Ближайшее затмение состоялось через три года, лучше всего его было наблюдать в Крыму, и коллега Эйнштейна, астроном Фрейндлих, отправился его наблюдать. Но сделать это ему не удалось. Шел 1914 год, началась Первая мировая война, немецких астрономов, прибывших наблюдать за затмением, приняли за шпионов и арестовали. В этом можно увидеть руку судьбы: позже выяснилось, что уравнение, по которому Эйнштейн рассчитывал отклонение, было неправильным. Ученый его доработал и получил новый результат – 1,7 секунды. Теперь опытная проверка стала еще более важной, с ее помощью можно было выяснить, кто прав – классическая физика или Эйнштейн с его теорией относительности.
Содержание общей теории относительности
Английскому астроному Артуру Эддингтону удалось провести проверку во время затмения 1919 года.
Расчеты Эйнштейна, а значит, и теория относительности были подтверждены.
Еще один интересный эффект, объясненный общей теорией относительности, – гравитационное замедление времени. Астроном Карл Шварцшильд занимался решением уравнений Эйнштейна для отдельной звезды и обнаружил, что при приближении к звезде время начинает идти медленнее. Чем ближе к гравитационному центру, тем больше проявлен эффект замедления времени. Это явление визуально подтверждалось красным смещением, которому подвергался идущий от звезды свет.
Всем известно, что такое радуга, это разложение солнечного света на спектр цветов. Такое же разложение можно проделать с любым излучением: излучение состоит из волн различной длины, и это можно увидеть при помощи специальных приборов. К примеру, атомный спектральный анализ позволяет определить состав звезды по ее излучению.
Из расчетов Шварцшильда следовало, что время течет медленнее для атомов вещества на звезде, чем для атома того же самого вещества, находящегося на Земле. Чем массивнее и плотнее звезда, тем медленнее будет течь время поблизости от нее и тем явственнее будет эффект красного смещения. Рассуждая дальше, Шварцшильд пришел к выводу, что при критической плотности объекта время рядом с ним остановится. Для него это открытие стало лишь математической иллюзией. Он и не подозревал, что описывает черную дыру – эти объекты были обнаружены гораздо позже.
Под действием массы Солнца пространство рядом с ним искривляется, это можно заметить по отклонению световых лучей, идущих от звезд. Это явление – следствие общей теории относительности – описал Эйнштейн
Эйнштейн тоже считал, что подобное тело не может существовать в реальности – здесь теория, вернее, ее следствие, вошли в противоречие со своим создателем. Теория победила: в 1967 году Джон Уилер впервые употребил термин «черная дыра». Оказалось, что это явление имеет поистине фантастические характеристики: критическая масса, замедление времени и горизонт событий – черта, попав за которую, ничто не способно вырваться из черной дыры. Существование черных дыр полностью вписывается в общую теорию относительности и подтверждает ее.
Научные споры и попытки нового прорыва: квантовая механика и единая теория поля
Уравнения Эйнштейна для специальной и общей теории относительности, описывающие взаимодействия материи и энергии во Вселенной, дали ему возможность задуматься о космологии и единой теории, объединяющей все известные фундаментальные взаимодействия в природе. Эти задачи были невероятно сложными, чтобы их решить, нужно было создать и отвергнуть множество предварительных гипотез и приблизительных вычислений.
В начале XX века считалось, что вся Вселенная – это Млечный Путь, представляющий собой громадное скопление звезд посреди пустоты. Для описания этой системы Эйнштейн ввел в уравнения космологическую постоянную. Целью этого шага было привести к статичности уравнения, которые без этого показывали движение и смещение звезд. Ученый считал, что Вселенная гомогенна и изотропна, то есть однородна по своему составу и при этом сохраняет одинаковые физические свойства во всех направлениях. Космологическая постоянная соответствовала этим качествам пространства.
Обратившись к геометрии, Эйнштейн использовал модель Вселенной Ньютона – плоскую, трехмерную, описываемую законами евклидовой геометрии. Эту модель он вывернул и изогнул – получилась сфера с четырьмя измерениями. Поверхность данной гиперсферы представляла собой бесконечность: любое тело, перемещаясь по ней в любом направлении, могло вернуться в исходную точку.
В следующие десятилетия астрономы обнаружили, что наша Вселенная не ограничивается пространством Млечного Пути, она продолжается гораздо дальше. Кроме того, Эдвин Хаббл открыл явление расширения Вселенной, самого ее пространства. Эти открытия вступали в противоречия с моделью Эйнштейна, которая была статичной. Но другое открытие, совершенное Александром Фридманом, доказало, что и в гомогенной изотропной Вселенной возможно расширение. Космологическая постоянная Эйнштейна работала и могла использоваться в вычислениях. Впоследствии развитие гипотезы ученого привело к возникновению общепринятой в наше время теории Большого взрыва.
Одной из главных задач, которую ставил перед собой Эйнштейн в последние два десятилетия жизни, было создание единой теории поля. Вместе с ним над этой проблемой работали многие математики с мировым именем. Совместными усилиями им удалось создать две версии «теории всего», но по разным причинам ни одна из них не устраивала Эйнштейна полностью.
Первой по времени была версия, которая подразумевала пятимерность нашего мира. Она включала четыре уже известные нам измерения – пространство и время и еще одно, находящееся в микромире. В наше время из этой версии, отвергнутой Эйнштейном, выросла знаменитая теория струн, в которой речь идет о свернутых измерениях, существующих внутри квантов. Вторая версия имела дело с формой пространства-времени. Эйнштейн предположил, что оно имеет не только кривизну, но и кручение.
Создание квантовой механики – раздела физики, занимающегося чрезвычайно малыми величинами (молекулами, атомами, электронами), происходило с участием Эйнштейна. Эта наука, полная противоречий, особенно на этапе своего зарождения, породила активные споры среди ученых. Ее создавали многие физики, она была коллективным плодом и поэтому в начале не отличалась последовательностью. Постулаты квантовой механики противоречили большинству законов классической физики, и сама наука долгое время была объектом критики. Даже Эйнштейна она вводила в недоумение. «Чем больше успеха имеет квантовая теория, тем более нелепой она кажется», – так он высказывался по этому поводу.
В начале XX века Макс Планк заложил основы квантовой теории, он высказал предположение, что электромагнитное излучение состоит из микроскопических порций (квантов] энергии. Развивая эту идею, он пришел к убеждению: размеры квантов не произвольны, верхняя и нижняя границы обусловлены некими законами. Эйнштейн развил предположения Планка, он был уверен, что закономерностям подчиняется не только размер квантов, но и количество, которое может выделяться при излучении. Эти догадки в то время невозможно было подтвердить экспериментально, и большинство физиков отнеслись к ним скептически.
Но Эйнштейн упорно продолжал разрабатывать свою идею. В 1916 году он дал ей следующую формулировку: обмен энергией происходит в форме образования частиц, обладающих моментом силы. Согласно этой формулировке, фотоны (кванты света) ведут себя подобно снарядам энергии. Через несколько лет данная теория была подтверждена в результате лабораторных исследований. Но сам Эйнштейн вскоре поменял взгляд на квантовую теорию.
В 1912 году Нильс Бор создал модель атома. Он выяснил, что все электроны движутся не хаотично, а по стационарным орбитам. На каждой орбите существует свой уровень энергии. Электроны могут переходить с орбиты на орбиту, при каждом переходе либо излучается, либо поглощается фотон (квант энергии). Таким образом, структура атома подобна амфитеатру, где электроны движутся по своим орбитам или переходят с уровня на уровень.
Это открытие вызвало много споров и вопросов, ответить на которые пытались физики всего мира, в их числе был и Вернер Гейзенберг. Он заложил основы одного из основополагающих принципов квантовой теории – принципа неопределенности. Орбиты электронов, рассчитанные Бором, увидеть было невозможно, никто лично не наблюдал перехода электрона с одного уровня на другой. Гейзенберг считал, что модель, созданная Бором, должна быть уточнена. Он сомневался в том, что орбиты электронов реально существуют. Бор использовал в своей модели зрительные образы (орбиты, амфитеатр), Гейзенберг предложил математическую модель, в основе которой лежали частоты линий спектра, излучаемые электронами.
Эйнштейн был категорически не согласен с той моделью квантовой механики, которую приняли Бор, Гейзенберг и другие ученые. «Бог не играет в кости!» – восклицал он, отрицая неопределенность. «Не указывайте Богу, что ему делать!» – в тон ему отвечал Нильс Бор. Эйнштейна не удовлетворяла незавершенность квантовой механики, он хотел создать полную теорию микромира. Ему это не удалось, но многие физики до сих пор над этим работают.
Противостояние нацизму и борьба за мир: последние годы всемирно известного ученого
Альберт Эйнштейн всегда был пацифистом, он открыто высказывался против Первой мировой войны и при каждом удобном случае пропагандировал идеи гуманизма и интернационализма. До отъезда в США он жил в Германии, хотя у него не было немецкого гражданства, он отказался от него еще в юные годы, чтобы не идти в армию. В 20–30-е годы XX века в стране царил кризис, это был период восхождения к власти национал-социалистов. Антисемитские настроения усиливались с каждым годом. Эйнштейн был мировой знаменитостью, находился на виду и был прекрасной мишенью для нападок.
Преследование началось с разгромных статей и памфлетов в прессе, позже появилось целое антиэйнштейновское общество, чья деятельность была направлена на борьбу с идеями ученого – «за сохранение чистой арийской науки» и с ним самим. Закончилось все прямыми угрозами и призывами к физическому уничтожению Эйнштейна, за его голову даже была назначена награда. Ему не оставалось ничего другого, как покинуть Германию. В 1933 году он переехал в США. В знак протеста против нацизма ученый отказался от членства в Баварской и Прусской академиях наук.