Что взорвалось?
Общее заблуждение состоит в том, что теория Большого взрыва является теорией возникновения космоса. Это не так. Большой взрыв — это теория, частично описанная в двух предыдущих главах, которая обрисовывает космическую эволюцию спустя доли секунды после чего-то, что привело Вселенную к существованию, но она совсем ничего не говорит о самом времени «нуль». А поскольку, в соответствии с теорией Большого взрыва, сам взрыв есть то, что предполагается произошедшим в начале, Большой взрыв не включает сам момент взрыва. Теория Большого взрыва ничего не говорит нам о том, что взорвалось, почему взорвалось, как оно взорвалось или взорвалось ли оно вообще на самом деле.{124} Фактически, если вы на секунду задумаетесь об этом, вы обнаружите, что Большой взрыв предстаёт перед нами совершенно загадочным. При чудовищных плотностях материи и энергии, характеризующих ранние моменты Вселенной, гравитация была силой, доминирующей над всеми другими силами. Но гравитация — притягивающая сила. Она заставляет вещи объединяться. Что же могло соответствовать расталкивающей силе, которая подтолкнула Вселенную к расширению? Казалось бы, какая-то мощная отталкивающая сила должна была играть критическую роль во время взрыва, но какая из природных сил могла бы это быть?
Много десятилетий этот самый основной из всех космологических вопросов оставался без ответа. Затем в 1980-е гг. в блистательной и новой форме было возрождено одно старое наблюдение Эйнштейна, дав толчок тому, что стало известно как инфляционная космология. И это открытие, наконец, отдало главную роль во взрыве достойной этого силе: гравитации. Это удивительно, но физики обнаружили, что в подходящих условиях гравитация может быть отталкивающей и, в соответствии с теорией, именно такие условия преобладали в течение самых ранних моментов космической истории. В течение интервала времени, для которого наносекунда могла бы показаться вечностью, ранняя Вселенная обеспечивала арену, на которой гравитация проявляла свою отталкивающую сторону, с неумолимой свирепостью расталкивая все области пространства друг от друга. Отталкивающее действие гравитации было столь мощным, что не только предопределило взрыв, но оно дало больше — намного больше, — чем кто бы то ни было раньше представлял. Благодаря инфляции ранняя Вселенная расширилась в ошеломляющее число раз больше по сравнению с тем, что предсказывает стандартная теория Большого взрыва, увеличив нашу космологическую перспективу до такой степени, что открытие последнего столетия, согласно которому наша Галактика не более чем одна среди сотен миллиардов, стало казаться совершенно незначительным.{125}
В этой и следующей главе мы обсуждаем инфляционную космологию. Мы увидим, что она обеспечивает «интерфейс» для стандартной модели Большого взрыва, предлагая критически важные модификации к утверждениям стандартной теории о событиях, происходивших в самые ранние моменты Вселенной. При этом инфляционная космология решает ключевые проблемы, которые находятся вне пределов досягаемости стандартной модели Большого взрыва, даёт ряд предсказаний, которые были экспериментально проверены и в недалёком будущем продолжат экспериментально тестироваться, и, наверное, самое поразительное, показывает, как квантовые процессы, благодаря космологическому расширению, могут впечатать крошечные морщины в ткань пространства, оставив видимый след в ночном небе. И, помимо этих успехов, инфляционная космология, подводя нас ближе чем когда-либо к объяснению стрелы времени, даёт возможность понять, как в ранней Вселенной могла образоваться чрезвычайно низкая энтропия.
Эйнштейн и отталкивающая гравитация
После внесения последних штрихов в общую теорию относительности в 1915 г. Эйнштейн применил свои новые уравнения к рассмотрению ряда проблем. Среди них была давняя загадка, почему с помощью уравнений Ньютона не удаётся оценить так называемую прецессию перигелия орбиты Меркурия — наблюдаемый факт, что Меркурий не прочерчивает каждый раз один и тот же путь, обращаясь вокруг Солнца: вместо этого каждая следующая орбита немного поворачивается относительно предыдущей. Когда Эйнштейн провёл расчёты орбиты со своими новыми уравнениями, он получил точное наблюдаемое значение прецессии перигелия, и найденный им результат был настолько волнующим, что вызвал у него учащённое сердцебиение.{126} Эйнштейн также применил общую теорию относительности к вопросу о том, насколько сильно за счёт кривизны пространства-времени будет изгибаться траектория света далёкой звезды, когда свет проходит мимо Солнца на своём пути к Земле. В 1919 г. две команды астрономов — одна на острове Принсипи у западного побережья Африки, другая в Бразилии — проверили это предсказание во время солнечного затмения путём сравнения пути света от звёзд, который приходил, почти касаясь поверхности Солнца (именно такой свет наиболее подвержен отклонению за счёт присутствия Солнца, и только во время затмения он может быть видим), с фотографиями, сделанными, когда движение по орбите помещало Землю между Солнцем и теми же звёздами, почти уничтожая влияние гравитации Солнца на траекторию звёздного света. Сравнение дало угол отклонения света, который снова подтвердил вычисления Эйнштейна. Когда эти результаты попали в прессу, Эйнштейн стал известен на весь мир за одну ночь. С общей теорией относительности Эйнштейну, по правде говоря, здорово повезло.
Тем не менее, несмотря на впечатляющие успехи общей теории относительности, в течение нескольких лет после того, как он впервые применил свою теорию к наиболее вызывающей из всех проблем — к пониманию Вселенной в целом, — Эйнштейн абсолютно отказался принять выводы, которые следовали из математики. Ещё до работ Фридмана и Леметра, обсуждавшихся в главе 8, Эйнштейн понял, что из уравнения общей теории относительности следует, что Вселенная не может быть статической; ткань пространства может растягиваться или сжиматься, но она не может сохранять фиксированный размер. Это означало, что Вселенная могла иметь определённое начало, когда ткань пространства была максимально сжата, и может даже иметь определённый конец. Эйнштейн упрямо отказывался от этих следствий общей теории относительности, поскольку он и все остальные «знали», что Вселенная бесконечна и на самых больших масштабах неподвижна и неизменна. Поэтому несмотря на красоту и успешность общей теории относительности Эйнштейн снова взялся за свой блокнот и попытался внести изменения в уравнения, которые бы позволили Вселенной соответствовать преобладающему предубеждению. У него это долго не получалось. В 1917 г. он добился цели путём введения нового члена в уравнения общей теории относительности: космологической постоянной.{127}
Стратегию Эйнштейна при введении этой модификации нетрудно понять. Гравитационная сила между любыми двумя объектами, являются ли они бейсбольными мячами, планетами, звёздами, кометами или чем хотите, является притягивающей, и в итоге гравитация постоянно действует так, чтобы сдвинуть объекты в направлении друг к другу. Гравитационное притяжение между Землёй и танцором, прыгающим вверх, заставляет танцора замедлиться, достигнуть максимальной высоты, а затем направиться обратно вниз. Если хореограф задумал бы статическую конфигурацию, в которой танцор повис бы в воздухе, то между танцором и Землёй должна была бы быть введена отталкивающая сила, которая в точности уравновесила бы их гравитационное притяжение: статическая конфигурация может возникнуть только тогда, когда имеется точная взаимная компенсация притяжения и отталкивания. Эйнштейн осознал, что точно такие же рассуждения применимы ко всей Вселенной. Точно так же, как притяжение гравитации замедляет подъём танцора, оно замедляет и расширение пространства. И точно так же, как танцор не может замереть, и продолжать парить на фиксированной высоте над полом без дополнительной отталкивающей силы, компенсирующей обычное гравитационное притяжение, пространство не может быть статическим, оно не может «парить», сохраняя фиксированный общий размер, без наличия некоторой компенсирующей отталкивающей силы. Эйнштейн ввёл космологическую постоянную потому, что он выяснил, что с этим новым членом, включённым в уравнения, гравитация может обеспечить именно такую отталкивающую силу.
Но какой физический смысл имеет этот математический объект? Что такое космологическая постоянная, из чего она сделана, и каким образом она действует против обычного притяжения гравитации и оказывает отталкивающее действие? Современное прочтение работы Эйнштейна — то, что восходит к Леметру, — интерпретирует космологическую константу как экзотическую форму энергии, которая однородно и равномерно заполняет всё пространство. Я говорю «экзотическую», поскольку анализ Эйнштейна не определяет, откуда эта энергия может взяться, и, как мы скоро увидим, математическое описание, которое для неё использовал Эйнштейн, гарантирует, что эта энергия не может состоять из чего-то привычного вроде протонов, нейтронов, электронов или фотонов. Сегодня физики, когда обсуждают смысл эйнштейновской космологической постоянной, используют фразы вроде «энергия самого пространства» или «тёмная энергия», поскольку, если космологическая постоянная существует, пространство должно быть заполнено прозрачным, аморфным чем-то, что вы не можете видеть непосредственно; пространство, заполненное космологической постоянной, будет всё ещё выглядеть тёмным. (Это напоминает старое понятие эфира и новое понятие поля Хиггса, которое имеет ненулевую величину во всём пространстве. Последнее сходство является не просто случайным совпадением, поскольку между космологической постоянной и полями Хиггса имеется важная связь, до которой мы скоро доберёмся.) Но даже без точного определения происхождения или сущности космологической постоянной, Эйнштейн смог найти её приложения к физике гравитации, и полученный им результат весьма примечателен.
Чтобы понять его, необходимо познакомиться с одной особенностью общей теории относительности, которую нам надо сейчас обсудить. В ньютоновском подходе к гравитации сила притяжения между двумя объектами зависела только от двух факторов: их масс и расстояния между ними. Чем массивнее объекты и чем ближе они друг к другу, тем больше взаимное гравитационное притяжение. В общей теории относительности ситуация в основном такая же, но уравнения Эйнштейна показывают, что учёт только масс объектов в ньютоновской теории был слишком ограниченным. В соответствии с общей теорией относительности в силу гравитационного поля вносит вклад не только масса (и расстояние). Участвуют также энергия и давление. Это важно, поэтому рассмотрим подробнее, что это означает.
Представьте, что сейчас двадцать пятое столетие, и вы заключены в Замке разума, который представляет собой новейший эксперимент Департамента коррекции, предназначенный для перевоспитания преступников из среды «белых воротничков», основанного на их собственных способностях. Каждому осуждённому даётся загадка, и они могут возвратить себе свободу, только разгадав её. Парень в соседней с вами камере вынужден разгадывать, почему «Остров Джиллигана»[63] неожиданно снова был показан в двадцать втором столетии и с тех пор стал самым популярным шоу, — так что ему, вероятно, придётся называть Замок своим домом ещё некоторое время. Ваша загадка проще. Вам даны два идентичных твёрдых золотых кубика — они одинакового размера, и каждый изготовлен из одинакового количества золота. Ваша задача — найти способ заставить кубики давать различные показания при измерении их веса с помощью неподвижных и чрезвычайно точных весов, при одном условии: вам нельзя изменять количество материи в каждом кубике, т. е. их нельзя рубить, разбивать, паять, царапать и т. д. Если бы эту загадку поставили перед Ньютоном, он бы немедленно заявил, что она не имеет решения. В соответствии с законами Ньютона одинаковые количества золота означают одинаковые массы. И поскольку каждый кубик остаётся тем же самым, гравитационное притяжение Земли для них будет идентичным. Ньютон пришёл бы к заключению, что два кубика должны показывать одинаковый вес без всяких если, и или но.
Однако с вашими институтскими знаниями XXV в. общей теории относительности вы разглядите способ решить эту загадку. Общая теория относительности говорит, что сила гравитационного притяжения между двумя объектами зависит не только от их масс{128} (и расстояния между ними), но также от любых и всех дополнительных вкладов в полную энергию каждого объекта. А мы ничего не говорили о температуре золотых кубиков. Температура — это мера того, насколько быстро в среднем атомы золота, из которых состоит каждый кубик, движутся туда-сюда, — т. е. она показывает, насколько энергичны атомы (она отражает их кинетическую энергию). Таким образом, вы понимаете, что если нагреть один из кубиков, его атомы будут более энергичными, так что его вес будет чуть больше, чем у более холодного кубика. Этого факта Ньютон не знал (увеличение температуры на 10 градусов Цельсия приведёт к увеличению веса кубика из одного фунта золота примерно на миллионную от миллиардной доли фунта, так что эффект крайне мал), и с этим решением загадки вас должны будут освободить из Замка.
Но нет. Поскольку ваше преступление было особенно тяжким, в последнюю минуту перед вашим освобождением коллегия приняла решение, что вы должны разгадать вторую загадку. Вам даны две одинаковые старинные игрушки «Джек в коробочке». Ваша новая задача — найти способ сделать так, чтобы каждая имела различный вес. Но на этот раз зам не только запрещено изменять количество массы каждого объекта, но и нельзя изменять их температуру. Опять, если эту загадку дать Ньютону, ему пришлось бы смириться с пожизненным заточением в Замке. Поскольку игрушки имеют одинаковые массы, он бы пришёл к выводу, что их веса идентичны и загадка неразрешима. Но вновь ваши знания общей теории относительности вас спасут: у одной из игрушек вы сожмёте пружину, впихнув Джека под закрытую крышку, в то время как в другой игрушке вы оставите Джека снаружи. Почему это решит проблему? Сжатая пружина имеет больше энергии, чем не сжатая; вы затратили энергию, чтобы сдавить пружину, и вы можете видеть подтверждение вашей работы, поскольку сжатая пружина оказывает давление, заставляя крышку игрушки немного выгибаться наружу. И опять, в соответствии с Эйнштейном, любая дополнительная энергия связана с гравитацией, вызывая дополнительный вес. Таким образом, закрытый «Джек в коробочке» со сжатой пружиной, оказывающей давление наружу, весит чуточку больше, чем открытый «Джек в коробочке» с разжатой пружиной. Это то решение, которое могло бы спасти Ньютона, и благодаря ему вы получаете долгожданную свободу.
Решение второй загадки указывает на тонкое, но очень важное свойство общей теории относительности, на котором мы сосредоточимся. В своей статье, представляющей общую теорию относительности, Эйнштейн математически показал, что гравитационная сила зависит не только от массы и не только от энергии (такой как тепло), но также и от любого давления. И в этом заключается та существенная физика, которая нам необходима, если мы хотим понять космологическую постоянную. И вот почему. Давление, направленное наружу, подобное давлению, оказываемому сжатой пружиной, называется положительным давлением. Довольно естественно, что положительное давление даёт положительный вклад в гравитацию. Но, и это критически важный момент, существуют ситуации, когда давление в некоторой области, в отличие от массы и полной энергии, может быть отрицательным, означая, что давление всасывает внутрь, вместо того чтобы выталкивать наружу. Такое отрицательное давление может привести к экстраординарным следствиям с точки зрения общей теории относительности: в то время как положительное давление даёт вклад в обычное гравитационное притяжение, отрицательное давление вносит вклад в «отрицательную» гравитацию, т. е. в гравитационное отталкивание.{129}
Этим ошеломляющим открытием общая теория относительности Эйнштейна пробивает брешь в более чем двухсотлетней уверенности, что гравитация всегда является притягивающей силой. Планеты, звёзды и галактики, как правильно показал Ньютон, создают гравитационное притяжение. Но когда давление играет важную роль (для обычной материи при повседневных условиях вклад давления в гравитацию пренебрежимо мал) и, в особенности, когда давление отрицательно (для обычной материи вроде протонов и электронов давление положительно, из чего следует, что космологическая константа не может быть составлена из чего-то привычного), оно даёт вклад в гравитацию, который бы шокировал Ньютона. Это вклад в отталкивание.
Этот результат является центральным для большей части последующего изложения и легко может быть неправильно понят, поэтому позвольте мне подчеркнуть один существенный момент. Гравитация и давление являются двумя связанными, но отдельными понятиями в этой истории. Давления или, более точно, разности давлений могут создавать свои собственные, негравитационные силы. Когда вы ныряете под воду, ваши барабанные перепонки могут чувствовать разницу давлений, создаваемых водой, давящей на них снаружи, и воздухом, давящим на них изнутри. Всё это верно. Но суть вопроса, о котором мы говорим сейчас, рассматривая давление и гравитацию, совсем в другом. В соответствии с общей теорией относительности давление может косвенно оказывать другое воздействие — гравитационное, поскольку давление вносит вклад в гравитационное поле. Давление, подобно массе и энергии, является источником гравитации. И, что примечательно, если давление в некоторой области отрицательно, то оно вносит вклад в гравитационное поле, пронизывающее эту область, в виде отталкивания, но не в виде гравитационного притяжения.
Это значит, что когда давление отрицательно, имеется конкуренция между обычной притягивающей гравитацией, возникающей из обычной массы и энергии, и непривычной отталкивающей гравитацией, возникающей из отрицательного давления. Если отрицательное давление в некоторой области имеет достаточную величину, отталкивающая гравитация будет доминировать; гравитация будет расталкивать вещи в стороны, а не притягивать их друг к другу. Именно тут космологическая константа появляется на сцене. Наличие этого члена, который Эйнштейн добавил в уравнения общей теории относительности, подразумевает, что пространство однородно заполнено энергией, но, что важно, уравнения показывают, что эта энергия имеет однородное отрицательное давление. И, что ещё более важно, гравитационное отталкивание отрицательного давления космологической постоянной больше гравитационного притяжения её положительной энергии, так что отталкивающая гравитация побеждает в этом соревновании: космологическая постоянная создаёт общую расталкивающую гравитационную силу.{130}
Для Эйнштейна это было как раз то, что ему было нужно. Обычная материя и излучение, распределённые по Вселенной, вызывают притягивающую гравитационную силу, вынуждая каждую область пространства притягиваться к каждой другой. Новое космологическое слагаемое, которое он также представлял однородно распределённым по Вселенной, распространяет отталкивающую гравитационную силу, заставляя каждую область пространства отталкиваться от каждой другой. Эйнштейн обнаружил, что точно выбрав величину космологической постоянной, он мог бы обычную притягивающую гравитационную силу точно уравновесить вновь открытой отталкивающей гравитацией, что дало бы статическую Вселенную.
Более того, поскольку новая отталкивающая гравитационная сила возникает из энергии и давления самого пространства, Эйнштейн обнаружил, что эта сила кумулятивна; сила становится больше при бо́льших пространственных расстояниях, поскольку большее промежуточное пространство означает большее отталкивание. Эйнштейн показал, что на расстояниях порядка Земли или всей Солнечной системы новая отталкивающая гравитационная сила неизмеримо мала. Она становится важной только на много бо́льших, космологических расстояниях, тем самым оставляя в силе как ньютоновскую теорию, так и его собственную общую теорию относительности, когда они применяются «ближе к дому». Короче говоря, Эйнштейн нашёл решение, при котором и волки сыты, и овцы целы. Он смог сохранить всю привлекательность и все экспериментально подтверждённые свойства общей теории относительности, одновременно наслаждаясь вечной неподвижностью неизменного космоса, который ни расширяется, ни сжимается.
Такой результат, несомненно, позволил Эйнштейну вздохнуть с облегчением. Какие сердечные муки он должен был испытывать, когда десятилетие тяжелейших исследований, которое он посвятил формулировке общей теории относительности, привело бы в итоге к теории, которая была несовместима со статической Вселенной, которую видит каждый, кто вглядывается в ночное небо. Но, как мы видели, дюжину лет спустя история сделала резкий поворот. В 1929 г. Хаббл показал, что поверхностный взгляд на небо может вводить в заблуждение. Его систематические наблюдения показали, что Вселенная не статична. Она действительно расширяется. Если бы Эйнштейн поверил исходным уравнениям общей теории относительности, он мог бы предсказать расширение Вселенной более чем за десять лет до того, как оно было открыто путём наблюдений. Это определённо должно быть поставлено в ряд величайших открытий — это может быть самым великим открытием всех времён. После ознакомления с результатами Хаббла Эйнштейн пожалел о том дне, когда он подумал о космологической постоянной, и он убрал её из уравнений общей теории относительности. Он хотел, чтобы все забыли весь этот прискорбный эпизод, и на несколько десятилетий все действительно его забыли.
Однако в 1980-х гг. космологическая постоянная снова вышла на сцену в совершенно новой форме и указала путь к одному из наиболее судьбоносных переворотов в космологическом мышлении со времён, когда человек впервые заинтересовался космологией.
О прыгающих лягушках и переохлаждении
Поймав взглядом летящий вверх бейсбольный мяч, вы можете используя закон тяготения Ньютона (или более утончённые уравнения Эйнштейна) предсказать его последующую траекторию. И, если вы проведёте требуемые вычисления, вы получите полное понимание того, как движется мяч. Однако открытым остаётся вопрос: кто или что подбросило мяч вверх вначале? Как мяч приобрёл начальное направленное вверх движение, которое вы затем можете математически описать? В этом простом примере, немного поразмыслив, можно найти ответ. Но более сложная версия аналогичного вопроса состоит в том, чтобы объяснить начало расширения Вселенной с использованием общей теории относительности.
Уравнения общей теории относительности, как впервые было показано Эйнштейном, датским физиком Виллемом де Ситтером и впоследствии Фридманом и Леметром, допускают расширяющуюся Вселенную. Но, так же как уравнения Ньютона ничего не говорят нам о том, почему началось движение мяча вверх, уравнения Эйнштейна ничего не говорят о том, как началось расширение Вселенной. Многие годы космологи говорили о начальном расширении пространства как о чём-то данном и необъяснимом, и просто разрабатывали уравнения, исходя из этого. Именно это я имел в виду, когда ранее говорил, что теория Большого взрыва молчит о самом взрыве.
Так дела обстояли до той важной ночи в декабре 1979 г., когда Алан Гут, работавший в Стэндфордском линейном ускорительном центре (сейчас он профессор Массачусетского технологического института), показал, что мы можем гораздо больше. Намного больше. Хотя остались детали, которые и сегодня, более чем через два десятилетия, ещё требуют своего обсуждения, Гут сделал открытие, которое разорвало это молчание, снабдив Большой взрыв взрывом как таковым, и который оказался больше, чем кто-либо мог ожидать.
Гут не был специалистом-космологом. Его специальностью была физика частиц, и в конце 1970-х гг. вместе с Генри Таем из Корнельского университета он изучал различные модели полей Хиггса в теориях великого объединения. Вспомним из обсуждения предыдущей главы о спонтанном нарушении симметрии, что поле Хиггса вносит минимально возможный вклад в энергию в некоторой области пространства, когда величина поля имеет специальное ненулевое значение (которое зависит от точной формы чаши его потенциальной энергии). В ранней Вселенной, когда температура была необычайно высока, мы обсуждали, как величина поля Хиггса сильно флуктуирует от одного значения к другому, подобно прыжкам лягушки в горячей металлической чаше, которая жжёт ей лапки, но когда Вселенная остыла, поле Хиггса скатилось на дно чаши к величине, которая минимизировала его энергию.
Гут и Тай изучали причины, по которым поле Хиггса может задержаться на пути к конфигурации с наименьшей энергией (к жёлобу в чаше на рис. 9.1в). Если мы применим аналогию с лягушкой к вопросу, который интересовал Гута и Тая, его можно сформулировать так: что если лягушке в одном из своих первых прыжков, когда чаша начала охлаждаться, случится приземлиться на центральной площадке? И что если, когда чаша продолжит охлаждаться, лягушка задержится на центральном плато (неторопливо поедая червяков), вместо того чтобы соскользнуть вниз в жёлоб чаши? Или, в физических терминах, что если величина флуктуирующего поля Хиггса приземлится на центральном возвышенном плато энергетической чаши и останется там, когда Вселенная продолжит охлаждаться? Если это происходит, физики говорят, что поле Хиггса переохлаждено. Это означает, что хотя температура Вселенной упала до уровня, когда вы ожидаете, что величина поля Хиггса должна приблизиться к низкоэнергетическому жёлобу, поле остаётся захваченным в высокоэнергетической конфигурации. (Это напоминает воду высокой чистоты, которая может быть переохлаждена до температуры ниже 0°C, когда ожидается, что она превратится в лёд, но тем не менее всё ещё останется жидкостью, поскольку образование льда требует малых примесей, вокруг которых могут начать расти кристаллы.)
Гут и Тай заинтересовались этим сценарием, поскольку их расчёты наводили на мысль, что это может иметь отношение к проблеме, с которой исследователи столкнулись в попытках реализовать различные сценарии великого объединения (проблема магнитного монополя).{131} Но Гут и Тай осознали, что отсюда вытекают и другие возможности. Они предположили, что энергия, связанная с переохлаждённым полем Хиггса, — вспомним, что высота поля представляет его энергию, так что поле имеет нулевую энергию, только если его величина лежит на дне в жёлобе чаши, — может влиять на расширение Вселенной. В начале декабря 1979 г. Гут пошёл дальше в этом же направлении, и вот что он обнаружил.
Поле Хиггса, которое удерживается на плато, не только наполняет пространство энергией, но, что критически важно, Гут понял, что оно также даёт вклад в однородное отрицательное давление. Фактически он нашёл, что в том, что касается энергии и давления, поле Хиггса, которое удерживается на плато, имеет такие же свойства, как и космологическая постоянная: оно наполняет пространство энергией и отрицательным давлением в точности в той же пропорции, как и космологическая постоянная. Так Гут открыл, что переохлаждённое поле Хиггса сильно влияет на расширение пространства: подобно космологической постоянной оно является носителем отталкивающей гравитационной силы, которая заставляет пространство расширяться.{132}
Здесь, поскольку вы уже знакомы с отрицательным давлением и отталкивающей гравитацией, вы можете подумать: да, это прекрасно, что Гут нашёл особый физический механизм для реализации идеи Эйнштейна о космологической постоянной, ну и что из того? Что тут особенного? Концепция космологической постоянной давно уже отброшена. Её введение в физику было не чем иным, как заблуждением Эйнштейна. Почему повторное открытие чего-то, что дискредитировало себя более шести десятилетий назад, вызвало такое возбуждение?
Инфляция
А вот почему. Хотя переохлаждённое поле Хиггса обладает определёнными свойствами космологической постоянной, Гут понял, что они не абсолютно идентичны. Напротив, имеется два ключевых различия, которые всё меняют.
Во-первых, в то время как космологическая постоянная является константой — она не меняется со временем, так что она обеспечивает постоянное, неизменное отталкивание, — переохлаждённое поле Хиггса не обязательно должно быть постоянным. Подумаем о лягушке, усевшейся на выпуклость в центре чаши на рис. 10.1а. Она может сидеть там некоторое время, но рано или поздно случайный прыжок — прыжок, вызванный не тем, что чаша горячая (она уже остыла), а скорее тем, что лягушка неугомонная, — столкнёт лягушку с выпуклости, после чего она соскользнёт вниз к низшей точке чаши, как показано на рис. 10.1б. Поле Хиггса может вести себя аналогично. Его величина во всём пространстве может застрять на центральном плато энергетической чаши, в то время как температура упадёт слишком низко, чтобы вызвать существенное тепловое воздействие на поле. Но квантовые процессы будут вызывать хаотические скачки величины поля Хиггса, и достаточно большой скачок сбросит его с плато, позволив его энергии и давлению релаксировать к нулю.{133} Расчёты Гута показали что, в зависимости от точной формы выпуклости в центре энергетической чаши этот скачок может произойти быстро, возможно, в течение такого короткого времени, как 0,00000000000000000000000000000001 (10−35) с. Впоследствии Андрей Линде, работавший в то время в Физическом институте им. П. Н. Лебедева в Москве, и Пол Стейнхардт, работавший тогда со своим студентом Андреасом Альбрехтом в университете Пенсильвании, нашли способ для поля Хиггса релаксировать к нулевой энергии и давлению во всём пространстве даже более эффективно и существенно более однородно (при этом разрешив некоторые технические проблемы, свойственные изначальному предложению Гута).{134} Они показали, что если чаша потенциальной энергии более гладкая и более пологая, как на рис. 10.2, то квантовые скачки могут не потребоваться: величина поля Хиггса быстро скатится в жёлоб, как мяч с горки. Итог таков: если поле Хиггса действовало подобно космологической постоянной, это продолжалось лишь крошечное мгновение.
Рис. 10.1. (а) Переохлаждённое поле Хиггса — это поле, величина которого захвачена на высокоэнергетическом плато энергетической чаши, как лягушка на выпуклости в центре чаши. (б) В типичном случае переохлаждённое поле Хиггса быстро найдёт путь вниз с плато и скатится к величине с меньшей энергией, как лягушка, спрыгнувшая с выпуклости
Рис. 10.2. Более гладкая и более пологая выпуклость позволяет величине поля Хиггса скатиться вниз в жёлоб с нулевой энергией легче и более однородно во всём пространстве
Второе отличие заключается в том, что, в то время как Эйнштейн произвольно подобрал значение космологической постоянной — количество энергии и отрицательного давления, которое она вносит в каждый объём пространства (так чтобы её отталкивающая сила в точности компенсировала силу притяжения, возникающую от обычной материи и излучения в космосе), Гут смог вычислить вклад в энергию и отрицательное давление от полей Хиггса, которые изучали они с Таем. И ответ, который он получил, был более чем в 10100 (единица и сто нулей) раз больше, чем величина, выбранная Эйнштейном. Эта величина, очевидно, огромна, так что отталкивание, которое создаёт отталкивающая гравитация поля Хиггса, грандиозно по сравнению с тем, что Эйнштейн исходно имел в виду для космологической постоянной.
Теперь, если мы объединим эти два наблюдения — что поле Хиггса будет находиться на плато в высокоэнергичном состоянии с отрицательным давлением только микроскопическое мгновение и что пока оно находится на плато, генерируемое им отталкивание будет гигантским, — что мы получим? Как осознал Гут, мы получим феноменальный кратковременный взрыв. Другими словами, мы получим в точности то, чего не хватает теории Большого взрыва: взрыв, и при этом большой. Вот почему открытие Гута так воодушевляет.{135}
Таким образом, космологическая картина, возникающая благодаря прорыву Гута, состоит в следующем. Очень давно, когда Вселенная была чудовищно плотной, носителем её энергии было поле Хиггса, имеющее значение, далёкое от низшей точки в его потенциальной чаше. Чтобы отличать это специальное поле Хиггса от других (таких как электрослабое поле Хиггса, отвечающее за появление массы у обычных семейств частиц, или поле Хиггса, которое возникает в теориях великого объединения){136} его обычно называют полем инфлатона. Вследствие своего отрицательного давления поле инфлатона генерировало гигантское гравитационное отталкивание, которое растаскивало каждую область пространства прочь от любой другой; на языке Гута инфлатон вызвал во Вселенной инфляцию (раздувание). Отталкивание длилось всего около 10−35 с, но оно было столь мощным, что даже за этот краткий момент Вселенная раздулась в гигантское число раз. В зависимости от деталей точной формы потенциальной энергии поля инфлатона Вселенная могла легко расшириться в 1030, 1050, 10100 раз или больше.
Эти числа потрясают. Коэффициент расширения 1030 — консервативная оценка — подобен увеличению размера молекулы ДНК приблизительно до размера нашей Галактики (Млечного Пути), и всё это за временной интервал много короче, чем миллиардная от миллиардной от миллиардной доли от времени, необходимого, чтобы моргнуть глазом. Для сравнения, даже эта консервативная оценка в миллиарды и миллиарды раз больше расширения, которое могло бы возникнуть в соответствии со стандартной теорией Большого взрыва за то же время, и это превышает полный фактор расширения, который был достигнут за последующие 14 млрд лет! Во многих моделях инфляции, в которых рассчитанный фактор расширения намного больше, чем 1030, результирующая пространственная протяжённость Вселенной настолько велика, что та область, которую мы можем видеть даже в самые мощные телескопы, является только крохотным кусочком всей Вселенной. В соответствии с этими моделями свет, испущенный в подавляющем большинстве областей Вселенной, до сих пор не смог достигнуть нас, и б́ольшая часть его не появится ещё очень долго после того, как исчезнут Солнце и Земля. Если весь космос уменьшить до размеров Земли, то часть, доступная нашим наблюдениям, будет намного меньше песчинки.
Примерно через 10−35 с после начала раздувания поле инфлатона нашло путь вниз с высокоэнергетического плато, и его величина во всём пространстве соскользнула на дно чаши, выключив отталкивание. И когда поле инфлатона скатилось вниз, оно передало свой запас энергии на рождение обычных частиц материи и излучения — подобно тому как туман оседает на траву утренней росой, — которые однородно заполнили расширяющееся пространство.{137} С этого момента история становится по существу историей стандартной теории Большого взрыва: пространство вследствие взрыва продолжает расширяться и охлаждаться, позволяя частицам материи собираться в структуры вроде галактик, звёзд и планет, которые медленно распространяются во Вселенной, которую мы видим в настоящее время, как показано на рис. 10.3.
Рис. 10.3. (а) Инфляционная космология вводит быстрое гигантское раздувание пространства в ранней истории Вселенной. (б) После раздувания эволюция Вселенной переходит в стандартную эволюцию, разработанную в модели Большого взрыва
Открытие Гута — названное инфляционной космологией — вместе с важными усовершенствованиями, внесёнными Линде, Альбрехтом и Стейнхардтом, объяснило, что́ именно с самого начала заставило пространство расширяться. Поле Хиггса, удерживаемое на величине, соответствующей энергии поля выше нуля, может обеспечить взрыв, заставивший пространство раздуваться. Гут снабдил Большой взрыв собственно взрывом.
Рамки инфляции
Открытие Гута было быстро оценено как крупное достижение и определило доминирующее направление космологических исследований. Но отметим два момента. Во-первых, в стандартной модели Большого взрыва сам взрыв произошёл как бы в момент времени «нуль», в самом начале Вселенной, так что он выглядит как акт творения. Но точно так же, как кусок динамита взрывается только когда его правильно подожгли, в инфляционной космологии взрыв произошёл только тогда, когда сложились подходящие условия, — когда имелось поле инфлатона, величина которого обеспечила энергию и отрицательное давление, инициировавшие взрыв отталкивающей гравитации, — и это вовсе не обязано совпадать с «творением» Вселенной. По этой причине инфляционный взрыв лучше всего представлять как одно из событий, которое пережила существовавшая и до него Вселенная, но не обязательно как именно то событие, которое создало Вселенную. Мы отметили это на рис. 10.3, сохранив некоторое размытое пятно от рис. 9.2, обозначив наше неведение относительно фундаментального начала. Более точно, если инфляционная космология верна, то пятно означает наше неведение относительно того, почему имелось поле инфлатона, почему чаша его потенциальной энергии имела форму, подходящую для того, чтобы произошла инфляция, почему имелись пространство и время, в рамках которых могло иметь место всё вышесказанное, и, как сказано в ещё более грандиозной фразе Лейбница, почему есть нечто, вместо ничто.
Второе наблюдение состоит в том, что инфляционная космология не является отдельной теорией. Скорее это некий космологический каркас, выстроенный вокруг понимания, что гравитация может быть отталкивающей и, следовательно, может привести к раздуванию пространства. Точные детали раздувания — когда оно произошло, как долго оно длилось, какова была отталкивающая сила, во сколько раз Вселенная увеличилась во время раздувания, каково количество энергии, которое инфляция вложила в обычную материю, когда раздувание подошло к концу и т. д. — зависят от деталей, которые в настоящее время находятся за пределами наших способностей определить их только из теории; больше всего они зависят от таких деталей, как размер и форма чаши потенциальной энергии поля инфлатона. Поэтому многие годы физики изучали разные возможности — различные формы потенциальной энергии, различное количество полей инфлатона, работающих в тандеме, и т. д. — и определяли, какие параметры дают лучшее соответствие теорий с астрономическими наблюдениями. Важно то, что имеются разделы инфляционных космологических теорий, которые не зависят от деталей и поэтому являются общими, по существу, для любой реализации. Само раздувание, по определению, является одним из таких свойств, и потому любая инфляционная модель приходит к взрыву. Но имеются и другие свойства, присущие всем инфляционным моделям, которые жизненно важны, поскольку решают проблемы, заведшие в тупик стандартную космологию Большого взрыва.
Инфляция и проблема горизонта
Одна из таких проблем называется проблемой горизонта и заключается в однородности микроволнового фонового излучения, о котором мы говорили ранее. Напомним, что температура микроволнового излучения, приходящего к нам с любого выбранного направления в пространстве, согласуется с температурой излучения, приходящего с любого другого направления, с чрезвычайной точностью (до тысячной доли градуса). Этот наблюдательный факт является ключевым, поскольку он подтверждает однородность всего пространства, допуская гигантские упрощения в теоретических моделях космоса. В предыдущих главах мы использовали эту однородность, чтобы существенно снизить количество возможных форм пространства и чтобы обосновать существование однородного космического времени. Проблема возникает, когда мы пытаемся объяснить, почему Вселенная стала такой однородной. Как получилось, что страшно удалённые области Вселенной так подстроились друг к другу, что стали иметь почти одинаковую температуру?
Если вы вспомните главу 4, то одна из возможностей заключается в том, что точно так же, как нелокальное квантовое запутывание может коррелировать спины двух далеко разнесённых частиц, оно может коррелировать также и температуры двух далеко разнесённых областей пространства. Хотя это интересное предположение, но, как обсуждалось в конце главы 4, колоссальное размывание запутывания во всех ситуациях, кроме наиболее контролируемых, совершенно исключает такую возможность. Но, может быть, имеется более простое объяснение. Может быть, давным-давно, когда все области пространства были ближе друг к другу, их температуры выравнялись благодаря их тесному контакту, примерно так, как нагретая кухня и холодная жилая комната сравниваются температурой, когда дверь между ними на время открыта. Однако в стандартной теории Большого взрыва это объяснение также не проходит. Приведём другую возможность, о которой стоит подумать.
Представьте, что вы просматриваете фильм, который показывает всю космическую эволюцию от начала до сегодняшнего дня. Остановите плёнку на некотором произвольном моменте и спросите себя: могут ли две различные области пространства, вроде кухни и жилой комнаты, влиять на температуру друг друга? Могут ли они обменяться светом и теплом? Ответ зависит от двух вещей: от расстояния между областями и от времени, прошедшего с момента взрыва. Если расстояние между ними меньше, чем путь, который может проделать свет за время с момента Взрыва, то области могут повлиять друг на друга; в противном случае не могут. Тогда вы можете подумать, что все области наблюдаемой Вселенной могли провзаимодействовать друг с другом где-то вблизи начала Вселенной, поскольку чем дальше мы отматываем плёнку назад, тем ближе становятся области и поэтому им легче взаимодействовать. Но это рассуждение слишком поспешно; оно не учитывает тот факт, что не только области пространства были ближе друг к другу, но у них также было меньше времени, чтобы осуществить связь.
Чтобы провести правильный анализ, представьте фильм о космической эволюции, прокручивающийся в обратном направлении, при этом сосредоточьтесь на двух областях пространства, находящихся в настоящее время на противоположных сторонах наблюдаемой Вселенной, — на областях настолько удалённых, что они в настоящее время находятся вне сферы влияния друг на друга. Если для уменьшения расстояния между ними вдвое мы отмотаем космическую плёнку более чем наполовину назад, тогда, хотя области пространства и стали ближе друг к другу, взаимодействие между ними всё равно невозможно: они оказались разделены расстоянием, вдвое меньшим чем сегодня, но и времени с момента Взрыва прошло меньше, чем половина от сегодняшнего, так что свет смог бы пролететь только меньше половины нужного расстояния. Аналогично, если из этой точки на плёнке мы снова переместимся более чем наполовину назад к началу, чтобы ещё раз вдвое уменьшить расстояние между областями, сообщение между ними снова станет ещё более сложным. При таком характере космической эволюции, хотя области и были ближе друг к другу в прошлом, становится всё более загадочным, как они сумели выровнять температуры. По отношению к тому, как далеко может пройти свет, эти области становятся всё более недоступными друг для друга, по мере того как мы рассматриваем их все во всё более ранние моменты времени.
Это в точности то, что происходит в стандартной теории Большого взрыва. В ней гравитация действует только как притягивающая сила, так что с самого начала она замедляет расширение пространства. Если что-либо замедляется, ему требуется больше времени, чтобы покрыть заданное расстояние. Например, представьте, что скакун Секретариат[64] стартовал стремительной иноходью и покрыл первую половину скаковой дистанции за две минуты, но, поскольку сегодня не его лучший день, он заметно сдал на второй половине и затратил на неё три минуты, чтобы добраться до финиша. При просмотре плёнки скачек в обратном направлении нам придётся отмотать плёнку более чем на половину её длины назад, чтобы увидеть, как Секретариат пересекает отметку половины дистанции (нам придётся передвинуться по всей пятиминутной плёнке назад к двухминутной отметке). Аналогично, поскольку в стандартной теории Большого взрыва гравитация замедляет расширение пространства, то из любой точки на космической плёнке нам придётся отмотать больше чем половину времени назад, чтобы уменьшить наполовину расстояние между двумя областями. И, как говорилось выше, это означает, что хотя области пространства и были ближе друг к другу в более ранние времена, но для них было более трудно — а не менее — оказать друг на друга влияние, и потому ещё более непонятно — а не менее, — что они как-то смогли уравнять температуру.
Физики определяют космический горизонт области (или, для краткости, горизонт) как наиболее удалённые от области точки пространства, которые достаточно близки к данной области в том смысле, что они могут обмениваться с областью световыми сигналами за время, прошедшее с момента взрыва. Имеется аналогия с самыми удалёнными предметами, которые мы можем видеть на земной поверхности из некоторой определённой точки наблюдения.{138} Тогда проблема горизонта заключается в том загадочном факте, что, как следует из наблюдений, области, горизонты которых всегда были разделены, — области, которые никогда не могли взаимодействовать, связываться друг с другом или любым способом оказывать друг на друга влияние, — каким-то образом имеют почти одинаковую температуру.
Проблема горизонта не означает, что стандартная модель Большого взрыва неверна, но она настоятельно требует объяснения. Инфляционная космология его даёт.
В инфляционной космологии имелось краткое мгновение, во время которого гравитация была отталкивающей, и это заставляло пространство расширяться всё быстрее и быстрее. Во время этой части фильма вам пришлось бы отмотать плёнку менее чем наполовину длины назад, чтобы вдвое уменьшить расстояние между областями. Представьте себе такой забег, в котором Секретариат покрыл первую половину дистанции за две минуты, а затем, поскольку это был главный забег его жизни, ускорился и промчался вторую половину всего за одну минуту. Вам придётся перемотать трёхминутную плёнку только к двухминутной отметке — менее чем наполовину назад, — чтобы увидеть его пересекающим отметку половины дистанции. Аналогично, ускоряющийся темп разделения любых двух областей пространства во время инфляционного расширения означает, что для уменьшения расстояния между ними вдвое потребуется отмотать космическую плёнку меньше — намного меньше, — чем на половину времени назад к началу. Следовательно, по мере того как мы двигаемся всё дальше назад во времени, для любых двух областей пространства становится всё легче оказать влияние друг на друга, поскольку имеется всё больше времени для их взаимодействия. Расчёты показывают, что если фаза инфляционного расширения заставила пространство расшириться как минимум в 1030 раз (а это то число, которое легко получается в частных реализациях инфляционного сценария), все области пространства, которые мы видим в настоящее время, — все области пространства, температуры которых мы можем измерить, — могли взаимодействовать так же легко, как кухня и смежная жилая комната, и поэтому легко достигли одинаковой температуры в самые ранние моменты истории Вселенной.{139} Иными словами, в самом начале пространство расширялось достаточно медленно, чтобы на большом пространстве установилась однородная температура, а затем в ходе интенсивного взрыва и всё более быстрого расширения Вселенная, начав с вялого старта, далеко разнесла близкие области с одинаковой температурой.
Вот как инфляционная космология объясняет столь загадочную однородность микроволнового фонового излучения, заполняющего пространство.
Инфляция и проблема плоскостности
Вторая проблема, решаемая инфляционной космологией, относится к форме пространства. В главе 8 мы выдвинули критерий симметрии, заключающийся в однородности пространства, и нашли три способа, как может быть изогнута ткань пространства. Обращаясь к нашей двумерной аналогии, можно выделить возможности положительной кривизны (форма, подобная поверхности шара), отрицательной кривизны (седловидная форма) и нулевой кривизны (форма, подобная бесконечной плоской поверхности стола или экрану видеоигры конечных размеров). На заре общей теории относительности физики поняли, что полное количество материи и энергии в каждом объёме пространства — плотность материи/энергии — определяет кривизну пространства. Если плотность материи/энергии высока, пространство свернётся в форму сферы; это значит, что будет положительная кривизна. Если плотность материи/энергии низка, пространство будет выворачиваться наподобие седла; это значит, будет отрицательная кривизна. А если, как отмечалось в предыдущей главе, плотность материи/энергии равняется очень специальной величине — критической плотности, примерно равной массе пяти атомов водорода (около 10−23 г) в каждом кубическом метре, — пространство будет лежать точно между этими двумя крайними случаями и будет совершенно плоским; т. е. кривизны не будет.
Теперь давайте разберёмся, в чём кроется загадка пространства.
Уравнения общей теории относительности, которые лежат в основе стандартной модели Большого взрыва, показывают, что если плотность материи/энергии в начале была в точности равна критической плотности, то она останется равной критической плотности при расширении пространства.{140} Но если плотность материи/энергии была хотя бы чуть-чуть больше или чуть-чуть меньше, чем критическая плотность, последующее расширение уведёт её от критической плотности очень и очень далеко. Просто чтобы почувствовать числа, отметим, что если через секунду после Большого взрыва Вселенная чуть-чуть не дотягивала до критической плотности, составляя 99,99% от неё, то, как показывают расчёты, сегодня её плотность упала бы до величины 0,00000000001 от критической плотности. Эта ситуация напоминает скалолаза, который идёт по тонкому как бритва гребню с крутым обрывом с каждой стороны. Если его шаги направлены строго вдоль гребня, он сможет его пройти. Но малейшая ошибка, шаг, сделанный чуть левее или правее, приведёт к существенно иному исходу. (Рискуя перегрузить читателя аналогиями, вспоминаю в этой связи душевую в студенческом общежитии колледжа много лет назад: если удавалось установить кран абсолютно точно, можно было получить комфортную температуру воды. Но отклонение на йоту туда или сюда приводило либо к кипятку, либо к ледяной воде. Некоторые студенты просто совсем переставали принимать душ.)
Десятилетиями физики пытались измерить плотность материи/энергии во Вселенной. В 1980-е гг., хотя измерения были далеки от завершения, одно стало ясно: плотность материи/энергии Вселенной не превосходит критическую в тысячи и тысячи раз и не меньше её в тысячи и тысячи раз; соответственно, пространство не является сильно искривлённым, ни положительно, ни отрицательно. Это понимание представило стандартную модель Большого взрыва в неудобном свете. Отсюда следовало, что, для того чтобы стандартная модель Большого взрыва соответствовала наблюдениям, некоторый механизм — который, однако, никто не может объяснить или указать — должен был подстроить плотность материи/энергии ранней Вселенной экстраординарно точно к критической плотности. Например, расчёты показывают, что через одну секунду после Большого взрыва плотность материи/энергии Вселенной должна была находиться в пределах миллионной от миллионной доли процента от критической плотности; если бы плотность материи/энергии отклонилась от критической величины на любое значение, большее этого мизерного ограничения, то стандартная модель Большого взрыва предсказала бы на сегодня такую плотность материи/энергии, которая чрезвычайно отличалась бы от того, что мы наблюдаем. Поэтому в соответствии со стандартной моделью Большого взрыва ранняя Вселенная была сильно похожа на скалолаза, покачивающегося на чрезвычайно узком гребне. Ничтожное отклонение в условиях, существовавших во Вселенной миллиарды лет назад, должно было бы привести к сегодняшней Вселенной, сильно отличающейся от того, что показывают измерения астрономов. Это известно как проблема плоскостности.
Хотя мы схватили основную идею, важно понять, в каком смысле проблема плоскостности является проблемой. Проблема плоскостности ни коим образом не показывает, что стандартная модель Большого взрыва неверна. Убеждённый сторонник реагирует на проблему плоскостности пожатием плеч и лаконичной репликой: «Просто тогда так было», принимая тонко настроенное значение плотности материи/энергии ранней Вселенной — которое требует стандартная модель Большого взрыва, чтобы предсказания согласовывались с наблюдениями, — как необъяснимую данность. Но этот ответ вызывает отторжение у большинства физиков. Физики чувствуют, что теория очень неестественна, если её успехи зависят от чрезвычайно точной подстройки свойств, для которой не видно фундаментального объяснения. Без объяснения причин, почему плотность материи/энергии ранней Вселенной должна была бы быть так тонко настроена на требуемую величину, многие физики находят стандартную модель Большого взрыва слишком надуманной. Таким образом, проблема плоскостности высвечивает экстремальную чувствительность стандартной модели Большого взрыва к условиям в удалённом прошлом, о которых мы знаем очень мало; это показывает, что теория должна предполагать, какой точно была Вселенная, для того чтобы быть работоспособной.
Напротив, физикам нравятся теории, предсказания которых нечувствительны к значениям неизвестных величин, вроде того, как обстояли дела в далёком прошлом. Такие теории кажутся надёжными и естественными, поскольку их предсказания не зависят от деталей, которые трудно или даже вообще невозможно определить напрямую. Именно такой теорией является инфляционная космология, и предлагаемое ею решение проблемы плоскостности иллюстрирует, почему это так.
Важное наблюдение заключается в том, что, в то время как притягивающая гравитация усугубляет любое отклонение от критической плотности материи/энергии, отталкивающая гравитация инфляционной теории делает наоборот: она уменьшает любое отклонение от критической плотности. Чтобы почувствовать, почему это так, самое простое — использовать тесную связь между плотностью материи/энергии Вселенной и её кривизной для обоснования этого геометрически. В частности, заметим, что хотя форма ранней Вселенной и была существенно искривлённой, после инфляционного расширения та часть пространства, которая достаточно велика, чтобы включить в себя наблюдаемую сегодня Вселенную, выглядит очень близко к плоской. Это свойство геометрии, о котором мы все хорошо осведомлены: поверхность баскетбольного мяча, очевидно, кривая, но потребовались и время, и смелые мыслители, прежде чем все согласились, что поверхность Земли также искривлена. Причина состоит в том, что при прочих равных условиях чем большие размеры у чего-то, тем более плавно оно изгибается, и тем более плоским кажется кусок заданного размера на его поверхности. Если вы накинете штат Небраска на сферу только в несколько сотен миль в диаметре, как на рис. 10.4а, он будет выглядеть искривлённым, но на земной поверхности, с чем согласны все жители Небраски, он выглядит плоским. Если вы расположите штат Небраска на сфере в миллиард раз больше Земли, он будет выглядеть ещё более плоским. В инфляционной космологии пространство растягивается настолько, что наблюдаемая Вселенная, тот кусок, который мы можем видеть, является всего лишь малым лоскутком в гигантском космосе. Подобно штату Небраска, расположенному на гигантской сфере, как на рис. 10.4г, хотя вся Вселенная искривлена, наблюдаемая Вселенная будет очень близка к плоской.{141}
Рис. 10.4. Лоскут фиксированного размера, такой, как штат Небраска, кажется всё более и более плоским, когда он располагается на всё бо́льших сферах. В этой аналогии сфера представляет всю Вселенную, тогда как штат Небраска представляет наблюдаемую Вселенную — ту часть Вселенной, которая находится внутри нашего космического горизонта
Это похоже на то, как если бы в ботинки скалолаза и в узкий гребень, по которому он идёт, были вставлены сильные, противоположно ориентированные магниты. Даже если его шаг попадает немного мимо нужного места, сильное притяжение между магнитами удерживает его ногу на гребне. Аналогично, даже если ранняя Вселенная заметно отклонялась от критической плотности материи/энергии и потому была далека от плоской, инфляционное расширение обеспечит, что та часть пространства, к которой мы имеем доступ, будет приведена к плоской форме, а плотность материи/энергии, к которой мы имеем доступ, будет приведена к критической величине.
Прогресс и предсказания
Решение инфляционной космологией проблемы горизонта и плоскостности представляет собой огромный прогресс. Для того чтобы космологическая эволюция привела к однородной Вселенной, плотность материи/энергии которой хотя бы отдалённо приближалась к тому, что мы сегодня наблюдаем, стандартная модель Большого взрыва требует точнейшей, необъяснимой, почти сверхъестественной настройки первоначальных условий. Такую настройку можно предположить, как считают ярые защитники стандартной модели Большого взрыва, но отсутствие её объяснения делает теорию неестественной. Напротив, безотносительно к детальным свойствам плотности материи/энергии ранней Вселенной, инфляционная космологическая эволюция предсказывает, что часть Вселенной, которую мы можем видеть, должна быть очень близка к плоской; т. е. она предсказывает, что плотность материи/энергии, которую мы наблюдаем, должна практически совпадать с критической плотностью.[65]
Нечувствительность к детальным свойствам ранней Вселенной является замечательным качеством инфляционной теории, поскольку она позволяет давать определённые предсказания независимо от нашей неосведомлённости об условиях далёкого прошлого. Но теперь мы должны спросить: как эти предсказания соотносятся с детальными и точными наблюдениями? Подтверждают ли данные наблюдений предсказание инфляционной космологии, что мы должны наблюдать плоскую Вселенную, имеющую критическую плотность материи/энергии?
Долгие годы ответ был: «Не совсем». В многочисленных астрономических исследованиях тщательно измерялось количество материи/энергии, которое можно увидеть в космосе, и ответ получался на уровне 5% от критической плотности. Это далеко от гигантских или ничтожных плотностей, к которым естественно приводит стандартная модель Большого взрыва без искусственной тонкой настройки, и именно это я имел в виду, когда говорил раньше, что наблюдения дают плотность материи/энергии Вселенной, не отличающуюся в тысячи и тысячи раз от критической плотности в большую или меньшую сторону. Но даже и в этом случае, 5% — это меньше, чем 100%, предсказанные инфляцией. Но физики давно поняли, что в оценке таких данных необходимо проявлять осторожность. Астрономические обзоры, называя 5%, принимают во внимание только материю/энергию, которая излучает свет, и потому может быть видима в телескопы. Но уже десятилетия, даже до открытия инфляционной космологии, существовали веские указания, что Вселенная имеет массивную тёмную часть.
Предсказание темноты
В начале 1930-х гг. Фриц Цвикки, профессор астрономии Калифорнийского технологического института (в высшей степени жёлчный учёный и столь большой поклонник принципов симметрии, что своих коллег он называл сферическими идиотами, ибо согласно его объяснениям они были идиотами, с какой стороны на них не посмотреть){142}, обнаружил, что галактики в скоплении Волосы Вероники, содержащем тысячи галактик и находящемся на расстоянии около 370 млн световых лет от Земли, двигаются слишком быстро, чтобы видимая материя могла обеспечить достаточную гравитационную силу, удерживающую их в группе. Его анализ показал, что многие из наиболее быстро двигающихся галактик должны были быть выброшены из группы, подобно каплям воды, отбрасываемым вращающимся велосипедным колесом. Однако этого не происходит. Цвикки предположил, что может существовать дополнительная материя, пропитывающая этот скопление, которая не излучает света, но добавляет дополнительное гравитационное притяжение, необходимое, чтобы удерживать скопление вместе. Его расчёты показали, что если объяснение правильное, бо́льшая часть массы скопления должна содержаться в этом несветящемся материале. К 1936 г. подтверждение было найдено Синклером Смитом из обсерватории Маунт Вилсон, который изучал скопление галактик в созвездии Девы и пришёл к аналогичному заключению. Но поскольку в наблюдениях обоих учёных, так же как и многих других последующих, имелось много различных неопределённостей, многих не удалось убедить, что имеется массивная невидимая материя, гравитационное притяжение которой удерживает вместе галактики в группах.
На протяжении следующих тридцати лет наблюдательные подтверждения несветящейся материи продолжали поступать,{143} но окончательно вопрос был решён работой астронома Веры Рубин из Института Карнеги в Вашингтоне вместе с Кентом Фордом и другими. Рубин и её коллеги изучили движение звёзд внутри большого числа вращающихся галактик и пришли к заключению, что там есть только то, что мы видим, то многие звёзды галактик должны быть попросту выброшены наружу. Их наблюдения окончательно показали, что видимая материя галактик нигде не может вызывать достаточно сильное гравитационное притяжение, чтобы удержать наиболее быстрые звёзды. Детальный анализ, проведённый ими, показал также, что звёзды будут оставаться гравитационно связанными, если галактики, где они обитают, погружены в гигантский шар несветящейся материи (как показано на рис. 10.5), общая масса которой намного превосходит массу светящейся галактической материи. Итак, как на представлении, где можно догадаться о присутствии одетого в тёмное мима, хотя видны только его руки в белых перчатках, летающие туда и сюда по неосвещённой сцене, астрономы пришли к выводу, что Вселенная должна быть заполнена тёмной материей — материей, которая не собирается в звёзды и поэтому не излучает свет и которая при этом оказывает гравитационное притяжение, не проявляя себя визуально. Светящиеся составляющие Вселенной — звёзды — выглядят плавающими маяками в гигантском океане тёмной материи.
Рис. 10.5. Галактика, погруженная в шарообразное облако тёмной материи (которое искусственно подсвечено, чтобы сделать его видимым на рисунке)
Но если тёмная материя обязана существовать, чтобы привести к наблюдаемому движению звёзд и галактик, из чего она состоит? До настоящего времени никто не знает. Природа тёмной материи остаётся большой тайной, хотя астрономы и физики предложили множество возможных кандидатов на её роль, начиная с различных экзотических частиц и кончая космическим бассейном миниатюрных чёрных дыр. Но даже без определения её состава благодаря тщательному анализу её гравитационного влияния астрономы смогли с хорошей точностью определить, сколько тёмной материи распределено по Вселенной. В результате они получили примерно 25% от критической плотности.{144} Таким образом, вместе с 5%, приходящимися на видимую материю, тёмная материя даёт нам 30% от количества, предсказанного инфляционной космологией.
Итак, это, конечно, прогресс, но в течение долгого времени учёные чесали затылки, удивляясь, куда делись оставшиеся 70% Вселенной, которые, если инфляционная космология верна, определённо находятся в самоволке. И вот в 1998 г. две группы астрономов пришли к одному и тому же удивительному заключению, которое замкнуло круг нашей истории и снова явило мощь предвидения Альберта Эйнштейна.
Убегающая Вселенная
Аналогично тому, как вам хочется получить заключение другого специалиста для подтверждения медицинского диагноза, физики тоже стремятся услышать иное мнение, когда они сталкиваются с экспериментальными данными или теориями, которые указывают на наличие загадки. Из таких мнений наиболее убедительными являются те, которые приводят к тем же результатам путём, существенно отличным от исходного. Когда различные объяснения с разных направлений приводят к одному результату, это даёт хороший шанс, что мы попали в научное яблочко.
Поэтому понятно, что физики стремились к независимому подтверждению следующего вывода инфляционной космологии: 70% материи/энергии Вселенной ещё предстоит обнаружить и измерить. Давно было осознано, что таким трюком могли бы стать измерения параметра замедления.
Сразу после начального инфляционного взрыва обычная притягивающая гравитация стала замедлять расширение пространства. Темп, с которым происходит это замедление, называется параметром замедления. Точное измерение этого параметра могло бы обеспечить независимую оценку полного количества материи во Вселенной: большее количество материи, независимо от того, даёт она свет или нет, означает большее гравитационное притяжение и потому сильнее замедляет пространственное расширение.
Многие десятилетия астрономы пытались измерить торможение Вселенной, но, хотя это и просто с принципиальной стороны, на практике это является сложной задачей. Когда мы наблюдаем удалённые небесные тела, вроде галактик или квазаров, мы видим их такими, какими они были в далёком прошлом: чем они дальше от нас, тем дальше назад во времени мы смотрим. Поэтому, если мы могли бы измерить, как быстро они от нас удаляются, мы узнали бы, как быстро Вселенная расширялась в удалённом прошлом. Более того, если бы мы могли провести такие измерения для астрономических объектов, расположенных на разных расстояниях, мы смогли бы измерить скорость расширения Вселенной в разные моменты прошлого. Сравнивая эти скорости расширения, можно было бы определить, как замедляется расширение пространства со временем, и отсюда определить параметр замедления.
Для реализации этой стратегии по измерению параметра замедления требуются две вещи: способ измерения расстояния до данного астрономического объекта (так чтобы мы знали, как далеко назад во времени мы заглядываем) и способ определения скорости, с которой объект удаляется от нас (так чтобы мы знали темп расширения пространства в этот момент прошлого). Последнюю составляющую получить проще. Точно так же, как вой сирены полицейского автомобиля переходит к более низкому тону, когда он удаляется от вас, частота колебаний света, испущенного астрономическим источником, также падает, когда объект удаляется. А поскольку свет испускается атомами вроде водорода, гелия или кислорода — атомами, входящими в состав звёзд, квазаров и галактик, — которые тщательно изучены в лабораторных условиях, точное определение скорости объекта может быть проведено путём изучения того, насколько сильно свет, который мы получаем от астрономического источника, отличается от света, который мы видим в лаборатории.
Но первая составляющая — метод точного определения, как далеко находится объект, оказалась головной болью астрономов. Можно ожидать, что чем дальше что-либо находится, тем более тусклым будет выглядеть, но обратить это простое наблюдение в количественное измерение трудно. Чтобы судить о расстоянии до объекта по его видимой яркости, вам нужно знать его абсолютную светимость — насколько ярким он был бы, если бы располагался прямо рядом с вами. Но определить абсолютную светимость объекта, удалённого на миллиарды световых лет, трудно. Генеральная стратегия заключается в поиске таких разновидностей небесных тел, которые по фундаментальным астрофизическим причинам всегда имеют стандартную светимость. Если пространство заполнено зажжёнными 100-ваттными лампочками, хитрость бы удалась, поскольку мы могли бы легко определить расстояние до данной лампочки на основании того, насколько она выглядит тусклой (хотя это сложная задача — увидеть 100-ваттную лампочку на большом расстоянии). Но, поскольку пространство не имеет такого оборудования, что могло бы сыграть роль лампочки стандартной яркости или, на языке астрономии, что может сыграть роль стандартной свечи? Астрономы долго изучали различные возможности, но наиболее успешным кандидатом на сегодняшний день является особый класс взрывов сверхновых звёзд.
Когда звёзды исчерпывают своё ядерное горючее, направленное наружу давление, создаваемое реакциями ядерного синтеза в ядре звезды, уменьшается и звезда начинает схлопываться под тяжестью своего собственного веса. Когда ядро звезды рушится в себя, его температура быстро возрастает, иногда приводя к гигантскому взрыву, который сдувает внешние слои звезды, вызывая сверкающее зрелище небесного фейерверка. Такой взрыв известен как рождение сверхновой; в течение нескольких недель одна взорвавшаяся звезда может сиять так же ярко, как миллиард солнц. Это действительно поражает воображение: отдельная звезда сияет почти так же ярко, как целая галактика! Различные типы звёзд — различных размеров, с разным относительным содержанием различных атомов и т. д. — приводят к различным типам взрывов сверхновых, но много лет назад астрономы поняли, что определённые взрывы сверхновых всегда светят с одинаковой абсолютной яркостью. Это взрывы сверхновых типа Ia.
В типе сверхновых Ia белый карлик — звезда, которая исчерпала запас ядерного топлива, но имеет недостаточную массу, чтобы самой по себе стать сверхновой, — всасывает вещество с поверхности находящейся рядом звезды-компаньона. Когда масса белого карлика достигает критической величины, составляющей около 1,4 массы Солнца, в нём лавинообразно развивается ядерная реакция, которая заставляет его стать сверхновой звездой. Поскольку такие взрывы сверхновых происходят, когда карликовая звезда достигает одной и той же критической массы, характеристики взрыва, включая его абсолютную светимость, практически одинаковы от случая к случаю. Более того, поскольку сверхновые, в отличие от 100-ваттных лампочек, чрезвычайно мощны, они не только имеют стандартную надёжную светимость, но их также можно ясно видеть через Вселенную. Так что они являются первыми кандидатами на роль стандартной свечи.{145}
В 1990-е гг. две группы астрономов, одна под руководством Сола Перлмуттера в Лоуренсовской национальной лаборатории в Беркли и другая под руководством Брайана Шмидта в Австралийском национальном университете, взялись за определение параметра замедления — и, следовательно, полной материи/энергии — Вселенной путём измерения скоростей удаления сверхновых типа Ia. Определение того, что сверхновая принадлежит к типу Ia, довольно просто, поскольку излучение, генерируемое при её взрыве, имеет весьма характерный рисунок: сначала крутой рост, а затем пологое падение интенсивности. Но на самом деле поймать сверхновую типа Ia на месте преступления является немалым подвигом, поскольку такие взрывы в типичной галактике происходят только раз в несколько сотен лет. Тем не менее благодаря инновационной технологии одновременного наблюдения тысяч галактик через телескопы с широким полем обзора команды смогли обнаружить около четырёх дюжин сверхновых типа Ia на различных расстояниях от Земли. После скрупулёзного определения расстояния и скорости удаления каждой сверхновой обе группы пришли к совершенно неожиданному заключению: начиная с времени, когда Вселенной было около 7 млрд лет, темп её расширения не тормозился. Наоборот, темп расширения возрастал.
Группы пришли к заключению, что первые 7 млрд лет после первичного взрыва расширение Вселенной замедлялось, примерно как тормозит автомобиль, когда приближается к контрольному посту ГАИ. Это и ожидалось. Но результаты измерений показали, что подобно водителю, который нажимает на педаль газа после прохождения контрольного поста, расширение Вселенной с тех пор ускоряется. Темп расширения пространства через 7 млрд лет после Взрыва был меньше, чем темп расширения через 8 млрд лет после Взрыва, который в свою очередь был меньше, чем темп расширения через 9 млрд лет после Взрыва, и т. д. — все они были меньше, чем темп расширения сегодня. Ожидаемое торможение расширения пространства переключилось на неожиданное ускорение.
Но как такое может быть? Ответ обеспечивает то самое второе независимое подтверждающее мнение относительно пропавших 70% материи/энергии, которые разыскивали физики.
Пропавшие 70%
Если вы мысленно перенесётесь в 1917 г., когда Эйнштейн ввёл космологическую постоянную, у вас будет достаточно информации, чтобы выдвинуть предположение о том, почему Вселенная ускоряется. Обычные материя и энергия вызывают обычную притягивающую гравитацию, которая замедляет расширение пространства. Но по мере того как Вселенная расширяется и разные объекты всё более отдаляются друг от друга, это космическое гравитационное притяжение, хотя и продолжает замедлять расширение, становится слабее. И это приводит нас к новому и неожиданному повороту. Если бы Вселенная имела космологическую постоянную — и если бы её значение имело точно нужную, маленькую величину, — то на протяжении примерно 7 млрд лет с Большого взрыва её гравитационное отталкивание перекрывалось бы гравитационным притяжением обычной материи, приводя к общему замедлению расширения, в соответствии с результатами наблюдений. Но затем, когда обычная материя рассеялась в пространстве и её гравитационное притяжение ослабло, отталкивающее воздействие космологической постоянной (величина которого не изменяется, по мере того как материя рассеивается) должно было постепенно взять верх, и эра замедленного расширения пространства должна была смениться эрой ускоренного расширения.
В конце 1990-х гг. такие рассуждения и углублённый анализ экспериментальных данных привели обе группы, Перлмуттера и Шмидта, к мысли, что Эйнштейн не ошибся восемьдесят лет назад, когда ввёл космологическую постоянную в уравнения гравитации. Вселенная, как предположили обе группы, на самом деле имеет космологическую постоянную.{146} Она имеет не ту величину, которую предлагал Эйнштейн, поскольку он искал возможность существования статической Вселенной, где гравитационное притяжение и отталкивание точно уравновешивались бы, но эти исследователи обнаружили, что уже миллиарды лет отталкивание доминирует. Но несмотря на эти детали и на то, что открытие групп Перлмуттера и Шмидта должно тщательно изучаться и должны быть доведены до конца необходимые исследования, нельзя не удивляться предвидению Эйнштейна, которое подтверждается спустя 80 лет.
Скорость убегания сверхновых зависит от разницы между гравитационным притяжением обычной материи и гравитационным отталкиванием «тёмной энергии», которую даёт космологическая постоянная. Допуская, что количество материи, как видимой, так и тёмной, составляет около 30% от критической плотности, исследователи сверхновых пришли к заключению, что ускоренное расширение, которое они наблюдали, требует отталкивающего эффекта космологической постоянной, тёмная энергия которой составляет около 70% от критической плотности.
Это поразительное число. Если оно верно, тогда не только обычная материя — протоны, нейтроны, электроны — составляют жалкие 5% от материи/энергии Вселенной, и не только некоторая, на сегодня неидентифицированная тёмная материя составляет по меньшей мере в пять раз большее количество, но также бо́льшую часть материи/энергии во Вселенной составляет совершенно отличающаяся и ещё более таинственная тёмная энергия, которая распределена по всему пространству. Если эти идеи верны, они самым невероятным образом углубляют революционный переворот в мировоззрении человечества, произведённый Коперником: мы не только не являемся центром Вселенной, но даже материя, из которой мы состоим, подобна обломкам, плавающим в космическом океане. Если бы протоны, нейтроны и электроны не были включены в замысел великого творения, полная материя/энергия Вселенной почти не уменьшилась бы.
Но имеется вторая, равно важная причина, почему 70% является удивительным числом. Космологическая постоянная, которая даёт 70% в критической плотности, будет вместе с 30%, приходящимися на обычную материю и тёмную материю, давать полную материю/энергию Вселенной, точно равную всем 100%, предсказываемым инфляционной космологией! Так что отталкивание, продемонстрированное результатами изучения сверхновых, может быть объяснено в точности тем количеством тёмной энергии, которое необходимо для объяснения невидимых 70% Вселенной, о которых чесали затылки инфляционные космологи. Измерения сверхновых и инфляционная космология изумительно дополняют друг друга. Они друг друга подтверждают. Каждое даёт подтверждающее второе независимое мнение для другого.{147}
Объединяя наблюдательные результаты по сверхновым с теоретическими представлениями инфляции, мы, таким образом, получаем набросок космической эволюции, который представлен на рис. 10.6. Сначала энергия Вселенной была заключена в поле инфлатона, которое находилось вне своего состояния минимальной энергии. Вследствие своего отрицательного давления поле инфлатона вызвало гигантский взрыв инфляционного расширения. Затем, примерно через 10−35 с, когда поле инфлатона соскользнуло на дно своей чаши потенциальной энергии, взрыв расширения подошёл к концу и инфлатон высвободил свою энергию, отдав её на производство обычной материи и излучения. Много миллиардов лет эти привычные составляющие Вселенной создавали обычное притягивающее гравитационное действие, которое замедляло расширение пространства. Но когда Вселенная выросла и стала более разреженной, гравитационное притяжение уменьшилось. Около 7 млрд лет назад обычное гравитационное притяжение стало настолько слабым, что гравитационное отталкивание космологической постоянной стало доминировать, и с тех пор темп расширения пространства постоянно растёт.
Рис. 10.6. Шкала времени космической эволюции: (а) Инфляционный взрыв. (б) Эволюция по стандартной модели Большого взрыва. (в) Эра ускоренного расширения
Примерно через 100 млрд лет от сегодняшнего дня все галактики, за исключением самых близких, будут раскиданы в разные стороны раздувающимся пространством со скоростями больше световой, так что мы не сможем их увидеть независимо от мощности используемых телескопов. Если эти идеи верны, то в далёком будущем Вселенная будет безбрежным, пустым и уединённым местом.
Загадки и прогресс
Кажется, что эти открытия разложили кусочки космического паззла по местам. Вопросы, оставленные без ответа стандартной теорией Большого взрыва, — Что заставило расширяться пространство? Почему температура микроволнового фонового излучения так однородна? Почему пространство кажется имеющим плоскую форму? — были решены инфляционной теорией. Несмотря на это, остаются нерешённые вопросы относительно фундаментальных первооснов. Была ли некоторая эра перед инфляционным взрывом, и, если была, на что она была похожа? Откуда взялось поле инфлатона, смещённое относительно его конфигурации с наименьшей энергией, которое инициировало инфляционное расширение? И самый новый из всех вопросов: почему Вселенная составлена из такой мешанины ингредиентов — 5% представлены привычной материей, 25% — тёмной материей, 70% — тёмной энергией? Несмотря на безмерно радующий факт, что эта космическая рецептура согласуется с инфляционными предсказаниями, согласно которым плотность Вселенной должна составлять 100% от критической плотности, и хотя это одновременно объясняет ускоренное расширение, найденное при исследовании сверхновых, многим физикам этот винегрет кажется явно непривлекательным. Почему, спрашивают многие, состав Вселенной оказался таким сложным? Почему имеется целая горсть мало похожих друг на друга ингредиентов, смешанных в такой, кажущейся случайной, пропорции? Есть ли в основании этого какой-то осмысленный план, который теоретические исследования ещё должны обнаружить?
Никто пока не предложил убедительных ответов на эти вопросы; они находятся среди неотложных научных проблем, направляя текущие космологические исследования, и они призваны напоминать нам о многих запутанных узлах, которые мы ещё должны распутать, прежде чем мы сможем сказать, что имеем полное понимание рождения Вселенной. Но несмотря на всё ещё остающиеся существенные проблемы инфляция является исключительно продвинутой перспективной космологической теорией. Несомненно, доверие физиков к инфляции основывается на достижениях, которые мы до сих пор обсуждали. Но уверенность в инфляционной космологии имеет ещё более глубокие корни. Как мы увидим в следующей главе, целый ряд других аргументов — связанных как с наблюдениями, так и с теоретическими открытиями, — убедили многих физиков, которые работают в этой области, что идея инфляции является самым важным и самым прочным вкладом нашего поколения в космологическую науку.