Теория статистики: конспект лекций — страница 16 из 21

2) индекс цен:


где р1 и р0 – цена единицы продукции в отчетном и базисном периодах.

Индекс себестоимости:

где z1 и z0 – себестоимость единицы продукции в отчетном и базисном периодах. Индекс трудоемкости:


где t1 и t0 – затраты времени в отчетном и базисном периодах на производство единицы продукции.

Изменение объема реализации товара в стоимостном выражении отражает индивидуальный индекс товарооборота:


Приведенные выше индексы: цен, физического объема и товарооборота взаимосвязаны между собой:


Эта взаимосвязь показывает, что изменение товарооборота складывается под воздействием динамики цены и изменения объема продажи данного товара.

Индивидуальные индексы по существу – это относительные величины динамики, выполнения плана или сравнения. Индекс как относительный показатель выражается в виде коэффициентов, когда база для сравнения принимается за единицу, и в процентах, когда база для сравнения принимается за 100.

Базисные и цепные индексы

Для определения статистических индексов нужно иметь данные за два периода или два сравниваемых уровня.

Если существуют данные за определенный ряд периодов или уровней, то в качестве базы для сравнения можно принять один и тот же начальный уровень или уровень предыдущего периода. В первом случае получим индексы с постоянной базой – базисные, а во втором – индексы с переменной базой – цепные.

В экономическом анализе базисные и цепные индексы обладают определенными значениями.

Базисные экономические индексы характеризуют изменение статистических процессов за длительный период времени по отношению к одной отправной точке, но если возникнет необходимость следить за текущими изменениями статистического процесса, то применяются цепные индексы.

Если на основе базисных и цепных индексов исследуется один и тот же период, то это обозначает, что между ними есть взаимосвязь – это произведение цепных индексов, равное базисному Такая взаимосвязь принесет возможность вычислить базисные индексы по данным цепных индексов, и наоборот.

Общие индексы

Общие индексы характеризуют соотношение совокупности статистических процессов или явлений, состоящей из разнородных, непосредственно несоизмеримых элементов. Для определения общей стоимости различных видов продукции в качестве со–измерителя используется обычно цена за единицу продукции, для определения общей себестоимости или производственных затрат – себестоимость единицы продукции, общих затрат труда – затраты труда на производство единицы продукции и т. д.

Общее изменение товарооборота от стоимости проданных товаров можно определять, сопоставив общую стоимость проданных товаров в отчетном периоде по ценам отчетного периода с общей стоимостью проданных товаров в базисном периоде по ценам базисного периода.

Формула общего индекса товарооборота:


Аналогично индексу товарооборота рассчитываются индексы продукции, потребления и т. д.

Приведенная выше формула индекса товарооборота называется агрегатной (от лат. aggrega – «присоединяю»). Агрегатными называются индексы, числители и знаменатели которых представляют собой суммы, произведения или суммы произведений уровней изучаемого статистического явления. Агрегатная формула индекса – основная и наиболее распространенная формула экономических ин

дексов. Агрегатная формула индекса показывает относительное изменение исследуемого экономического процесса и абсолютные размеры этого изменения.

Расчет агрегатного индекса цен по данной формуле был предложен немецким экономистом Г. Пааше, поэтому его принято называть индексом Пааше.

3. Веса агрегатных индексов цен и физического объема продукции

Агрегатная формула индекса товарооборота показывает, что его величина зависит от двух явлений, от двух переменных величин: физического объема товарооборота, т. е. количества проданных товаров, и цены за каждую единицу реализованных товаров. Чтобы выявить влияние каждой переменной в отдельности, следует влияние одной из них исключить, т. е. принять ее условно в качестве постоянной, неизменной величины на уровне отчетного или базисного периода. Вопрос о том, какой период принять в качестве постоянной величины, рассмотрим на примере индекса цен и индекса физического объема товарооборота.

Агрегатный индекс цен. Общее изменение цен можно определить, если считать постоянной величиной количество реализованных товаров за отчетный или базисный период. Если для получения индекса цен принимать в качестве весов данные о количестве реализованных товаров за отчетный период, можно получить следующую формулу агрегатного индекса цен:


где p1 и р0 – единицы реализованных товаров в отчетном и базисном периодах;

q1 – количество реализованных товаров в отчетном периоде.

Если примем в качестве весов данные о количестве реализованных товаров в базисном периоде, то формула агрегатного индекса цен примет вид:


Полученные формулы агрегатных индексов цен с отчетными и базисными весами не идентичны.

Величина индекса зависит от индексируемых показателей, т. е от величин, изменения которых нам нужно определить, и от сомножителей, которые берутся в качестве весов, а в зависимости от данных, которые были взяты в качестве весов – это данные базисного или отчетного периодов, получают два разных индекса.

Первый индекс показывает изменение цен отчетного периода по сравнению с базисным по продукции, проданной в отчетном периоде, и фактическую экономию от снижения цен.

Другой индекс показывает, насколько поменялись цены в отчетном периоде по сопоставлении с базисными, но только по продукции, которая была реализована в базисном периоде, и экономию, которую можно было получить в результате снижения цен.

Абсолютная фактическая экономия от снижения цен в отчетном периоде определяется следующим образом:


Абсолютная условная экономия в базисном периоде:


Для вычисления индекса цен необходимо сопоставить стоимость товаров, реализованных в отчетном периоде по ценам отчетного периода, со стоимостью этих же товаров, но по ценам базисного периода.

Агрегатный индекс цен представляет собой дробь, числитель и знаменатель которой состоят из двух сомножителей. Один из них является переменной индексируемой величиной (p1 и p0 ). а второй принимается условно в качестве постоянной величины – веса индекса (q1).

Агрегатный индекс физического объема товарооборота

Индекс физического объема товарооборота представляет собой изменение физического объема в отчетном периоде по соотнесению с базисным. Чтобы агрегатный индекс показывал лишь изменение физического объема товарооборота, в качестве весов берутся неизменные цены базисного и отчетного периодов

Неизменные цены всегда только цены базисного периода. Применение в качестве весов неизменных цен дает возможность получить правильное представление о динамике физического объема товарооборота.

В индексе физического объема сомножитель индексируемого показателя берется на уровне базисного периода.

Формула агрегатного индекса физического объема продукции:


где Σq1p0 – стоимость продукции отчетного периода по ценам базисного;

Σq0p0 – стоимость продукции базисного периода по ценам того же периода.

Абсолютное изменение физического объема вычисляется как разность между числителем и знаменателем индекса Σq1p0 – Σq0p0


Постоянные и переменные веса агрегатных индексов

Если индексы вычисляются за несколько периодов, то для всех них могут быть приняты одни и те же веса – индексы с постоянными весами, или же для каждого периода свои веса – индексы с переменными весами.

Теоретически возможны четыре типа индексов.

1. Общие базисные индексы цен с постоянными (базисными) весами:


2. Общие базисные индексы цен с переменными (отчетными) весами:


3. Общие цепные индексы цен с постоянными весами:


4. Общие цепные индексы цен с переменными весами:


Эти индексы получены путем сопоставления цен каждого последующего периода с предыдущим, но взвешенных в каждом случае на количество товаров отчетного периода.

В этих индексах отражается как изменение цен за ряд последовательных периодов, так и изменение структуры реализованных товаров.

Для характеристики изменения цен по сравнению с начальным периодом без учета изменений в структуре произведенных товаров применяют общие базисные индексы с постоянными весами, в тех же целях, но с учетом изменения структуры – базисные индексы с переменными весами. Для определения изменения цен каждого периода по сравнению с предыдущим без учета изменений в структуре проданных товаров применяют цепные индексы с постоянными весами, с учетом изменений в структуре – цепные индексы с переменными весами.

Выбор периода взвешивания индексов зависит от того, какие индексы вычисляются: индексы количественных (объемных) или качественных показателей.

4. Другие агрегатные индексы

Рассмотрим некоторые из агрегатных индексов.

1. Индекс себестоимости продукции показывает, во сколько раз себестоимость в отчетном периоде в среднем выше или ниже базисной или плановой себестоимости, а также абсолютный размер экономии или перерасхода в результате изменения себестоимости. Индекс себестоимости – это индекс качественных показате

лей и исчисляется по весам (объему) продукции отчетного периода:


где z1,