном (плоском) опорном пространстве точно определяются действующими на эти тела силами — силами взаимного притяжения (либо отталкивания) отдельных частиц, управляющими любым движением этих частиц, вплоть до самого незначительного. Результатом выдающегося успеха ньютоновской теории тяготения стала постепенно укрепившаяся вера в то, что таким образом можно описать вообще все физические процессы, — исходя из предположения, что электрические, магнитные, молекулярные и прочие силы точно так же действуют между частицами и так же, в общем, управляют их мельчайшими движениями, как и силы гравитационные.

Некое возмущение в эту идиллическую картину внес в 1865 году великий шотландский физик Джеймс Клерк Максвелл, опубликовав свою знаменитую систему уравнений, точно описывающую поведение электрических и магнитных полей. Теперь, наряду с всевозможными дискретными частицами, пришлось признать независимое существование и этих непрерывных полей. Электромагнитное поле (как называют сегодня комбинацию двух упомянутых полей) способно осуществлять перенос энергии через в прочем отношении пустое пространство — в виде света, радиоволн, рентгеновских лучей и т.д. — и ничуть не менее реально, чем ньютоновские частицы, с которыми оно, как предполагается, сосуществует. Тем не менее, объектом общего описания и здесь остаются физические тела (к каковым теперь причисляются и непрерывные поля), движущиеся в неподвижном пространстве в результате неких взаимодействий друг с другом, т.е. в общем и целом ньютоновская схема существенных изменений не претерпела. Даже вводимая в 1913-1926 годах стараниями Нильса Бора, Вернера Гейзенберга, Эрвина Шрёдингера, Поля Дирака и др. квантовая теория, со всей ее революционностью и эксцентричностью, не изменила этого аспекта нашего физического мировоззрения. Физические объекты продолжали восприниматься как некие сущности, действующие друг на друга посредством силовых полей, причем и те, и другие пребывали все в том же неподвижном, плоском, опорном пространстве.

В годы появления первых работ в области квантовой теории Альберт Эйнштейн был занят тем, что подвергал глубокому пересмотру сами фундаментальные основы ньютоновской теории тяготения, результатом чего стала представленная им в 1915 году революционно новая теория, совершенно изменившая привычную картину мира, — речь идет, конечно же, об общей теории относительности (см. НРК, с. 202-211). Гравитация здесь вообще не является силой, ее следует представлять как своего рода искривление самого пространства (в действительности, даже пространства—времени), в которое помешаются все прочие частицы и силы.

Далеко не всем физикам эта «несообразная» картина пришлась по душе. Им не понравилось, что гравитация оказалась в таком отрыве от остальных физических воздействий, — особенно принимая во внимание тот факт, что именно гравитация послужила основой для первоначальной парадигмы, по образу и подобию которой были выстроены все более поздние физические теории. Еще одним поводом для недоверия стало то, что гравитационное взаимодействие чрезвычайно слабо — в сравнении с прочими известными физикам силами. Например, сила гравитационного притяжения между электроном и протоном в атоме водорода в 28 500 000 000 000 000 000 000 000 000 000 000 000 000 раз меньше, чем сила электрического взаимодействия между этими же частицами. То есть на уровне отдельных частиц, составляющих материю, гравитационные силы практически незаметны.

Не раз поднимался вопрос о том, не является ли гравитация своего рода остаточным эффектом, этаким последействием, возникающим, скажем, при почти полной взаимной компенсации всех сил, действующих в данной системе? (Такие силы в природе действительно существуют — например, сила Ван-дер-Ваальса, водородная связь и сила Лондона.) При таком подходе перед нами оказывается уже не самостоятельный физический феномен, отличный от всех прочих и нуждающийся поэтому в совершенно особом (отличном от описания всех прочих сил) математическом описании, — при таком подходе гравитации как таковой в действительности не существует, а существует лишь своего рода «эмергентный феномен». (Подобный взгляд на гравитацию предложил великий советский ученый и гуманист Андрей Сахаров{60}.)

Впрочем, как выяснилось позднее, такое предположение лишено оснований. Главная причина заключается в том, что гравитация воздействует на причинные связи между пространственно-временными событиями; никакая другая физическая величина такого воздействия не производит. Можно сказать иначе: гравитация обладает уникальной способностью «наклонять» световые конусы. (Вскоре я поясню, что все это означает.) Только гравитация может наклонять световые конусы, никакая другая физическая сила (равно как и никакая комбинация любых негравитационных физических воздействий) на это не способна.

Что же означает выражение «наклон светового конуса»? Что такое «причинные связи между пространственно-временными событиями»? Для объяснения этих терминов нам потребуется несколько отклониться от темы. (Это отклонение еще сослужит нам в дальнейшем хорошую службу.) Некоторые читатели, возможно, уже знакомы с соответствующими научными концепциями, поэтому я дам здесь лишь краткое описание — с тем, чтобы и остальные могли получить хоть какое-то представление о предмете. (См. также НРК, глава 5, с. 194, там все рассмотрено более подробно.) На рис. 4.1 я изобразил единичный световой конус в пространственно-временных координатах. Ось времени на рисунке направлена снизу вверх, пространство же «откладывается» по горизонтали. Точкой на пространственно-временной диаграмме отображается событие, т.е. некая точка пространства в какой-то определенный момент времени. Событие, таким образом, имеет нулевую временную продолжительность, равно как и нулевую пространственную протяженность. Полный световой конус с центром в точке-событии P представляет пространственно-временную историю сферического светового импульса, который «схлопывается» внутрь P и тут же «выплескивается» обратно, наружу; все это, разумеется, происходит со скоростью света. Таким образом, световой конус события P образуют все те лучи света, в индивидуальной истории которых событие P происходило.

Рис. 4.1. Световой конус события P составляют все те лучи света, которые в пространстве-времени проходят через событие P. Сам конус представляет собой историю вспышки света, схлопывающейся в точку P (световой конус прошлого) и вырывающейся затем наружу (световой конус будущего). События Q и P пространственноподобно разделены (точка Q лежит вне светового конуса P), т.е. событие Q оказывается вне зоны причинного воздействия события P.

Световой конус P состоит из двух частей: светового конуса прошлого[29] (входящая вспышка) и светового конуса будущего (исходящая вспышка). Согласно теории относительности, причинное воздействие на пространственно-временное событие P способны оказать только события, расположенные либо внутри светового конуса прошлого P, либо на его поверхности; аналогично, само событие P способно оказать причинное воздействие только на те события которые расположены либо внутри светового конуса будущего P, либо на его поверхности. События, расположенные вне световых конусов прошлого и будущего, не могут ни воздействовать на событие P, ни подвергаться воздействию со стороны события P. Мы говорим, что такие события пространственноподобно отделены от P.

Следует помнить, что понятие причинной связи принадлежит теории относительности; к ньютоновской физике оно никакого отношения не имеет. В ньютоновской картине мира скорость передачи информации ничем не ограничена. В теории же относительности у этой скорости появляется предел — скорость света. Отсюда один из фундаментальных принципов теории относительности: никакое причинно-следственное воздействие не может происходить со скоростью, превышающей скорость света.

Впрочем, при толковании термина «скорость света» нужно соблюдать известную осторожность. Реальные световые сигналы несколько замедляются при прохождении через преломляющую среду (такую, например, как стекло). В такой среде скорость распространения физического светового сигнала будет меньше, чем скорость, которую мы здесь называем «скоростью света», и вполне возможно, что какое-либо физическое тело (или сигнал, отличный от светового) будет здесь перемещаться быстрее света. Этот феномен можно наблюдать в некоторых физических экспериментах (например, экспериментах по получению так называемого черенковского излучения). Частицы «выстреливаются» в преломляющую среду, в которой скорость частиц лишь очень немногим меньше абсолютной «скорости света», но больше скорости, с которой свет фактически распространяется в данной среде. При этом возникают ударные волны «реального» света, которые и называются черенковским излучением.

Во избежание путаницы я лучше буду называть большую «скорость света» абсолютной скоростью. Световые конусы в пространстве-времени определяют абсолютную скорость, но эта скорость совсем не обязательно равна действительной скорости света в каждом конкретном случае. Внутри какой-либо среды действительная скорость света несколько меньше абсолютной скорости, равно как и меньше скорости перемещающихся в этой среде частиц, генерирующих черенковское излучение. Пределом же скорости как для сигналов, так и для материальных тел является именно абсолютная скорость (оба световых конуса), и хотя реальный свет отнюдь не всегда распространяется с абсолютной скоростью, в вакууме скорость света совпадает с абсолютной.

Теорию «относительности», о которой мы здесь в основном говорим, называют еще специальной теорией относительности — специальной, поскольку в ней не учитывается гравитация. Все световые конусы в специальной теории относительности размещены равномерно и сориентированы в одном направлении (как показано на рис. 4.2); такое пространство-время называют пространством Минковского. Согласно же общей теории относительности Эйнштейна, предыдущие рассуждения остаются в силе только если мы продолжаем считать «абсолютной» ту скорость, что определяется пространственно-временным положением световых конусов. Однако под воздействием гравитации распределение световых конусов может стать неоднородным (рис. 4.3). Именно это я и подразумевал, говоря выше о «наклоне» световых конусов.

Рис. 4.2. Пространство Минковского: пространство-время в специальной теории относительности. Все световые конусы размещены равномерно и сориентированы в одном направлении.

Рис. 4.3. Наклонные световые конусы в обшей теории относительности Эйнштейна.

Наклон световых конусов можно представлять себе как изменение скорости света (или, точнее, абсолютной скорости) в зависимости от места в пространстве; эта скорость может также зависеть и от направления движения. При таком подходе «абсолютную скорость» можно рассматривать как некий аналог «действительной скорости света» в преломляющих средах, о которой мы говорили выше. Соответственно, можно предположить, что гравитационное поле является этакой всепроницающей и повсеместной преломляющей средой, которая оказывает воздействие не только на поведение реального света, но и на поведение всех материальных частиц и сигналов[30]. В самом деле, попытки описать феномен и эффекты гравитации именно таким образом предпринимаются нередко, и до некоторой степени это описание работает. Однако в общем и целом это описание оказывается неудовлетворительным, а в некоторых существенных отношениях и вовсе дает серьезно искаженную картину общей относительности.

Прежде всего следует отметить, что хотя такую «гравитационную преломляющую среду» и можно счесть причиной уменьшения абсолютной скорости (как обстоит дело с обычной преломляющей средой), некоторые существенные обстоятельства (например, большая протяженность гравитационного поля изолированной массы) не позволяют ограничиться одним лишь замедляющим воздействием — кое-где наша гипотетическая среда должна проявить способности и к воздействию ускоряющему, т.е. где-то абсолютная скорость должна возрастать (см. [290] и рис. 4.4). В рамках специальной теории относительности такое просто невозможно. Согласно этой теории, никакая преломляющая среда, сколь бы причудливой она ни была, не может разгонять сигналы до скорости, превышающей скорость света в вакууме (т.е. в отсутствие какой бы то ни было среды), не нарушая при этом фундаментальных для теории принципов причинности — ведь такое увеличение скорости позволило бы сигналам распространяться снаружи минковскианских световых конусов (вакуумных), а это теоретически запрещено. К тому же, как мы выяснили выше, гравитационные эффекты «наклона световых конусов» нельзя объяснить никаким остаточным воздействием прочих, негравитационных, полей.

Рис. 4.4. Распространение света согласно общей теории относительности Эйнштейна не может являться эффектом «преломляющей среды» (в пространстве Минковского), поскольку это противоречит фундаментальному принципу специальной теории относительности — невозможности распространения сигналов со скоростью, превышающей скорость света в пространстве Минковского.

Известны и гораздо более «экстремальные» ситуации, в которых описать таким образом наклон световых конусов и вовсе невозможно, даже если допустить «превышение» абсолютное скорости в некоторых направлениях. Одну такую ситуацию иллюстрирует рис. 4.5: световые конусы наклонены под самым невероятным углом, чуть ли не перевернуты. Вообще говоря, такой чрезвычайный наклон возникает лишь в явно спорных ситуациях, где имеет место так называемое «нарушение причинности» — т.е. наблюдатель получает теоретическую возможность посылать сигналы в свое собственное прошлое (см. рис. 7.15, глава 7). Отметим еще, что соображения такого рода, как это ни удивительно, имеют самое что ни на есть непосредственное отношение к одной из тем нашего дальнейшего обсуждения (см. §7.10).

Рис. 4.5. В принципе наклон светового конуса может стать настолько большим, что сигналы смогут распространяться в минковскианское прошлое.

Следует упомянуть и еще об одном неявном обстоятельстве: «угол наклона» единичного светового конуса не является величиной, измеримой физически, а потому не имеет в сущности никакого физического смысла и не может послужить мерой действительного уменьшения или увеличения абсолютной скорости. Лучшим способом проиллюстрировать это обстоятельство будет следующий: вообразим, что изображение, представленное на рис. 4.3, нанесено на тонкий лист резины, что позволит поворачивать и деформировать каждый отдельный световой конус вокруг окрестности его вершины (см. рис. 4.6) до тех пор, пока он не расположится «вертикально», — т.е. так, как располагаются световые конусы в пространстве специальной относительности Минковского (рис. 4.2). При этом нет никакой возможности обнаружить (посредством локальных экспериментов), является ли «наклонным» световой конус того или иного конкретного события. Если же мы намерены настаивать на том, что «эффект наклона» обязан своим возникновением некоей «гравитационной среде», то нам придется объяснить и «странности» поведения этой самой среды — объяснить, почему эта среда ни при каком единичном пространственно-временном событии не поддается наблюдению. В частности, даже очевидно чрезвычайные случаи (представленные на рис. 4.5), для описания которых идея гравитационной среды ну совершенно не годится, оказываются неотличимы физически (если рассматривать один-единственный световой конус) от случая, когда наклон отсутствует (как в пространстве Минковского).

Рис. 4.6. Вообразим пространство-время в виде резинового листа с нанесенными на нем световыми конусами. Каждый отдельный световой конус можно поворачивать (растягивая резину) до тех пор, пока все они не выстроятся в стандартную минковскианскую картину.

Впрочем, если говорить вообще, то поворачивать тот или иной конкретный световой конус до его минковскианской ориентации мы можем лишь за счет деформации — и удаления от минковскианской ориентации — некоторых из соседних световых конусов. Возникает, в общем случае, «математическое препятствие», в силу которого невозможно деформировать лист резины таким образом, чтобы все световые конусы выстроились в стандартный минковскианский порядок, показанный на рис. 4.2. В четырехмерном пространстве-времени это препятствие описывается посредством математического объекта, называемого конформным тензором Вейля — в НРК мы ввели для этого тензора обозначение WEYL (см. НРК, с. 210). (Тензор WEYL дает ровно половину — «конформную» половину — информации, содержащейся в полном тензоре пространственно-временной кривизны Римана; впрочем, полагаю, что в данной ситуации беспокоиться о точном смысле этих терминов особой необходимости нет.) Развернуть все световые конусы в минковскианский порядок нам удастся лишь в том случае, если WEYL будет равен нулю. Тензор WEYL есть мера гравитационного поля — в смысле гравитационной приливной деформации, — т.е. именно гравитационное поле и является тем самым препятствием, которое не дает нам «выпрямить» все световые конусы сразу.

Эту тензорную величину, конечно же, можно измерить физически. WEYL-тензорное гравитационное поле, например, Луны воздействует на Землю и вызывает ее приливную деформацию — внося тем самым основной вклад в возникновение приливов (см. НРК, с. 204, рис. 5.25). Этот эффект, впрочем, не связан непосредственно с наклоном световых конусов, а представляет собой лишь самое обычное проявление ньютоновского гравитационного воздействия. Более подходящим к случаю выглядит другой наблюдаемый эффект, так называемый эффект гравитационной линзы, предсказанный в теории Эйнштейна. Впервые гравитационную линзу наблюдал Артур Эддингтон во время экспедиции на остров Принсипи в 1919 году; при этом вызванное гравитационным полем Солнца искажение картины звездного неба было самым тщательным образом зарегистрировано. Звездное небо вблизи Солнца словно растягивается — при этом, скажем, небольшой круг из звезд представляется наблюдателю в виде эллипса (см. рис. 4.7). В данном случае воздействие WEYL-тензорного гравитационного поля на структуру световых конусов пространства-времени наблюдалось почти непосредственно. В последние годы эффект гравитационной линзы находит широкое применение в качестве инструмента наблюдательной астрономии и космологии. Свет от отдаленного квазара порой доходит до нас в искаженном виде, поскольку на его пути оказывается какая-либо крупная масса (например, галактика; см. рис. 4.8). Из наблюдаемых при этом искажений «внешности» квазара (вкупе с эффектами временной задержки) можно извлечь весьма ценные сведения о соответствующих расстояниях, массах и т.д. Все это можно полагать достаточно недвусмысленным свидетельством в пользу того, что феномен наклона световых конусов действительно существует, а также того, что WEYL-эффекты непосредственно измеримы.

Рис. 4.7. Непосредственно наблюдаемый эффект наклона световых конусов. Пространственно-временное WEYL-искривление проявляется в виде искажения картины звездного неба в результате отклонения световых лучей под воздействием гравитационного поля Солнца. Круг из звезд представляется наблюдателю эллипсом.

Рис. 4.8. Эффект эйнштейновского отклонения света широко используется сегодня в наблюдательной астрономии. По тому, насколько искажено изображение отдаленного квазара, можно оценить массу галактики, находящейся между квазаром и наблюдателем.

Предыдущие замечания наглядно иллюстрируют тот факт, что «наклон» световых конусов, т.е. гравитационное искажение причинности, представляет собой не нечто эфемерное, но вполне реальный феномен, который нельзя исчерпывающе объяснить каким бы то ни было остаточным (либо «эмергентным») свойством, возникающим у достигшего достаточной величины скопления материи. Гравитация имеет собственную уникальную природу, отличную от природы прочих физических процессов; на уровне тех сил, что существенны для фундаментальных частиц, гравитация непосредственно не наблюдается — тем не менее, она присутствует и здесь, и присутствует постоянно. Наклон световых конусов — прерогатива гравитации, никакие другие из известных современной физике сил и взаимодействий на это не способны. Таким образом, в этом фундаментальном отношении гравитация представляет собой нечто особенное, нечто принципиально отличное от всех известных нам сил и физических воздействий. В самом деле, согласно классической общей теории относительности, наклон светового конуса вызывает присутствие любого материального тела, будь оно даже мельчайшей из песчинок (хотя в этом случае наклон будет, конечно же, крайне незначителен). В принципе, для наклона светового конуса достаточно и отдельного электрона — просто величина производимого подобными объектами наклона слишком мала, чтобы можно было говорить о каком бы то ни было непосредственно наблюдаемом его эффекте.

Гравитационные взаимодействия наблюдались на примере объектов, значительно больших, нежели песчинки, но все же гораздо меньших, чем, например, Луна. В 1798 году Генри Кавендишу удалось измерить силу гравитационного притяжения шара массой всего около 105 граммов. (Этот знаменитый опыт Кавендиша основан на идее, выдвинутой ранее Джоном Мичеллом.) Возможности современной техники позволяют обнаружить гравитационное притяжение объектов значительно менее массивных (см., например, [60]). Впрочем, обнаружить в какой-либо из этих ситуаций эффект наклона световых конусов никакая современная техника пока не в состоянии. Наблюдать этот эффект непосредственно можно только в присутствии действительно огромных масс; а то, что наклон световых конусов создают и малые массы (величиной с песчинку), является очевидным следствием из теории относительности Эйнштейна.

Гравитационные эффекты невозможно сколько-нибудь точно смоделировать посредством какой бы то ни было комбинации других физических полей или сил. Гравитация совершенно уникальна по своей природе, и ни в коем случае нельзя ее рассматривать как эмергентный или вторичный феномен, остаточный по отношению к каким-то иным, более «солидным» физическим процессам. Гравитация описывается самой структурой пространства-времени, которое считалось прежде просто неподвижным фоном, этакой ареной для проявления всевозможной физической активности. В ньютоновской вселенной гравитация не являлась чем-то особенным — хотя и послужила парадигмой для построения всех более поздних физических теорий. Во вселенной же, описываемой Эйнштейном, гравитация рассматривается (и надо сказать, что эта точка зрения, разделяемая большинством нынешних физиков, получила великолепное экспериментальное подтверждение) как совершенно особое взаимодействие — не эмергентный феномен, но нечто само по себе уникальное.

Впрочем, несмотря на все отличия, между гравитацией и прочими физическими силами существует фундаментальная и гармоничная связь. Теория Эйнштейна отнюдь не является чужеродным элементом в системе физических законов, она лишь представляет их в несколько ином свете. (В особенности это относится к законам сохранения энергии, импульса и момента импульса.) Связь эйнштейновской гравитации со всей остальной физикой может до некоторой степени объяснить сложившуюся парадоксальную ситуацию, когда всякое физическое описание основывается на парадигме ньютоновской гравитации, в то время как сама гравитация (как позднее показал Эйнштейн) по своей природе отлична от прочих физических взаимодействий. Тот же Эйнштейн, кстати, призывал более всего избегать излишней самоуверенности — то, что мы в процессе познания мира взобрались на очередную ступеньку, вовсе не обязательно должно означать, что теперь мы располагаем единственно верной физической теорией этого самого мира.

Можно ли ожидать, что и в отношении феномена сознания нам предстоит обнаружить некое «взаимодействие», аналогичное гравитации? Если да, то характеристикой, которая по достижении определенного значения обусловливает проявление упомянутого феномена, окажется, скорее всего, не масса — во всяком случае, не одна лишь масса, — но некая разновидность тонкой физической организации. Согласно представленным в первой части доводам, такая организация в процессе своего становления должна была так или иначе научиться использовать некий не известный нам пока ингредиент, непременно присутствующий в поведении обычной материи. То, что мы не наблюдаем его проявлений, означает лишь, что мы не туда смотрим, — аналогичным образом, нам никогда не удалось бы обнаружить феномен наклона световых конусов, ограничь мы область наблюдений одними лишь крохотными частицами.

Какое же отношение имеет наклон световых конусов к невычислимости? К этому вопросу (точнее, к одному весьма интригующему его аспекту) мы еще вернемся в §7.10; на данном же этапе наших рассуждений ответ прост: абсолютно никакого, разве что дает некую надежду — как выясняется, вполне возможно обнаружить в физике фундаментально важное новое свойство, полностью отличное от всех уже известных и остававшееся прежде незамеченным в поведении обычной материи. Эйнштейна к его революционным идеям привел целый ряд весьма мощных соображений — математически сложных и физически неочевидных, — причем самое важное из них, широко известное еще со времен Галилея, так и оставалось до конца не понятым (речь идет о принципе эквивалентности: все тела в поле тяготения падают с одинаковой скоростью). Более того, необходимое условие успеха идей Эйнштейна заключалось именно в том, что эти самые идеи оказались полностью «совместимыми» со всем тем, что было известно о физических феноменах в его время.

Аналогичным образом вполне можно предположить, что где-то в поведении всем известных объектов сокрыта невычислительная активность того или иного рода. Для того, чтобы подобные спекуляции имели бы хоть какую-то надежду на успех, они также должны быть основаны на каких-то мощных соображениях — предположительно, и математически сложных, и физически неочевидных — и как-то согласовываться с тем, что мы знаем о всех известных нам феноменах. Посмотрим, насколько далеко нам удастся зайти по пути к такой теории.

Однако прежде чем мы начнем, думаю, стоит составить для себя некоторое представление о том, насколько велико влияние идеи о вычислимости всего и вся на современную физику. Примечательно, что одним из наиболее впечатляющих в этом отношении примеров является не что иное, как общая теория относительности.

4.5. Вычисления и физика

На расстоянии около 30 000 световых лет от Земли, в созвездии Орла, есть две невероятно плотные мертвые звезды, вращающиеся одна вокруг другой. Вещество в этих звездах сжато до такой степени, что если сделать из него теннисный мячик, то масса его окажется сопоставима с массой Деймоса, одного из спутников Марса. Время полного оборота этих звезд (называемых обычно нейтронными звездами) друг вокруг друга составляет 7 часов 45 минут и 6,9816132 секунды, а их массы больше массы Солнца, соответственно, в 1,4411 и 1,3874 раз (с возможной погрешностью в 7 десятитысячных). Каждые 59 миллисекунд первая из этих звезд испускает в нашем направлении импульс электромагнитного излучения (пучок радиоволн), из чего можно заключить, что она вращается вокруг своей оси со скоростью приблизительно 17 оборотов в секунду. Такие звезды называются пульсарами, а описываемая пара звезд представляет собой знаменитый двойной пульсар PSR 1913+16.

Впервые эти замечательные объекты были обнаружены в 1967 году астрономами кембриджской радиообсерватории Джослином Беллом и Энтони Хьюишем. Нейтронные звезды, как правило, являются результатом гравитационного коллапса ядра красного гиганта, каковой коллапс может сопровождаться чрезвычайно яркой вспышкой сверхновой. Нейтронные звезды немыслимо плотны, поскольку состоят из ядерных частиц (в основном, из нейтронов), уложенных настолько близко друг к другу, что общая плотность звезды оказывается сопоставима с плотностью собственно нейтрона. В процессе коллапса нейтронная звезда захватывает своим веществом линии индукции магнитного поля и, вследствие чудовищного сжатия, которым сопровождается коллапс, концентрация этого поля достигает чрезвычайно больших величин. Линии поля выходят из северного магнитного полюса звезды, удаляясь в пространстве на весьма значительное расстояние, и входят в южный магнитный полюс (см. рис. 4.9).

Рис. 4.9. Двойной пульсар PSR 1913+16. Две нейтронные звезды вращаются одна вокруг другой. Одна из звезд является пульсаром; ее магнитное поле чрезвычайно велико и способно захватывать заряженные частицы.

Результатом коллапса звезды является также огромное увеличение скорости ее вращения (как следствие сохранения кинетического момента). В случае нашего пульсара (диаметр около 20 км) скорость вращения, как мы уже говорили, составляет приблизительно 17 оборотов в секунду! В итоге магнитное поле пульсара также вращается со скоростью 17 оборотов в секунду, так как линии индукции внутри звезды остаются жестко связанными с телом звезды. Линии поля вне звезды увлекают за собой заряженные частицы, однако на определенном расстоянии от звезды скорость, с которой этим частицам приходится перемещаться, приближается (причем вплотную) к скорости света. Оказавшись в такой ситуации, заряженные частицы принимаются интенсивно излучать в радиодиапазоне, и это чрезвычайно мощное излучение, подобно свету гигантского маяка, распространяется на огромное расстояние. Поскольку «маяк» вращается, Земли достигает лишь часть излучаемых им импульсов; астрономы наблюдают их в виде характерной для данного пульсара последовательности «радиощелчков» (рис. 4.10).

Рис. 4.10. Захваченные магнитным полем заряженные частицы вращаются вместе с пульсаром и испускают электромагнитный сигнал, который «накрывает» Землю 17 раз в секунду. Этот сигнал мы принимаем в виде последовательности коротких радиоимпульсов.

Скорости вращения пульсаров чрезвычайно стабильны — пульсары можно использовать как часы, причем точность этих часов будет сопоставима с точностью наиболее совершенных из существующих в данный момент на Земле часов (атомных) — а то и превзойдет ее. (Хорошие «пульсарные часы» спешат — или отстают — всего лишь на 10-12 с в год.) Если пульсар является частью системы двойной звезды (как, например, в случае с PSR 1913+16), то его орбитальное движение вокруг своего спутника можно точно регистрировать за счет эффекта Допплера — частота принимаемых на Земле щелчков несколько увеличивается, когда пульсар к нам приближается, и уменьшается, когда он удаляется.

В случае PSR 1913+16 астрономам удалось получить чрезвычайно подробную картину действительных взаимных орбит обеих звезд и убедиться в справедливости ряда различных предсказаний общей теории относительности Эйнштейна. Среди последних можно упомянуть эффект, называемый «смещением перигелия», — в конце XIX века астрономы обратили внимание на аномалии в орбитальном движении Меркурия вокруг Солнца, каковые аномалии Эйнштейн в 1916 году объяснил в рамках своей теории, что стало первым ее испытанием на прочность, — а также разного рода общерелятивистские «качания» и «вихляния», воздействующие на поведение осей вращения и тому подобных объектов. Поведение системы, состоящей из двух малых тел, движущихся друг вокруг друга по общей орбите, описывается в теории Эйнштейна очень четкой (детерминистской и вычислимой) моделью — движение тел в этом случае можно вычислить с высокой степенью точности, используя как сложные и тонкие методы аппроксимации, так и различные стандартные вычислительные методы. Некоторые необходимые для такого вычисления параметры нам точно не известны — например, массы и начальные скорости движения звезд, — впрочем, данных, извлеченных из сигналов пульсара, вполне достаточно для того, чтобы предсказать значения этих параметров с высокой точностью. Картина, получаемая в результате вычислений, замечательно согласуется, как в общем, так и в частностях, с информацией, содержащейся в принимаемых нами сигналах пульсара, что можно считать еще одним существенным подтверждением общей теории относительности.

Общая теория относительности предполагает существование еще одного эффекта, о котором я до сих пор не упоминал; между тем, он играет важную роль в динамике двойных пульсаров. Речь идет о гравитационном излучении. В предыдущем параграфе я отмечал, что гравитация существенным образом отличается от всех прочих физических взаимодействий. Тем не менее, в некоторых отношениях гравитация и электромагнетизм очень похожи. Среди прочего, электромагнитные поля обладают одним важным свойством: они способны существовать в волновой форме, распространяясь в пространстве в виде световых или радиоволн. Согласно классической теории Максвелла, источником таких волн становится любая система движущихся друг относительно друга заряженных частиц, взаимодействующих через посредство электромагнитных сил. Аналогичным образом, согласно классической общей теории относительности, источником гравитационных волн является любая система движущихся друг относительно друга гравитирующих тел — вследствие возникающих между ними гравитационных взаимодействий. При обычных обстоятельствах эти волны чрезвычайно слабы. Самым мощным источником гравитационного излучения в Солнечной системе является движение Юпитера вокруг Солнца, но при этом количества гравитационной энергии, испускаемой системой Солнце—Юпитер, едва хватит на то, чтобы зажечь сорокаваттную лампочку!

Однако при иных условиях — например, в системе двойного пульсара PSR 1913+16 — ситуация коренным образом меняется, и гравитационное излучение системы начинает играть весьма существенную роль. Теория Эйнштейна дает уверенный и детальный прогноз относительно природы гравитационного излучения подобных систем — в частности, предполагается, что система должна терять в процессе определенное количество энергии. В результате потери энергии должно происходить медленное сближение нейтронных звезд по спирали; соответственно, должен уменьшаться и период их обращения друг вокруг друга. Первыми двойной пульсар PSR 1913+16 наблюдали Джозеф Тейлор и Расселл Хале в 1974 году, с помощью гигантского радиотелескопа «Аресибо», расположенного в Пуэрто-Рико. Впоследствии Тейлор и его коллеги регулярно измеряли период обращения звезд этого пульсара и установили, что он уменьшается в точном соответствии с предсказанием общей теории относительности (см. рис. 4.11). За эту работу Тейлор и Хале получили в 1993 году Нобелевскую премию по физике. Наблюдение за системой PSR 1913+16 продолжается до сих пор, и чем больше данных мы накапливаем, тем больше подтверждений эйнштейновской теории получаем. В самом деле, если взять систему в целом и сравнить наблюдаемое ее поведение с поведением, рассчитанным по теории Эйнштейна (также взятой в целом), — начиная с ньютоновских расположений орбит, далее внося в эти орбиты поправки на стандартные эффекты общей теории относительности и завершая всю процедуру учетом эффекта потери энергии при гравитационном излучении, — то мы обнаружим, что теория полностью подтверждается, при этом погрешность составляет не более 10-14. Таким образом, можно смело утверждать, что эйнштейновская общая теория относительности является, в данном конкретном смысле, наиболее тщательно проверенной теорией из всех известных науке!

Рис. 4.11. Этот график (любезно предоставленный Дж. Тейлором) демонстрируетточное согласие наблюдаемого (на протяжении 20 лет) уменьшения периода взаимного обращения составляющих пульсар нейтронных звезд с расчетной потерей энергии системой при гравитационном излучении в соответствии с теорией Эйнштейна.

В описанном примере мы рассматриваем систему в высшей степени «чистую» — при ее расчете необходимо учитывать только эффекты общей теории относительности. Не нужно беспокоиться ни о сложностях, связанных с учетом внутреннего строения входящих в систему тел, ни о замедлении их движения под воздействием промежуточной среды или магнитных полей — все это не оказывает на динамику системы сколько-нибудь заметного влияния. Более того, мы имеем здесь дело лишь с двумя телами и их совокупным гравитационным полем, поэтому выполнить полное и точное вычисление их ожидаемого поведения — в рамках теории, исчерпывающе описывающей все существенные аспекты этого самого поведения — нам вполне по силам. Возможно, на сегодняшний день, это один из наиболее выдающихся примеров совершенного согласия между расчетной теоретической моделью и экспериментально наблюдаемым поведением (для систем, состоящих из малого количества тел).

Даже если тел в физической системе значительно больше, модель поведения системы все равно можно рассчитать с той же точностью, воспользовавшись возможностями, предоставляемыми современными компьютерными технологиями. В частности, имеется очень подробная и полная модель движения всех планет Солнечной системы вместе с их наиболее значительными спутниками, построенная Ирвином Шапиро и его коллегами. Эту модель можно рассматривать как еще одно существенное подтверждение общей теории относительности. Здесь теория Эйнштейна также согласуется со всеми результатами наблюдений и прекрасно объясняет всевозможные малые отклонения от наблюдаемого движения, возникающие в моделях, использующих исключительно ньютоновский подход.

С помощью современных компьютеров можно выполнить расчеты и для систем, содержащих еще большее количество тел — порой порядка миллиона, — хотя такие расчеты, как правило (но не всегда), вынуждены целиком и полностью опираться на теорию Ньютона. Приходится прибегать к некоторым упрощающим допущениям — например, не рассчитывать воздействие буквально каждой частицы на все остальные, а как-то аппроксимировать воздействие всей совокупности частиц с помощью того или иного усреднения. Подобные методы вычислений широко распространены в астрофизике, где тщательно исследуются процессы формирования звезд и галактик, а также «догалактического» сгущения материи.

Впрочем, между предполагаемыми целями тех и других вычислений имеется существенная разница. В данном случае нас, конечно-же, интересует отнюдь не действительная эволюция некоторой системы, но ее типичная эволюция. Как и в рассмотренном нами ранее случае хаотических систем, такой подход будет здесь, пожалуй, наиболее оправданным. С его помощью можно исследовать различные научные гипотезы о составе и первоначальном распределении материи во Вселенной, чтобы убедиться, насколько хорошо, в общем и целом, результаты описываемой в этих гипотезах эволюции согласуются с тем, что мы наблюдаем на деле. При таких обстоятельствах никто и не ожидает получить соответствие в мельчайших деталях, но сравнить общую картину и различные статистические параметры модели и наблюдаемого феномена вполне возможно.

Крайний случай такого рода возникает, когда количество частиц настолько велико, что нет никакой надежды проследить эволюцию каждой из них в отдельности, — частицы в таких системах исследуются исключительно статистическими методами. Так, общепринятое математическое описание газа оперирует статистическими ансамблями различных возможных движений частиц, не размениваясь на частные движения каждой отдельной частицы. Температура, давление, энтропия и прочие подобные физические величины являются характеристиками как раз таких ансамблей, но эти же характеристики можно считать и частью вычислительной системы, в которой эволюционные свойства ансамблей рассматриваются со статистической точки зрения.

Помимо соответствующих динамических уравнений (Ньютона, Максвелла, Эйнштейна или кого угодно еще), исследователь таких систем должен взять на вооружение еще один физический принцип — второй закон термодинамики{61}. Нужен он, в сущности, для того, чтобы исключить из рассмотрения те начальные состояния движения отдельных частиц, что ведут к совершенно невероятным, хотя и возможным динамически, эволюциям. Применение второго закона позволяет гарантировать, что данная эволюция моделируемой системы действительно является «типичной», что мы не получим в результате наших усилий атипичную модель, не имеющую к решаемой задаче никакого практического отношения. С помощью второго закона можно довольно точно рассчитывать дальнейшую эволюцию систем, содержащих огромное количество частиц, отследить движение каждой из которых мы физически не в состоянии.

Зададим себе интересный — и весьма непростой — вопрос: почему, несмотря на то, что динамические уравнения Ньютона, Максвелла и Эйнштейна абсолютно симметричны во времени, упомянутые эволюции невозможно достоверно распространить в прошлое? Почему в реальном мире второй закон термодинамики в обратном направлении не работает? Причина имеет, очевидно, самое непосредственное отношение к весьма особым условиям, существовавшим в начале времени, — иначе говоря, к возникновению Вселенной в результате Большого Взрыва. (Подробное обсуждение гипотезы Большого Взрыва см. в НРК, глава 7.) Более того, эти начальные условия оказываются особыми ровно настолько, что благодаря им мы получаем еще один пример чрезвычайно высокой точности моделирования наблюдаемого физического поведения посредством четко сформулированных математических гипотез.

Что касается Большого Взрыва, то существенным элементом соответствующих гипотез является то, что на самых ранних его стадиях составляющая Вселенную материя находилась в состоянии теплового равновесия. Что же такое «тепловое равновесие»? Исследование состояний теплового равновесия — это крайность, противоположная точному моделированию движения небольшого количества объектов (предпринятому, например, в вышеописанном случае двойного пульсара). Здесь нас интересует исключительно «типичное поведение» в его чистейшем и наиболее наглядном виде. Состояние равновесия — это, вообще говоря, состояние системы, которая полностью «устоялась» и не намерена из этого своего состояния выходить, даже если ее слегка «потревожить». В случае систем с большим количеством частиц (или с большим количеством степеней свободы) — т.е. там, где рассматривается уже не движение каждой отдельной частицы, но усредненное поведение этих частиц и усредненные же параметры (например, температура и давление), — состоянием, в которое в конечном счете, согласно второму закону термодинамики (принцип максимума энтропии), приходит система, будет именно состояние теплового равновесия. Уточнение «теплового» в данном случае подразумевает, что речь идет о некотором усреднении разнонаправленного движения большого количества отдельных частиц, составляющих систему. Именно средние и составляют предмет исследования в термодинамике — т.е. поведение не индивидуальное, но типичное.

Строго говоря, из всего вышеизложенного следует, что когда речь заходит о термодинамическом состоянии системы или о тепловом равновесии, под этим вовсе не подразумевается какое-то индивидуальное состояние — скорее, имеется в виду некая совокупность, или ансамбль, состояний, которые на макроскопическом уровне представляются совершенно одинаковыми (а энтропия, если не вдаваться в детали, есть не что иное, как логарифм количества состояний в этом ансамбле). Если взять некоторое количество газа в состоянии равновесия и определить его давление, объем, а также количество и расположение молекул газа, то мы получим весьма характерное распределение вероятных скоростей частиц при тепловом равновесии (впервые это распределение было описано Максвеллом). При более тщательном анализе обнаруживается масштаб, в котором следует ожидать статистических флуктуации от идеального состояния теплового равновесия, и здесь мы вступаем во владения более сложной науки, называемой статистической механикой, — науки о статистическом поведении материи.

Может показаться, что и в моделировании физического поведения посредством математических структур также нет ничего принципиально невычислимого. После выполнения соответствующих расчетов мы, как правило, приходим к хорошему согласию между вычисленным и наблюдаемым. Однако если рассматриваемая система хоть сколько-нибудь сложнее, нежели заполненное разреженным газом пространство или обширная совокупность гравитирующих тел, нам вряд ли удастся полностью избежать проблем, обусловленных квантовомеханической природой составляющей систему материи. Даже такой чистейший и наиболее тщательно исследованный образчик термодинамического поведения, как состояние теплового равновесия между веществом и излучением (так называемое «абсолютно черное тело»), нельзя исчерпывающе описать в классических терминах — необходимо учитывать и квантовые процессы, происходящие на фундаментальном уровне. Более того, у истоков всей квантовой теории лежит не что иное, как предпринятая Максом Планком в 1900 году попытка анализа излучения черного тела.

Как бы то ни было, предсказания физической теории (а ныне — квантовой теории) блестяще подтверждаются. Наблюдаемая экспериментально взаимосвязь между частотой и интенсивностью излучения на этой частоте весьма точно описывается предложенной Планком формулой. Хотя в рамках настоящего рассуждения нас, вообще говоря, интересует вычислительная природа классической теории, я не в силах устоять перед искушением привести пример наиболее совершенного (на сегодняшний день и насколько мне известно) согласия между данными наблюдений и результатами вычислений по формуле Планка. Этот пример можно также рассматривать как превосходное экспериментальное подтверждение стандартной модели Большого Взрыва — в том, что имеет отношение к температурным условиям в новоиспеченной Вселенной в первые несколько минут ее существования. На рис. 4.12 маленькими прямоугольниками показаны экспериментальные значения интенсивности космического фонового излучения на различных частотах (полученные с помощью исследовательского спутника COBE[31]); непрерывная кривая построена в соответствии с формулой Планка, при этом за температуру фонового излучения взято значение 2,735 (±0,06) К (наилучшее эмпирическое значение). Точность совпадения кривых поражает воображение.

Рис. 4.12. Точное согласие между результатами наблюдений, полученными со спутника СОВЕ, и теоретическими результатами в предположении «тепловой» природы излучения Большого Взрыва.

Приведенные выше примеры взяты из астрофизики — области, особое внимание в которой уделяется именно сравнению результатов громоздких вычислений с наблюдаемым поведением существующих в реальном мире систем. Прямые эксперименты в астрофизике невозможны, поэтому подтверждения теориям приходится искать путем сравнения рассчитанного (исходя из стандартных физических законов) поведения той или иной системы в той или иной предполагаемой ситуации с данными, полученными с помощью сложных наблюдательных процедур. (Наблюдения осуществляются с поверхности Земли, с аэростатов или других летательных аппаратов, размещенных в верхних слоях атмосферы, с ракет или искусственных спутников; при этом наряду с обычными оптическими телескопами применяются и самые разнообразные детекторы прочих сигналов.) Все эти вычисления, впрочем, не имеют непосредственного отношения к цели наших поисков, и я упомянул о них, главным образом, как о замечательно наглядных примерах того, насколько продуктивным инструментом исследования природы могут оказаться полные и точные вычисления, насколько хорошо вычислительные процедуры способны в действительности подражать природе. Нам же стоит уделить более пристальное внимание исследованиям биологических систем, так как именно в поведении биологических систем (а точнее — согласно выводам, к которым мы пришли в первой части, — в поведении осознающего себя мозга) следует искать возможные и необходимые проявления невычислимой физической активности.

Нет никаких сомнений в том, что вычислительные модели играют весьма важную роль в моделировании биологических систем, однако сами эти системы очевидно гораздо более сложны, чем те, с которыми имеет дело астрофизика, — соответственно, более сложной оказывается и задача построения действительно надежной модели биологической системы. Количество систем, достаточно «чистых» для того, чтобы получить при моделировании сколько-нибудь «приличную» точность, очень невелико. Мы в состоянии построить достаточно эффективные модели сравнительно простых систем — таких, например, как кровоток в сосудах различных типов или, скажем, передача сигналов по нервным волокнам (хотя в последнем случае возникают некоторые сомнения относительно того, допустимо ли рассматривать данную систему в рамках исключительно классической физики, поскольку важную роль здесь играют, наряду с физическими, и химические процессы).

Химические процессы напрямую обусловлены квантовыми эффектами, поэтому при исследовании поведения, связанного с химической активностью, мы, строго говоря, выходим за рамки классической физики. Несмотря на это, очень часто подобные «квантово обусловленные» процессы рассматриваются с позиций существенно классических. И хотя формально такой подход корректным не является, в большинстве случаев мы интуитивно предполагаем, что всевозможные тонкие квантовые эффекты (помимо тех, что «официально» учитываются стандартными правилами и законами химии, классической физики и геометрии) серьезной роли здесь не играют. С другой стороны, мне думается, что при всей разумности и даже беспроигрышности такого предположения в отношении моделирования многих биологических систем (сюда, пожалуй, можно включить и распространение нервных импульсов) все же несколько рискованно делать общие выводы о более сложных биологических процессах, опираясь лишь на их якобы полностью классическую природу, особенно если речь заходит о таких сложнейших системах, как, например, человеческий мозг. Если мы намерены прийти к сколько-нибудь общим заключениям о теоретической возможности достоверной вычислительной модели мозга, нам необходимо прежде как-то разобраться с «загадками» квантовой теории.

Именно этим мы и займемся в двух последующих главах — по крайней мере, попытаемся по мере возможности. Там, где, как мне представляется, разобраться в причудах квантовой теории невозможно в принципе, я покажу, каким образом следует модифицировать саму теорию с тем, чтобы привести ее в вид, более соответствующий нашим представлениям о правдоподобной картине мира.

5. Структура квантового мира