3. Основные показатели анализа динамических рядов
Для анализа динамических рядов в статистике используются такие показатели, как уровень ряда, средний уровень, абсолютный прирост, темп роста, коэффициент роста, темп прироста, коэффициент опережения, абсолютное значение одного процента прироста.
Уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда.
Абсолютный прирост – это один из самых важных статистических показателей, он характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными.
Для динамического ряда у0 , у1 , у2 ,…, yn—1, yn, состоящего из n + 1 уровней, абсолютный прирост определяется по формулам:
1) цепной: ΔI= уi – уi—1;
2) базисный Δ = уi – у0 ,
где yi – текущий уровень ряда;
yi—1 – уровень, предшествующий уi;
y0 – начальный уровень ряда.
Формула среднего абсолютного прироста:
где Δy – средний абсолютный прирост;
yn – конечный уровень ряда;
y0 – начальный уровень ряда.
Вычисляют показатели темпа роста и темпа прироста. Темп роста является самым распространенным статистическим показателем, который характеризует отношение данного уровня статистического процесса к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными а к начальному – базисными.
Темпы роста вычисляются по формулам:
1) цепной:
2) базисный:
где yi – текущий уровень ряда;
yi—1 – уровень, предшествующий уi;
у0 – начальный уровень ряда.
Если у темпов роста база сравнения принимается за 1, то полученные статистические показатели называются коэффициентами роста.
Темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста. Для этого надо от темпа роста отнять 100 или от коэффициента роста – 1, в последнем случае получим коэффициент прироста Кпр.
Темпы прироста рассчитываются по следующим формулам:
1) цепной: Тпр. = (у – yi—1); yi—1 = Тр.ц. – 100 или (Кр.ц. – 1) х 100;
2) базисный: Тпр. = (уi – у0 ); у0 = Тр.б. – 100 или (Кр.б. – 1) х 100.
Для характеристики темпов роста и прироста в среднем за весь период рассчитывают средний темп роста и прироста. Средний темп (коэффициент) роста определяется по формуле средней геометрической, когда средний темп роста вычисляется по абсолютным данным первого и последнего членов динамического ряда, применяется следующая формула средней геометрической:
где у1 – начальный уровень;
yn – конечный уровень;
n – число членов ряда.
Если имеются цепные коэффициенты роста, то средний коэффициент роста определяется по формуле:
где К1, К2, К3… Kn – коэффициенты роста за любой период.
Коэффициент опережения – это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени Обозначив коэффициент опережения Kоп, базисные коэффициенты роста первого ряда динамики – через К1 , второго – К11 , Тогда:
Коп= К1/ К11 .
Данный коэффициент показывает, во сколько раз будет быстрее расти уровень одного ряда динамики по сравнению с другим Отношение абсолютного прироста к темпу прироста представляет собой абсолютное значение одного процента по формуле:
А% = Δ (абсолютный прирост) / Тпр.
Интерполяция и экстраполяция
Для решения неизвестных промежуточных значений динамического ряда применяется способ интерполяции.
Интерполяция – способ определения неизвестных промежуточных значений динамического ряда.
Интерполяция заключается по существу в приближенном отражении сложившейся закономерности внутри определенного отрезка времени – в отличие от экстраполяции, которая требует выхода за пределы этого отрезка времени.
Экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее и т. д.
Средний уровень ряда динамики характеризует типичную величину абсолютных уровней.
Средний уровень y в интервальных рядах динамики вычисляется с помощью деления суммы уровней y ; на их число n.
В моментном ряду динамики с равностоящими датами времени уровень будет определяться следующим образом:
В моментном ряду динамики с неравностоящими датами средний уровень определяется:
Характеристика обобщающих индивидуальных абсолютных приростов ряда динамики называется средним абсолютным приростом.
Средний абсолютный прирост у определяется так: сумма цепных абсолютных приростов (уn) делится на их число (n):
Средний абсолютный прирост также может определяться по абсолютным рядам динамики, для этого определяется разность между конечным уп и базисным у0 уровнями изучаемого периода, которая делится на m – 1 субпериодов.
Показатель среднего абсолютного прироста определяют по формуле:
Средний темп роста (Тр) – это индивидуальные темпы роста ряда динамики, которые имеют обобщающую характеристику, ее формула:
Средний темп роста, который определяется по абсолютным уровням динамики, выглядит следующим образом:
На основе взаимосвязи между базисными и цепными темпами роста средний темп роста определяем по формуле:
Средний темп прироста Тп находится на основании взаимосвязи между темпами роста и прироста. Если существуют сведения о средних темпах роста Т, то для получения средних темпов прироста Тп используется зависимость:
ЛЕКЦИЯ № 11. Индексы
1. Понятие об индексах
Особым видом относительных величин являются индексы. Индекс (Index) означает указатель, показатель. Особенности индексов в том, что:
1) с помощью индексов одним числом можно выразить соотношение разнородных явлений, показатели которых не могут быть непосредственно суммируемыми. Посредством индекса можно установить процент выполнения плана по каждому отдельному виду продукции, а также средний процент выполнения плана по всей продукции коммерческого предприятия, который выпускает различные виды продукции;
2) с помощью индексов можно характеризовать степень выполнения плана и степень изменения явлений во времени и соотношение величин явлений в пространстве; посредством экономических индексов можно выразить задание по плану.
В статистике индекс – это относительная величина, характеризующая изменения во времени и в пространстве уровня изучаемого общественного явления (процесса), или степень выполнения плана.
По степени охвата различают два вида индексов: индивидуальные и общие.
2. Индивидуальные индексы
Индивидуальные индексы характеризуют соотношение отдельных элементов совокупности.
Примером индивидуальных индексов может быть процент выполнения плана или динамика выпуска одного вида продукции, процент выполнения плана или динамика себестоимости одного вида продукции или соотношение выпуска одного вида продукции за один и тот же период в разных областях.
Индивидуальный индекс обозначается буквой Он определяется методом сопоставления двух величин, характеризующих уровень исследуемого статистического процесса или явления во времени или в пространстве, т. е. за два сравниваемых периода Период (уровень которого сравнивается) называется отчетным. или текущим, периодом и обозначается подстрочным знаком «I» а период, с уровнем которого проводится сравнение, называется базисным и обозначается подстрочным знаком «О» или «ря», если при внутрифирменном планировании сравнение проводится с планом. Если изменение явлений изучается за ряд периодов то каждый период обозначается соответственно подстрочным знаком «О», «1», «2», «3» и т. д.
В статистике количество обозначают буквой «q», цену – «р». себестоимость – «z», затраты времени на производство единицы продукции – «t».
Индивидуальные индексы выражаются следующим образом:
1) индекс физического объема продукции:
где q1 и q0 – количество произведенной продукции в отчетном и базисном периодах. Данный индекс характеризует изменение физического объема продукции во времени, в пространстве, если сравнивать производство одного и того же вида продукции за один и тот же период времени, но по разным объектам (заводам, территориям и т. д.), и плана, если фактический выпуск сравнивать с плановым заданием;