Ткань космоса. Пространство, время и текстура реальности — страница 13 из 19

Пространство и время с точки зрения M-теории

История теории струн — одна из самых извилистых среди всех других научных прорывов. Даже сегодня, спустя более чем три десятилетия после её зарождения, многие учёные полагают, что у нас ещё нет исчерпывающего ответа на элементарный вопрос: «Что такое теория струн?». Мы многое знаем о теории струн. Мы знаем её основные особенности, её главные достижения, её предсказания и проблемы; мы также можем использовать уравнения теории струн для предсказания того, как струны будут себя вести и взаимодействовать друг с другом в самых разных условиях. Но большинство исследователей чувствуют, что нашей сегодняшней формулировке теории струн всё ещё не хватает некоего основополагающего принципа, который мы обнаруживаем в центре любого другого крупного научного достижения. Специальная теория относительности зиждется на постоянстве скорости света. Общая теория относительности базируется на принципе эквивалентности. У квантовой механики есть принцип неопределённости. В теории струн всё ещё продолжается поиск аналогичного принципа, который столь же полно охватил бы суть теории.

В значительной степени эта нехватка центрального принципа вызвана тем, что теория струн разрабатывалась «по кусочкам», а не исходя из некоего глобального ви́дения. Цель теории струн — объединение всех типов взаимодействий и всех типов материи в рамках единого квантово-механического формализма — величественна ровно настолько, насколько это есть, но развитие самой теории является явно фрагментированным. После своего счастливого открытия более чем три десятилетия назад теория струн постепенно выстраивалась, по мере того как одна группа теоретиков достигала успеха, изучая одни уравнения, а достижения другой группы строились на других уравнениях.

Учёных, занимающихся теорией струн, можно уподобить первобытному племени, раскапывающему зарытый в землю космический корабль, на который они случайно наткнулись. Копаясь вокруг корабля, племя постепенно устанавливает различные принципы работы космического корабля, и это подпитывает ощущение, что все кнопки и рычажки корабля должны работать каким-то скоординированным и единым образом. Аналогичное ощущение превалирует среди струнных теоретиков. Результаты, полученные в ходе многих лет исследований, сближают друг с другом разные «куски» теории струн. Это вселяет растущую уверенность в то, что теория струн замкнётся в единую мощную и связную конструкцию, которая ещё должна быть полностью раскрыта, но которая в конечном счёте обнаружит внутреннюю структуру природы с непревзойдённой ясностью и полнотой.

За последнее время ничто не иллюстрирует это лучше, чем догадка, вызвавшая вторую суперструнную революцию — революцию, которая, среди прочего, вскрыла ещё одно пространственное измерение, вплетённое в ткань космоса, открыла новые возможности для экспериментальной проверки теории струн, привела к предположению, что наша Вселенная может неожиданно сталкиваться с другими Вселенными, показала, что чёрные дыры могут быть рождены уже на следующем поколении ускорителей элементарных частиц, а также привела к новой космологической теории, в которой время и его стрела, подобно грациозным кольцам Сатурна, могут вновь и вновь ходить по кругу.

Вторая суперструнная революция

В теории струн есть одна необычная деталь, которую я до сих пор утаивал, но которую могут вспомнить читатели моей предыдущей книги «Элегантная Вселенная». Дело в том, что за последние три десятилетия была разработана не одна, а пять различных версий теории струн. Приведу их названия, хотя они не очень важны: теория струн типа I, теория струн типа IIA, теория струн типа IIB, теория O-гетеротических струн и теория E-гетеротических струн. Все эти теории базируются на одних и тех же положениях, сформулированных в прошлой главе (элементарными составляющими являются нити вибрирующей энергии), и, как показали расчёты, проведённые в 1970-х и 1980-х гг., в каждой теории требуется шесть дополнительных пространственных измерений; однако при ближайшем рассмотрении обнаруживаются значительные различия между этими теориями. Например, теория струн типа I включает в себя колеблющиеся струнные петли, так называемые замкнутые струны, которые мы обсуждали в прошлой главе, но, в отличие от других версий теории струн, содержит также открытые струны — колеблющиеся отрезки струн с двумя свободными концами. Более того, расчёты показывают, что набор колебательных мод струн и способ их взаимодействия с другими модами отличаются друг от друга в различных формулировках теории струн.

Самые оптимистические струнные теоретики надеялись на то, что эти различия приведут к исключению четырёх из пяти формулировок, когда дело дойдёт до сравнения теорий с экспериментальными данными. Но, откровенно говоря, сам факт существования пяти различных версий теории струн служил источником с трудом скрываемого дискомфорта. Ведь учёные мечтают о унификации, которая привела бы к единой теории Вселенной. Если бы было установлено, что только одна теоретическая конструкция может охватить как квантовую механику, так и общую теорию относительности, то теоретики достигли бы своей нирваны в этом объединении. Это послужило бы серьёзным основанием для веры в справедливость теории даже при отсутствии прямого экспериментального подтверждения. В конце концов, имеется изобилие экспериментальных данных, подтверждающих как квантовую механику, так и общую теорию относительности, и ясно как день, что законы, управляющие Вселенной, должны быть взаимно совместимы. Поэтому, если какая-то теория оказалась бы единственной математически состоятельной связкой, соединяющей два экспериментально подтверждённых столпа физики XX в., это дало бы мощное, хотя и косвенное, доказательство неизбежности этой теории.

Но из факта существования пяти различных версий теории струн, внешне похожих, но отличающихся в деталях, может показаться, что теория струн не проходит тест на единственность. Даже если однажды будут оправданы ожидания оптимистов, и только одна из пяти теорий струн будет подтверждена экспериментально, нас всё ещё будет мучить надоедливый вопрос: к чему четыре другие состоятельные формулировки? Будет ли это означать, что остальные четыре формулировки являются попросту математическими курьёзами? Имеют ли они какое-либо отношение к физическому миру? Не указывает ли их существование на верхушку теоретического айсберга, в котором учёные впоследствии найдут ещё пять-шесть-семь других или даже бесконечное число различных математических вариаций на тему струн?

В конце 1980-х — начале 1990-х гг. многие физики активно разрабатывали ту или иную версию теории струн, а загадка пяти версий, как правило, не была той проблемой, которой занимались ежедневно. Она была тем мучительным вопросом, решение которого постоянно откладывалось на неопределённое будущее, когда существенно улучшится понимание каждой отдельной струнной теории.

Но весной 1995 г., без всякого предупреждения, эти скромные надежды были с лихвой вознаграждены. Опираясь на работы ряда физиков (включая Криса Халла, Пола Таунсенда, Ашока Сена, Майкла Даффа, Джона Шварца и многих других), Эдвард Виттен, в течение двух десятилетий являвшийся самым знаменитым струнным теоретиком, выявил скрытое единство, связывающее все пять версий теории струн. Виттен показал, что эти пять версий представляют собой не пять различных теорий, а всего лишь пять различных математических подходов к анализу одной и той же теории. Подобно тому как переводы книги на пять различных языков могут показаться несведущему в языках читателю пятью различными текстами, так и пять формулировок теории струн выглядели разными лишь из-за того, что до Виттена не было «словаря» для надлежащего перевода формулировок друг в друга. Но открытый Виттеном словарь убедительно показал, что, подобно единому тексту, с которого сделано пять различных переводов, все пять формулировок теории струн связывает единая теория. Объединяющая главная теория получила рабочее название M-теории, где буква «M» провоцирует различную расшифровку: Мистическая? Материнская? Матричная? Мембранная? Эта теория подстёгивает интенсивные усилия исследователей всего мира в поиске создания нового образа, высвеченного мощным озарением Виттена.

Это революционное открытие явилось большим шагом вперёд. Как Виттен показал в одной из самых выдающихся работ в этой области (и в следующей важной работе вместе с Петром Хоравой), теория струн является единой теорией. Теоретики, работающие в области теории струн, избавились от смущения при представлении своей теории в качестве кандидата на роль единой теории, искомой ещё Эйнштейном; ведь теперь никто не мог указать на отсутствие единства из-за того, что сама теория имеет пять различных версий. Метаобъединение самой теории струн, претендующей на роль единой теории, пришлось очень кстати. Благодаря работе Виттена идея объединения, включённая в каждую отдельную теорию струн, была распространена на всю концепцию струн.

На рис. 13.1 схематически представлен статус пяти теорий струн до открытия Виттена и после него; этот образ всегда полезно иметь в виду. Он иллюстрирует тот факт, что M-теория сама по себе не является новым подходом, но, «разгоняя облака», она обещает дать более тонкую и полную формулировку физических законов, чем позволяет дать любая из пяти версий теории струн. M-теория соединяет и охватывает все пять теорий струн, показывая, что каждая из них является частью более великого теоретического синтеза.

Рис. 13.1. (а) Схематическое представление пяти теорий струн до 1995 г. (б) Схематическое представление метаобъединения, вскрытого M-теорией. 1 — O-гетеротические; 2 — Тип I; 3 — Тип IIB; 4 — Тип IIA; 5 — E-гетеротические; 6 — M-теория

Мощь перевода

Хотя рис. 13.1 схематически передаёт суть открытия Виттена, но при взгляде на этот рисунок может возникнуть недоумение, что же особенного в этом открытии. До достижения Виттена исследователи думали, что существует пять разных версий теории струн; после этого достижения они перестали так думать. Но если вы никогда не знали о пяти предположительно разных теориях струн, то почему вы должны удивляться тому, что самый умный струнный теоретик показал, что они вовсе не разные? Иными словами, почему открытие Виттена столь революционно и не является всего лишь простой корректировкой бытовавшего ранее неверного понимания?

А вот почему. В течение нескольких последних десятилетий струнные теоретики постоянно сталкивались с одной математической проблемой. Из-за того, что вывести точные уравнения любой из пяти теорий струн, а затем анализировать их, оказалось очень трудным делом, исследования в основном базировались на приближённых уравнениях, с которыми работать гораздо проще. Хотя есть веские основания считать, что во многих случаях приближённые уравнения должны давать ответы, близкие к решениям точных уравнений, но всё же приближения, как и переводы, всегда что-то упускают. По этой причине определённые ключевые проблемы оказываются вне досягаемости математики приближённых уравнений, что существенно мешает прогрессу.

Для борьбы с неточностями, присущими переводу текста, читатель имеет пару простых средств. Если лингвистические познания читателя достаточны, то самое лучшее — это обратиться к оригинальному тексту. Но в настоящий момент такой вариант для струнных теоретиков недоступен. Благодаря «словарю», разработанному Виттеном и другими теоретиками, у нас есть сильные свидетельства того, что все пять теорий струн являются различными описаниями единой основной теории, M-теории, но исследователям ещё предстоит выработать полное понимание этой связи теорий. За последние несколько лет мы многое узнали о M-теории, но нам предстоит ещё немало пройти, прежде чем кто-то сможет заявить, что эта теория правильно или полностью понята. Ситуация с теориями струн такова, как если бы у нас были пять переводов ещё не найденного оригинала.

Другое полезное средство, хорошо известное читателям переводов, которые либо не имеют оригинального текста (как в случае с теорией струн), либо, что чаще, не понимают языка, на котором он написан, состоит в том, чтобы сверить несколько переводов на известные им языки. Отрывки, в которых переводы сходятся, вызывают доверие; те же отрывки, в которых переводы расходятся, указывают на возможные неточности или разночтения. Именно таким путём Виттен установил, что все пять теорий струн являются различными переводами одной и той же основной теории. В действительности, его открытие дало чрезвычайно мощный теоретический инструмент, который проще всего понять путём расширения аналогии с лингвистическими переводами.

Представьте себе, что оригинальная рукопись начинена столь тонкой игрой слов, рифм, иносказаний и национально-окрашенных шуток, что целиком текст невозможно изящно перевести ни на один из пяти предложенных языков. Некоторые отрывки можно легко перевести на язык суахили, тогда как прочие отрывки совершенно не подходят для выражения на этом языке. Зато часть прочих отрывков хорошо передаётся на языке инуитов, и ещё часть прекрасно звучит на санскрите. Однако остаются и отрывки, совершенно не поддающиеся переводу ни на один из языков, и тогда никак не обойтись без оригинального текста. Примерно такая ситуация и с пятью теориями струн. Теоретики обнаружили, что по определённым вопросам одна из пяти теорий может давать прозрачное описание физической картины, тогда как описания остальных четырёх теорий слишком сложны в математическом отношении. И в этом состоит сила открытия Виттена. До этого теоретического прорыва теоретики могли упереться в невероятную сложность решения выведенных уравнений. Но работа Виттена показала, что каждый такой вопрос допускает четыре перевода на язык математики — четыре математические переформулировки — и порой на один из переформулированных вопросов ответить гораздо проще. Таким образом, словарь для перевода между пятью теориями может иногда переводить невероятно трудные вопросы в сравнительно простые.

Но это не панацея. Подобно тому как все пять переводов некоторых отрывков оригинального текста могут быть одинаково непонятными, так и математические описания проблемы, даваемые всеми пятью теориями, иногда понять одинаково трудно. В таких случаях для дальнейшего продвижения нам нужно полное понимание ускользающей M-теории (подобно обращению к оригинальному тексту). Но, несмотря на это, в огромном числе случаев словарь Виттена даёт мощный новый инструмент для анализа теории струн.

Следовательно, подобно тому как каждый перевод сложного текста служит важной цели, так и каждая формулировка теории струн играет свою важную роль. Сочетая точки зрения каждой теории, мы обретаем возможность отвечать на вопросы, непосильные каждой из теорий в отдельности. Таким образом, открытие Виттена упятерило силы теоретиков, развивающих теорию струн. Вот почему, в значительной части, оно вызвало настоящую революцию в теории струн.

Одиннадцать измерений

Итак, какие достижения последовали благодаря вновь обретённой силе анализировать теорию струн? Их было множество. Я сосредоточусь только на тех, которые больше всего повлияли на проблему пространства и времени.

Прежде всего, работа Виттена вскрыла, что в приближённых уравнениях, использовавшихся в 1970–1980-х гг. и приводивших к выводу, что Вселенная должна иметь девять пространственных измерений, упускалось одно пространственное измерение. Точный анализ Виттена показал, что согласно M-теории Вселенная имеет десять пространственных измерений, т. е. одиннадцать измерений пространства-времени. Подобно тому как Калуца открыл, что пять измерений пространства-времени давали основание для объединения электромагнетизма и гравитации, и подобно тому как теоретики обнаружили, что десять измерений пространства-времени достаточно для объединения квантовой механики и общей теории относительности, так и Виттен открыл, что во Вселенной с одиннадцатью измерениями пространства-времени можно объединить все теории струн. Можно привести такую аналогию: пять селений с уровня земли кажутся совершенно отдельными друг от друга, но если взглянуть на них с вершины горы и тем самым задействовать дополнительное, вертикальное, измерение, то будет видно, что все селения соединены между собой сетью тропинок. Дополнительное пространственное измерение, появившееся из анализа Виттена, сыграло столь же важную роль при установлении связей между всеми пятью теориями струн.

Хотя открытие Виттена определённо следует исторически сложившейся схеме достижения единства за счёт добавления измерения, но его результат потряс все основания, когда он объявил о нём на ежегодной международной конференции по теории струн. Исследователи, включая меня, долго и много работали над приближёнными уравнениями, и все были уверены, что число пространственных измерений установлено правильно. Но Виттен обнаружил нечто совершенно поразительное.

Он показал, что во всех предыдущих работах допускалось одно математическое упрощение, равносильное предположению, что ранее необнаруженное десятое пространственное измерение чрезвычайно мало, гораздо мельче остальных. Оно в действительности столь мало, что у приближённых уравнений теории струн не хватало сил обнаружить даже намёк на существование десятого измерения. Но на базе новых представлений объединяющей M-теории Виттен смог выйти за рамки приближённых уравнений, провести более тонкий анализ и показать, что одно пространственное измерение всегда упускалось. Таким образом, Виттен показал, что пять десятимерных конструкций, развивавшихся в теории струн на протяжении более чем десятилетия, были в действительности пятью приближёнными описаниями единой одиннадцатимерной теории.

Можно задаться вопросом, перечеркнуло ли это неожиданное открытие предыдущую работу в теории струн. В общем и целом, не перечеркнуло. Открытое десятое пространственное измерение добавило непредвиденное свойство теории, но если теория струн / M-теория верна, и если десятое пространственное измерение действительно гораздо меньше остальных (что неявно предполагалось долгое время), то предыдущая работа имеет законное основание. Однако, поскольку в рамках известных уравнений всё ещё не удаётся ухватить размеры или формы дополнительных измерений, то в последние несколько лет струнные теоретики приложили немало усилий к исследованию новой возможности не столь малого десятого измерения. Помимо прочего, широкомасштабные результаты этих исследований подвели прочное математическое основание под схематическую иллюстрацию объединяющей силы M-теории (рис. 13.1).

Я подозреваю, что переход от десяти к одиннадцати измерениям не сильно сказался на вашем представлении о теории (несмотря на значимость этого перехода для математической структуры теории струн / M-теории). Для всех, за исключением знатоков, попытка представить семь свёрнутых измерений не сильно отличается от попытки представить шесть измерений.

Но второе и тесно связанное с первым следствие второй суперструнной революции действительно меняет интуитивно представляемую картину теории струн. В коллективной работе ряда исследователей — Виттена, Даффа, Халла, Таунсенда и многих других — было установлено, что теория струн — это теория не только струн.

Браны

В предыдущей главе у вас мог возникнуть естественный вопрос: почему именно струны? Что такого особенного в одномерных структурах? Мы установили, что для примирения квантовой механики с общей теорией относительности решающим является тот факт, что струны — не точки, что они имеют ненулевой размер. Но этому требованию можно удовлетворить с помощью двумерных объектов, таких как миниатюрные диски или мембраны, или с помощью трёхмерных образований, подобных мячам или комкам глины. На эту роль сгодятся объекты и более высокой размерности, поскольку теория изобилует пространственными измерениями. Почему такие объекты не играют никакой роли в наших фундаментальных теориях?

В конце 1980-х — начале 1990-х гг. казалось, что у теоретиков есть убедительный ответ. Они говорили, что уже предпринимались попытки сформулировать фундаментальную теорию на основе каплеподобных объектов; среди прочих это пытались сделать такие выдающие физики XX в., как Вернер Гейзенберг и Поль Дирак. Но их работа, как и последующие исследования, показала, что на базе каплеподобных объектов чрезвычайно трудно разработать теорию, которая удовлетворяла бы самым основным физическим требованиям — например, гарантировала бы, чтобы все квантово-механические вероятности лежали в диапазоне от 0 до 1 (отрицательные вероятности или вероятности, превышающие 1, не имеют никакого смысла), и не допускала бы передачу информации со скоростью, превышающей скорость света. Полвека исследований, начатых в 1920-х гг., показали, что этим условиям можно удовлетворить в рамках представлений о точечных частицах (пока игнорируется гравитация). А в 1980-х гг., после более чем десятилетия исследований Шварца, Шерка, Грина и других теоретиков, к удивлению большинства физиков было установлено, что этим же условиям можно удовлетворить, взяв в качестве элементарных составляющих одномерные объекты — струны (и обязательно включив гравитацию). Но казалось невозможным использовать в качестве элементарных составляющих объекты с двумя или более пространственными измерениями. Коротко говоря, дело в том, что число симметрий, допускаемых уравнениями, невероятно возрастает для одномерных объектов (струн), а затем резко падает с увеличением количества измерений. Обсуждаемые симметрии носят более абстрактный характер, чем те, что обсуждались в главе 8 (они имеют отношение к тому, как меняются уравнения, когда при изучении движения струны или объекта более высокой размерности мы увеличиваем или уменьшаем его размер, тем самым неожиданно и произвольно меняя степень разрешения наших наблюдений). Эти преобразования критически важны для формулировки физически осмысленной системы уравнений, и казалось, что требуемое изобилие терялось при переходе к двумерным объектам и объектам более высокой размерности.{172}

Большинство теоретиков, работающих в области теории струн, пережили ещё один шок, когда работа Виттена и лавина последовавших за ней результатов{173} привели к осознанию того, что теория струн и границы M-теории, в которые она вписалась, действительно содержит некоторые объекты помимо струн. Анализ показал, что имеются двумерные объекты, естественным образом названные мембранами (отсюда и ещё одно возможное толкование буквы «M» в названии M-теории) или, ради систематизации, 2-бранами. Допустимы и трёхмерные объекты, названные, соответственно, 3-бранами. Анализ также показал, что существуют и объекты с p пространственными измерениями (хотя их и трудно себе представить), где p может быть любым целым числом, меньшим 10, — они, соответственно, получили название p-бран. Таким образом, струны являются лишь одним из возможных элементарных объектов теории струн, но не единственным объектом.

Прочие объекты ранее ускользали от теоретических исследований во многом по той же причине, что и десятое измерение: приближённые уравнения теории струн слишком грубы, чтобы ухватить их. Теоретический анализ показал, что p-браны должны быть существенно тяжелее струн. А чем массивнее объект, тем больше требуется энергии, чтобы его создать. При крайне высоких энергиях, характерных для p-бран, приближённые уравнения становятся столь неточными, что не могут обнаружить браны, которые остаются в тени, — вот почему браны не удавалось заметить целыми десятилетиями. Но благодаря различным переформулировкам и новым подходам, предоставленным объединяющей концепцией M-теории, исследователи смогли обойти некоторые из технических препятствий и теперь, чисто математическим путём, открыли всё богатство объектов с более высокой размерностью.{174}

Открытие других объектов в теории струн умаляет или принижает более раннюю работу не в большей степени, чем открытие десятого пространственного измерения. Исследование показывает, что если браны высокой размерности существенно тяжелее струн — как неявно предполагалось в более ранних работах, — то они оказывают минимальное влияние на широкий круг теоретических расчётов. Но подобно тому как десятое измерение не обязательно должно быть гораздо меньше остальных, так и браны высокой размерности не обязательно должны быть значительно тяжелее струн. Существуют разнообразные условия, пока гипотетические, при которых масса браны высокой размерности может оказаться сравнимой с массой самых лёгких колебательных мод струны, и тогда брана действительно значительно влияет на получаемую физику. Например, в нашей работе в соавторстве с Эндрю Строминджером и Дэвидом Моррисоном показано, что брана может обёртываться вокруг сферического куска многообразия Калаби–Яу подобно вакуумной упаковке вокруг грейпфрута; если эта часть пространства сожмётся, то сожмётся и брана, что приведёт к уменьшению её массы. Мы смогли показать, что это уменьшение массы позволит этой части многообразия полностью сжаться и разорваться (само пространство может разорваться), однако обёрнутая вокруг этой области пространства брана будет гарантировать, что не произойдёт никаких катастрофических физических последствий. Я детально обсуждал этот вопрос в «Элегантной Вселенной», и мы вернёмся к нему в главе 15 при обсуждении путешествия во времени, так что сейчас мы не будем больше останавливаться на этом. Но этот пример ясно показывает, как браны высокой размерности могут существенно влиять на физику теории струн.

Есть, однако, и другой способ, каким браны влияют на представление о Вселенной в соответствии с теорией струн / M-теорией. Само космическое пространство — всё пространство-время, которое мы знаем, — может быть не чем иным, как грандиозной браной. Наш мир может быть миром на бране.

Миры на бранах

Проверка теории струн — очень непростое дело, поскольку струны ничтожно малы. Но вспомним, как физика определяет размер струн. Частица — переносчик гравитации (гравитон) отвечает моде колебания струны из числа мод с наинизшей энергией, а сила переносимого ею гравитационного взаимодействия пропорциональна длине струны. Поскольку гравитационное взаимодействие очень слабо, то и струна должна быть чрезвычайно короткой; расчёты показывают, что длина струны должна быть не более сотни планковских длин или около того, чтобы колебательная мода струны-гравитона обеспечивала наблюдаемую величину гравитационной силы.

Из этого разъяснения видно, что высокоэнергетические струны не обязательно должны быть чрезвычайно малыми, поскольку они не имеют прямой связи с гравитоном (гравитон является низкоэнергетической колебательной модой с нулевой массой). В действительности, по мере увеличения энергии струны она поначалу колеблется всё интенсивнее, но при переходе через определённый энергетический порог дальнейшее повышение энергии приводит к другому эффекту: длина струны начинает неограниченно расти. При закачивании в струну достаточного количества энергии она может вырасти до макроскопических размеров. Современные технологии не позволяют вкачать в струну столь много энергии, но вполне возможно, что такие струны рождались в сверхгорячей гиперэнергетической Вселенной сразу после Большого взрыва. Если некоторые из этих струн дожили до сегодняшнего дня, то они вполне могли бы сейчас простираться где-то в небесах. Хотя это и смелое предположение, но возможно даже, что такие длинные струны могли бы оставить крохотные, но обнаружимые следы в тех данных, которые мы получаем из космоса, так что не исключена возможность, что теория струн будет когда-нибудь подтверждена с помощью астрономических наблюдений.

Браны большой размерности, p-браны, тоже не обязательно должны быть ничтожно малыми, а поскольку у них больше измерений, чем у струны, то открывается принципиально новая возможность. Когда мы представляем длинную — возможно, бесконечно длинную — струну, мы воображаем длинный одномерный объект, существующий в трёхмерном пространстве нашей повседневной жизни. Линия электропередачи, простирающаяся настолько, насколько может увидеть глаз, — адекватный образ. Аналогично, если мы воображаем большую — возможно, бесконечно протяжённую в обоих направлениях — 2-брану, мы воображаем двумерную поверхность, существующую в трёхмерном пространстве, хорошо известном нам по повседневному опыту. Я не знаю реалистической аналогии, но сверхъестественно огромный экран летнего кинотеатра — чрезвычайно тонкий, но широкий и высокий, насколько видит глаз, — даёт достаточно хороший визуальный образ. Но когда дело доходит до 3-браны, мы оказываемся в совершенно иной ситуации. У 3-браны три измерения, так что будь она большой — возможно, бесконечно протяжённой во всех трёх направлениях — она бы заполнила все три пространственных измерения. Тогда как 1-брана и 2-брана, подобно линии электропередачи и экрану кинотеатра, являются объектами, существующими внутри наших трёх пространственных измерений, 3-брана заняла бы всё известное нам пространство.

Отсюда возникает интригующая возможность. Не живём ли мы сами внутри 3-браны? Не уподобляемся ли мы Белоснежке, чей мир ограничивается двумерным экраном — 2-браной, которая сама пребывает внутри трёхмерной Вселенной (внутри трёх пространственных измерений кинотеатра)? Не может ли быть так, что всё известное нам существует внутри трёхмерного экрана — 3-браны, которая сама пребывает внутри Вселенной более высокой размерности, описываемой теорией струн / M-теорией? Не может ли оказаться так, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трёхмерным пространством, является на самом деле особой трёхмерной сущностью теории струн / M-теории? Или, переходя на язык теории относительности, не может ли быть так, что четырёхмерное пространство-время, разработанное Минковским и Эйнштейном, является на самом деле следом или траекторией 3-браны, разворачивающейся во времени? Короче говоря, не может ли известная нам Вселенная быть браной?{175}

Возможность того, то мы живём внутри 3-браны (так называемый сценарий мира на бране), является самым последним поворотом теории струн / M-теории. Как мы увидим, она открывает совершенно новый взгляд на теорию струн / M-теорию с многочисленными и далеко идущими последствиями. Суть дела в том, что браны во многом подобны космической «липучке»; определённым образом, который мы сейчас обсудим, они очень липкие.

Липкие браны и колеблющиеся струны

Один из мотивов введения термина «M-теория» состоит в том, что, как мы теперь видим, название «теория струн» подчёркивает лишь один из множества объектов теории. Одномерные струны были обнаружены в теоретических исследованиях за десятилетия до того, как более тонкий анализ обнаружил существование бран более высокой размерности, так что «теория струн» — в чём-то устаревшее название. Однако, хотя M-теория и устанавливает своего рода «демократию» среди многообразия объектов различной размерности, но струны всё же играют главную роль в нашей современной формулировке. Одна из причин сразу же ясна. Можно игнорировать все p-браны более высокой размерности в ситуации, когда они гораздо тяжелее струн, — так исследователи неосознанно и поступали с 1970-х гг. Но есть и ещё одна причина, носящая более общий характер и делающая струны «первыми среди равных».

В 1995 г., вскоре после того как Виттен объявил о своём открытии, Джозеф Польчински из Калифорнийского университета в Санта-Барбаре получил богатую пищу для размышлений. Несколькими годами ранее в статье, написанной совместно с Робертом Леем и Джином Даем, Польчински обнародовал интересное и загадочное свойство теории струн. Мотивировки и рассуждения Польчински были несколько техническими, но детали для нас не важны, а результаты таковы. Он обнаружил, что в определённых ситуациях концы открытых струн (напомним, что такие струны представляют собой отрезки с двумя свободными концами) не могут двигаться как им угодно. Подобно тому как бусинка на проволочке может свободно двигаться, но при своём движении вынуждена повторять контур проволоки, и подобно тому как пинбольный шарик свободен в своём движении, но должен повторять контуры поверхности пинбольного стола, так и концы незамкнутой струны могут свободно двигаться, но ограничены в своём движении определёнными формами или контурами в пространстве. Польчински с соавторами показал, что хотя струна всё ещё вольна колебаться, но её концы будут «приклеены» к определённым областям или «захвачены» ими.

В одних ситуациях эта область может быть одномерной, и тогда концы струны уподобляются двум бусинкам, скользящим по проволоке, а сама струна — ниточке, связывающей их. В других ситуациях эта область может быть двумерной, и тогда концы струны уподобляются двум пинбольным мячам, связанным одной нитью и катающимся по пинбольному столу. Ещё в других ситуациях область может иметь три, четыре или любое число пространственных измерений не выше девяти. Эти результаты, как показал Польчински, а также Пётр Хоржава и Майкл Грин, помогли решить давнюю загадку, возникающую при сравнении замкнутых и незамкнутых струн, но в течение ряда лет эта работа привлекала мало внимания.{176} Всё изменилось в октябре 1995 г., когда Польчински закончил пересмотр этих ранних результатов в свете новых открытий Виттена.

Работа Польчински оставляла без ответа следующий вопрос, который, возможно, возник у вас при чтении предыдущего абзаца: если концы незамкнутых струн удерживаются внутри определённой области пространства, то к чему же они приклеены? Проволока и пинбольный стол существуют сами по себе, независимо от бусинок или шариков, движение которых они ограничивают. Что это за области пространства, к которым привязаны концы незамкнутых струн? Заполнены ли они неким независимым и фундаментальным ингредиентом теории струн, который так ревностно удерживает концы незамкнутой струны? До 1995 г., когда единственными объектами теории струн были только струны, не виделось подходящего кандидата на эту роль. Но после открытия Виттена и шквала последовавших работ ответ стал очевиден Польчински: если концы незамкнутых струн обязаны находиться внутри некой p-мерной области пространства, то эта область должна заниматься p-браной[81]. Его расчёты показали, что вновь открытые p-браны в точности обладают свойствами объектов, неумолимо захватывающих концы открытых струн, вынуждая их двигаться в пределах p-мерной области пространства, занимаемой браной.

Чтобы получить более ясное представление, взглянем на рис. 13.2. На рис. 13.2а мы видим пару 2-бран с массой движущихся колеблющихся струн, концы которых ограничены в своём движении этими бранами. Ситуация с бранами более высокой размерности совершенно идентична, хотя её труднее изобразить. Концы открытых струн могут свободно двигаться по p-бранам и внутри них, но они не могут покинуть саму брану. Когда речь заходит о возможности движения вне браны, то браны оборачиваются самой клейкой вещью, какую только себе можно представить. Возможно также, что один конец открытой струны захвачен одной p-браной, а другой конец — другой p-браной, которая может иметь либо ту же самую размерность, что и первая (рис. 13.2б), либо другую (рис. 13.2в).

Рис. 13.2. (а) Открытые струны, с концами, прикреплёнными к двумерным бранам (2-бранам). (б) Струны, соединяющие две разные 2-браны. (в) Струны, соединяющие 2-брану и 1-брану

Работа Польчински как нельзя кстати подошла к открытию Виттена, вызвавшему вторую революцию в теории суперструн. В то время как некоторые из величайших умов в теоретической физике XX в. тщетно пытались сформулировать теорию, содержащую фундаментальные объекты с бо́льшим числом измерений, чем точки (нульмерные) или струны (одномерные), результаты Виттена и Польчински, дополненные важными достижениями множества современных ведущих исследователей, открыли путь к прогрессу в этом направлении. Эти физики не только установили, что теория струн / M-теория содержит объекты более высокой размерности, но результаты Польчински, в частности, дали средства для теоретического анализа их детальных физических свойств (если будет доказано их существование). Польчински показал, что свойства браны определяются в значительной степени свойствами открытых колеблющихся струн, концы которых она захватывает. Подобно тому как вы многое можете узнать о ковре, проведя рукой по его ворсу — шерстяным нитям, прикреплённым к подложке ковра, — так и многие свойства браны можно выяснить, изучая струны, концы которых она держит.

Это великолепный результат. Он показывает, что десятилетия исследований, которые привели к разработке тонких математических методов для изучения одномерных объектов (струн), могут использоваться для изучения объектов более высокой размерности, p-бран. Замечательно то, что Польчински обнаружил: анализ объектов боле высокой размерности сводится в значительной степени к очень знакомому, хотя всё ещё гипотетическому, анализу струн. Именно в этом смысле струны выделяются среди равных. Если вы понимаете поведение струн, то вы уже прошли большой путь к пониманию поведения p-бран.

Имея в виду всё это, давайте теперь вернёмся к сценарию мира на бране — возможности, что все мы живём в пределах 3-браны.

Наша Вселенная как брана

Если мы живём внутри 3-браны — если наше четырёхмерное пространство-время является не чем иным, как историей 3-браны во времени, — то сакраментальный вопрос, является ли пространство-время чем-то сущим, предстаёт в совершенно ином свете. Известное нам пространство-время может появиться из реальной физической сущности теории струн / M-теории — 3-браны, а не из некой смутной или абстрактной идеи. В этом подходе реальность нашего четырёхмерного пространства будет на равных с реальностью электрона или кварка. (Конечно, можно ещё задаться вопросом, является ли сущностью само более крупное пространство-время, в котором существуют струны и браны — одиннадцать измерений теории струн / M-теории; тем не менее реальность арены пространства-времени, которую мы непосредственно окружаем, будет очевидной.) Но если Вселенная, которую мы осознаём, на самом деле является 3-браной, то не может ли даже поверхностный взгляд обнаружить, что мы во что-то погружены — а именно, во внутренность 3-браны?

Что же, мы уже осведомлены о том, во что мы можем быть погружены по предположению современной физики, — в океан Хиггса, в пространство, заполненное тёмной энергией, в мириады флуктуаций квантового поля — и ни одна из этих сущностей непосредственно не воспринимается человеком. Так что не должно вызвать потрясение то, что теория струн / M-теория добавляет ещё одного кандидата в список невидимых сущностей, которые могут заполнять «пустое» пространство. Но не будем спешить в выводах. Мы понимаем воздействие на физику каждой из предыдущих возможностей, а также то, как мы могли бы установить, действительно ли они существуют. В самом деле, мы видели, что уже собраны веские доказательства в пользу существования тёмной энергии и квантовых флуктуаций; доказательство существования поля Хиггса ищется на современных ускорителях и планируется продолжать поиски на будущих ускорителях элементарных частиц. А какова ситуация с 3-браной? Если верен сценарий мира на бране, то почему мы не видим эту 3-брану, и как нам установить, существует ли она на самом деле?

Ответ на этот вопрос показывает, насколько радикально отличаются физические результаты теории струн / M-теории в контексте мира на бране от предшествующих «безбранных» сценариев. В качестве важного примера рассмотрим движение света — движение фотонов. Как вы знаете, в теории струн фотон представляет собой одну из колебательных мод струны. Но математические исследования показали, что в сценарии мира на бране фотоны связаны только с колебаниями открытых струн, замкнутые струны не имеют отношения к фотонам, и это имеет важные следствия. Концы открытых струн могут двигаться как угодно, но только в пределах 3-браны. Это значит, что фотоны (открытые струны с колебательной модой фотонов) могут беспрепятственно путешествовать по всей нашей 3-бране, из-за чего брана становится совершенно прозрачной (полностью невидимой), и это не даёт нам возможности увидеть, что мы погружены в неё.

Не менее важно и то, что концы открытых струн не могут покинуть брану, т. е. они не могут двигаться по дополнительным измерениям. Подобно тому как проволока ограничивает движение нанизанных на неё бусинок или пинбольный стол сдерживает свои шарики, наша липкая 3-брана разрешает фотонам двигаться только в пределах наших трёх пространственных измерений. Поскольку фотоны являются частицами — переносчиками электромагнитного взаимодействия, то это значит, что электромагнитная сила — свет — замкнута в пределах наших трёх измерений, как показано на рис. 13.3 (на примере двумерного пространства).

Рис. 13.3. (а) В сценарии мира на бране фотоны являются открытыми струнами, концы которых заперты внутри браны, так что фотоны не могут покинуть саму брану. (б) Наш мир на бране мог бы плавать в великом просторе дополнительных измерений, остающихся невидимыми для нас, поскольку видимый нами свет не может покинуть нашу брану. Могли бы существовать и другие миры на бранах, плывущие рядом с нами

Это очень сильное утверждение с важными последствиями. Ранее мы требовали, чтобы дополнительные измерения теории струн / M-теории были бы компактно свёрнуты. Ясно, что причина этого требования состоит в том, что раз мы не видим дополнительные измерения, то они должны быть от нас скрыты. А один из способов скрыть их — сделать их настолько малыми, что ни мы, ни наше оборудование не будет в состоянии обнаружить их. Но давайте теперь посмотрим на эту проблему в рамках сценария мира на бране. Как мы обнаруживаем объекты? Когда мы смотрим глазами, мы используем электромагнитное взаимодействие; когда мы применяем мощные инструменты, подобные электронным микроскопам, мы также используем электромагнитное взаимодействие; когда мы берём на вооружение ускорители элементарных частиц, то одной из сил, позволяющих нам заглянуть в микромир, опять же является электромагнитная сила. Но если электромагнитное взаимодействие ограничено нашей 3-браной, нашими тремя измерениями, то с помощью него никак невозможно «пощупать» дополнительные измерения, независимо от их размера. Фотоны не могут вырваться из наших трёх измерений, войти в дополнительные измерения, а затем вернуться к нашим глазам или к нашему оборудованию, позволяя обнаружить дополнительные измерения — даже если бы они были столь же большими, как известные нам измерения нашего пространства.

Так что если мы живём в 3-бране, то есть и альтернативное объяснение того, почему мы ничего не знаем о дополнительных измерениях. Требование, чтобы дополнительные измерения были чрезвычайно малы, необязательно. Они могут быть и большими. Мы не видим их из-за способа, которым смотрим. Мы смотрим посредством электромагнитной силы, которая не в состоянии добраться до любых измерений, помимо трёх известных нам. Подобно муравью, бродящему по плавающему листу лилии, совершенно не ведающему о глубоких водах прямо под видимой поверхностью листа, мы могли бы плавать внутри громадного пространства более высокой размерности, как на рис. 13.3б, но электромагнитная сила — навечно запертая в пределах наших измерений — не может открыть нам это.

Хорошо, но ведь электромагнитное взаимодействие является лишь одним из четырёх взаимодействий природы. Как насчёт остальных трёх? Могут ли они внедриться в дополнительные измерения и позволить нам вскрыть их существование? Что касается сильного и слабого ядерного взаимодействия, то ответ снова отрицательный. Расчёты показывают, что в сценарии мира на бране частицы — переносчики этих взаимодействия (глюоны и W- и Z-частицы) также возникают из колебательных мод открытых струн, так что они тоже заперты, как и фотоны, в трёх наших измерениях, и процессы, включающие сильное и слабое ядерное взаимодействие, столь же слепы по отношению к дополнительным измерениям. То же самое относится и к частицам материи. Электроны, кварки и все прочие типы частиц также возникают из колебаний открытых струн с пойманными концами. Таким образом, в сценарии мира на бране вы и я, а также всё, что мы когда-либо видели, навечно заключены в пределах нашей 3-браны. Учитывая время, можно сказать, что всё заключено в пределах нашего четырёхмерного среза пространства-времени.

Это почти всё, но только почти. С гравитационным взаимодействием ситуация совсем другая. Математический анализ в рамках сценария мира на бране показывает, что гравитоны возникают из колебательных мод замкнутых струн, как это было и в ранее обсуждавшихся сценариях «безбранного мира». А замкнутые струны — струны, не имеющие концов, — не ограничены бранами. Они могут столь же свободно покинуть брану, как и путешествовать по ней или через неё. Так что если бы мы жили на бране, то не были бы полностью отрезаны от дополнительных измерений. Посредством гравитационной силы мы могли бы взаимодействовать с дополнительными измерениями. В этом сценарии гравитация была бы нашим единственным способом выхода за пределы наших трёх пространственных измерений.

Сколь большими должны быть дополнительные измерения, чтобы мы начали осознавать их посредством гравитационного взаимодействия? Это очень интересный и важный вопрос, так что давайте подробнее остановимся на нём.

Гравитация и большие дополнительные измерения

Ещё в 1687 г., формулируя закон всемирного тяготения, Ньютон в действительности сделал сильное утверждение относительно количества пространственных измерений. Ньютон не просто сказал, что сила притяжения между объектами уменьшается по мере увеличения расстояния между ними. Он предложил формулу, обратную квадратичную зависимость, точно описывающую, как уменьшается гравитационное притяжение с увеличением расстояния между двумя объектами. Согласно этой формуле, если удвоить расстояние между объектами, то гравитационное притяжение между ними снизится в 4 раза (22); если утроить это расстояние, то притяжение уменьшится в 9 раз (32); а если учетверить расстояние, то гравитационное притяжение станет слабее в 16 раз (42); в общем случае, гравитационная сила падает пропорционально квадрату расстояния между объектами. Как стало совершенно очевидно за последние несколько сотен лет, эта формула прекрасно работает.

Но почему сила гравитации подчиняется именно квадратичной зависимости? Почему бы ей не падать пропорционально кубу расстояния (так что с удвоением расстояния сила уменьшалась бы в 8 раз), либо четвёртой степени (так что с удвоением расстояния сила уменьшалась бы в 16 раз), либо, возможно, просто пропорционально расстоянию между объектами (так что с удвоением расстояния сила уменьшалась бы в 2 раза)? Ответ напрямую связан с количеством измерений пространства.

Чтобы это понять, можно, например, думать о количестве гравитонов, испускаемых и поглощаемых объектами в зависимости от расстояния между ними, или о том, насколько кривизна пространства-времени уменьшается по мере увеличения расстояния между объектами. Но мы поступим проще, взяв на вооружение старый подход, который быстро и наглядно приведёт нас к правильному ответу. Посмотрим на рисунок (рис. 13.4а), схематически иллюстрирующий гравитационное поле массивного объекта (например, Солнца), во многом подобный рис. 3.1, на котором представлено магнитное поле стержневого магнита. Отметим важное отличие: в то время как силовые линии магнитного поля простираются от северного полюса магнита к его южному полюсу, линии гравитационного поля однородно расходятся во всех направлениях от одной точки, схематически представляющей Солнце. Сила гравитационного притяжения, испытываемого другим объектом (представим себе спутник, вращающийся по орбите вокруг Солнца), будет ощущаться пропорционально плотности линий поля в месте нахождения этого объекта. Чем больше линий поля пронизывают спутник (как на рис. 13.4б), тем больше испытываемое им гравитационное притяжение.

Рис. 13.4. (а) Гравитационное притяжение между двумя объектами, такими как Солнце и спутник, обратно пропорционально квадрату расстоянии между ними. Причина кроется в том, что линии гравитационного поля Солнца расходятся однородно во всех направлениях (б) и, следовательно, их плотность на расстоянии d обратно пропорциональна площади воображаемой сферы радиуса d, схематически изображённой на рис. (в), а эта площадь согласно элементарной геометрии пропорциональна d2

Теперь мы можем объяснить, откуда берётся обратная квадратичная зависимость в законе Ньютона. Воображаемая сфера с центром на Солнце, проходящая через место нахождения спутника (рис. 13.4в), имеет площадь (подобно площади поверхности любой сферы в трёхмерном пространстве), пропорциональную квадрату её радиуса, т. е. квадрату расстояния между Солнцем и спутником. Значит, плотность линий гравитационного поля, проходящих через сферу (суммарное количество линий, поделённое на площадь поверхности сферы), уменьшается по закону обратных квадратов с увеличением расстояния между Солнцем и спутником. Если удвоить это расстояние, то одно и то же количество линий поля будет равномерно распределено по сфере, имеющей в четыре раза большую площадь, и, следовательно, гравитационное притяжение уменьшится в 4 раза на этом расстоянии. Таким образом, обратная квадратичная зависимость в законе Ньютона является отражением геометрических свойств сфер в трёхмерном пространстве.

Но если бы Вселенная имела два или даже только одно пространственное измерение, то как изменилась бы формула Ньютона? На рис. 13.5а представлена двумерная версия ситуации с Солнцем и вращающимся спутником. Как видно, линии гравитационного поля Солнца равномерно распределяются по окружности — аналогу сферы в двумерном пространстве. Поскольку длина окружности пропорциональна её радиусу (а не квадрату радиуса), то при удвоении расстояния между Солнцем и спутником плотность линий поля уменьшается в 2 раза (а не в 4 раза), из-за чего сила гравитационного притяжения падает только в 2 раза (а не в 4). Если Вселенная имела бы только два пространственных измерения, то гравитационная сила была бы обратно пропорциональна расстоянию, а не квадрату расстояния.

Рис. 13.5. (а) Во Вселенной только с двумя пространственными измерениями гравитационная сила падает пропорционально расстоянию, поскольку линии гравитационного поля однородно распределяются по окружности, длина которой пропорциональна её радиусу. (б) В одномерной Вселенной у линий гравитационного поля совсем не было бы места для пространственного расхождения, так что гравитационная сила была бы постоянной, независимо от расстояния

Если Вселенная имела бы лишь одно пространственное измерение, как на рис. 13.5б, то закон всемирного тяготения был бы ещё проще. У линий гравитационного поля вообще бы не было места для пространственного расхождения, так что сила гравитации не уменьшалась бы с расстоянием. Если удвоить расстояние между Солнцем и спутником (при условии, что подобные объекты могли бы существовать в такой Вселенной), то спутник будет пронизывать всегда одно и то же количество линий поля и, следовательно, сила гравитации между Солнцем и спутником вообще не изменялась бы.

Ситуация, проиллюстрированая на рис. 13.4 и 13.5, напрямую распространяется на Вселенную с четырьмя, пятью, шестью и более пространственными измерениями, хотя это уже невозможно изобразить. Чем больше пространственных измерений, тем больше места для расхождения линий гравитационного поля. А чем больше места, тем всё более ощутимее падает сила гравитации с увеличением расстояния между объектами. Во Вселенной с четырьмя пространственными измерениями сила гравитации падала бы обратно пропорционально третьей степени расстояния (при удвоении расстояния сила уменьшалась бы в 8 раз); в пяти пространственных измерениях эта сила падала бы обратно пропорционально четвёртой степени расстояния (при удвоении расстояния сила уменьшалась бы в 16 раз); в шести пространственных измерениях эта сила падала бы обратно пропорционально пятой степени расстояния (при удвоении расстояния сила уменьшалась бы в 32 раза); и так далее с увеличением количества пространственных измерений Вселенной.

Вы могли бы подумать, что успешное объяснение громадного объёма данных с помощью закона обратных квадратов (от движения планет до траекторий комет) подтверждает то, что мы живём во Вселенной с тремя пространственными измерениями. Но такой вывод был бы поспешным. Нам известно, что закон обратных квадратов работает на астрономических масштабах,{177} и мы знаем, что он работает на земных масштабах, и это согласуется с тем фактом, что на таких масштабах мы видим три пространственных измерения. Но известно ли нам, что он работает и на более мелких масштабах? Насколько он был проверен в микрокосмосе? Оказывается, эксперименты подтвердили его лишь до десятой доли миллиметра; если два объекта разделяет расстояние, превышающее десятую часть миллиметра, то сила их гравитационного притяжения точно соответствует обратной квадратичной зависимости. Но пока что экспериментаторы наталкиваются на значительные технические трудности при проверке закона всемирного тяготения на более мелких масштабах (это связано со слабостью гравитационного взаимодействия и квантовыми эффектами). Этот вопрос очень важен, поскольку отклонение от закона обратных квадратов явилось бы убедительным сигналом, указывающим на существование дополнительных измерений.

Чтобы наглядно представить это, давайте рассмотрим модельную задачу с меньшим количеством пространственных измерений, что позволит нам легко обрисовать и проанализировать всю картину. Вообразим, что мы живём в одномерной Вселенной, — точнее, мы так думаем, поскольку мы видим только одно пространственное измерение и, кроме того, столетия экспериментальных проверок показали, что сила гравитации не меняется с изменением расстояния между объектами. Также представим, что за все эти столетия закон гравитации был проверен на расстояниях вплоть до десятой доли миллиметра, но не ближе. Для меньших расстояний просто нет экспериментальных данных. Вообразим далее, что на самом деле Вселенная имеет второе, свёрнутое пространственное измерение, так что её форма похожа на туго натянутый канат Филиппа Пети, как представлено на рис. 12.5. Как это скажется на будущих более точных проверках закона гравитационного притяжения? Ответ можно получить, глядя на рис. 13.6. Как только два крохотных объекта окажутся достаточно близко друг к другу (на расстоянии порядка длины окружности свёрнутого измерения), двумерный характер пространства станет непосредственно очевиден, поскольку на этих масштабах у линий гравитационного поля будет место для расхождения (рис. 13.6а). На достаточно близком расстоянии сила гравитации окажется обратно пропорциональной расстоянию между объектами, перестав быть постоянной и не зависящей от расстояния.

Рис. 13.6. (а) Когда объекты близки, сила гравитации меняется как в двумерном пространстве. (б) На больших расстояниях гравитационное притяжение ведёт себя как в одномерном пространстве — оно постоянно

Таким образом, если бы вы были экспериментатором в этой Вселенной и разработали бы достаточно точные методы измерения гравитационного притяжения, то вот что бы вы обнаружили. Когда два объекта находятся очень близко друг к другу, на расстоянии, гораздо меньшем, чем размер свёрнутого измерения, то их гравитационное притяжение уменьшалось бы пропорционально расстоянию между ними. Но когда расстояние между объектами становится бо́льшим, чем длина окружности свёрнутого измерения, то всё бы изменилось. Теперь линиям гравитационного поля просто некуда расходиться. Они бы максимально заполнили второе свёрнутое измерение (можно сказать, они бы «насытили» его), так что начиная с этого расстояния гравитационная сила больше бы не уменьшалась, как проиллюстрировано на рис. 13.6б. Можно сравнить это насыщение с водопроводной системой в старом доме. Представьте, что вы принимаете душ в ванной комнате этого дома и только что намылили себе голову. И, вот досада, кто-то открывает кран на кухне, и напор воды падает, потому что вода теперь распределяется по двум кранам. Напор уменьшится ещё больше, если кто-то откроет кран в постирочной комнате, поскольку вода побежит и туда. Но как только все водопроводные краны в доме открыты, напор воды перестаёт падать. Хотя струя воды в душе уже не такая сильная, как вам хотелось бы, но теперь вам нечего бояться — напор воды останется постоянным, так как вода полностью распределилась по всем «дополнительным» кранам. Аналогично, как только гравитационное поле полностью распространилось по дополнительному свёрнутому измерению, сила притяжения перестаёт уменьшаться с увеличением расстояния.

Из таких данных вы могли бы сделать два вывода. Во-первых, тот факт, что гравитационное притяжение двух объектов уменьшается пропорционально расстоянию между ними, когда эти объекты очень близки друг к другу, говорит о том, что Вселенная имеет два измерения, а не одно. Во-вторых, из факта перехода к постоянной силе гравитации — факта, известного по столетиям предыдущих экспериментов, — вы могли бы заключить, что одно из измерений Вселенной свёрнуто, причём размер этого измерения по порядку величины совпадает с расстоянием, на котором происходит переход к постоянной силе. И эти результаты перевернули бы столетнюю, если не тысячелетнюю, веру в то, что казалось таким очевидным, основополагающим и не подлежащим сомнению, — веру в количество пространственных измерений.

Хотя ради простоты я привёл пример Вселенной с меньшим числом измерений, чем в нашей, но ситуация с нашим миром могла бы быть совершенно аналогичной. Столетия экспериментов подтверждают, что сила гравитации изменяется обратно пропорционально квадрату расстояния, и это служит веским основанием, чтобы утверждать, что наш мир трёхмерен. Но до 1998 г. никому не удавалось измерить силу гравитации на расстояниях, меньших миллиметра (к настоящему времени, как уже говорилось, это предел отодвинут до десятой доли миллиметра). Это привело Саваса Димопулоса из Стэнфордского университета, Ниму Аркани-Хамеда (работающего сейчас в Гарвардском университете) и Гия Двали из Университета Нью-Йорка к гипотезе, что в сценарии мира на бране дополнительные измерения могут достигать миллиметра и всё же оставаться незамеченными. Эта радикальная гипотеза побудила ряд экспериментальных групп начать изучать гравитацию на субмиллиметровых расстояниях в надежде найти нарушение закона обратных квадратов, но до сих пор никаких нарушений выявлено не было вплоть до десятой доли миллиметра. Таким образом, основываясь на современных данных, можно сказать, что если мы живём внутри 3-браны, то дополнительные измерения могут достигать десятой доли миллиметра и всё же оставаться незамеченными нами.

Таково одно из самых поразительных осмыслений за последнее десятилетие. С помощью трёх негравитационных сил мы можем добраться до расстояний, составляющих миллиардную от миллиардной доли метра (10−18 м), и никто не обнаружил никаких следов существования дополнительных измерений. Но в рамках сценария мира на бране с помощью негравитационных сил вообще невозможно найти дополнительные измерения, поскольку эти силы заперты в самой бране. Только гравитация может добраться до дополнительных измерений, и, согласно современным данным, дополнительные измерения могут достигать толщины человеческого волоса и всё же оставаться совершенно невидимыми для самых совершенных наших приборов и инструментов. Прямо сейчас, прямо рядом с вами, прямо рядом со мной, прямо рядом с кем угодно может быть дополнительное пространственное измерение — измерение помимо известных нам направлений влево/вправо, вперёд/назад и вверх/вниз; свёрнутое измерение, однако достаточно крупное, чтобы поглотить нечто с размерами толщины бумажного листа — и это измерение мы никак не можем ухватить.[82]

Большие дополнительные измерения и большие струны

Запирая три из четырёх фундаментальных сил, сценарий мира на бране значительно смягчает ограничения на максимально допустимый размер дополнительных измерений, но в рамках этого сценария могут стать большими не только они. Основываясь на более ранних догадках Виттена, Джоя Ликкена, Константина Бачаса и ряда других учёных, Игнатиос Антониадис совместно с Аркани-Хамедом, Димопулосом и Двали поняли, что в рамках сценария мира на бране даже невозбуждённые низкоэнергетические струны могут быть гораздо крупнее, чем думали об этом раньше. В действительности, эти два масштаба — размер дополнительных измерений и размер струн — тесно связаны друг с другом.

Вспомним из предыдущей главы, что размер струны определяется требованием, чтобы её колебательная мода, соответствующая гравитону, давала экспериментально измеряемую величину силы гравитационного взаимодействия. Слабость гравитационного взаимодействия приводит к очень малому размеру струны, порядка планковской длины (10−33 см). Но этот вывод в большой степени зависит и от размеров дополнительных измерений. Причина кроется в том, что в рамках теории струн / M-теории сила наблюдаемого нами гравитационного взаимодействия отражает игру двух факторов. Первый фактор — фундаментальная сила самого гравитационного взаимодействия «в чистом виде». Второй фактор — размеры дополнительных измерений. Чем крупнее дополнительные измерения, тем больше гравитации может «утечь» в них и тем слабее сила гравитации проявляется в известных нам трёх измерениях. Подобно тому как наблюдаемый нами напор воды падает с открытием дополнительных кранов, поскольку поток воды разделяется на множество труб, так и дополнительные измерения ослабляют наблюдаемую нами силу гравитации, поскольку у гравитации возникает больше «каналов», между которыми она распределяется.

В первоначальных расчётах, определявших длину струны, предполагалось, что дополнительные измерения столь малы (порядка планковской длины), что гравитация вообще не может уходить в них. В таком случае наблюдаемая нами гравитация мала из-за того, что она действительно мала. Но теперь, если мы примем сценарий мира на бране и допустим, что дополнительные измерения гораздо крупнее, чем думалось раньше, то наблюдаемая слабость гравитационного взаимодействия больше не означает, что гравитация в самом деле мала. Гравитация уже может быть относительно мощной силой, кажущейся нам слабой лишь из-за того, что большие дополнительные измерения, подобно крупным трубам, уменьшают её исходную силу, проявляющуюся во всех измерениях, а не только в тех трёх, в которых мы живём. Но тогда, раз уж гравитация может быть гораздо более сильной, чем представлялось раньше, то и струны могут быть гораздо длиннее, чем это предполагалось.

В настоящее время вопрос о возможной длине струн не имеет однозначного ответа. Благодаря обретённой свободе варьировать как размер струн, так и размер дополнительных измерений в гораздо более широком диапазоне, чем это казалось допустимым раньше, появился целый ряд возможностей. Димопулос с сотрудниками показали, что экспериментальные данные из астрофизики и физики элементарных частиц говорят о том, что невозбуждённые струны не могут быть крупнее миллиардной от миллиардной доли метра (10−18 м). Хотя по нашим привычным меркам это чрезвычайно малый размер, но он в сто миллионов миллиардов (1017) раз превосходит планковскую длину — т. е. в сто миллионов миллиардов раз больше, чем думали раньше. И как мы сейчас увидим, такого размера уже достаточно, чтобы следы струн могли быть обнаружены на новом поколении ускорителей частиц.

Теория струн сопротивляется экспериментальной проверке?

Возможность того, что мы живём внутри 3-браны, является, конечно, всего лишь возможностью. Как и остаётся только возможностью то, что дополнительные измерения и, следовательно, струны могут быть гораздо крупнее, чем представлялось раньше. Но это чрезвычайно интригующие возможности. Конечно, даже если и верен сценарий мира на бране, дополнительные измерения и струны всё ещё могут иметь размеры порядка планковской длины. Но фантастична сама возможность того, что в рамках теории струн / M-теории струны и дополнительные измерения могут быть гораздо более крупными, лишь чуть выходя за пределы достижимого современной технологией. Это значит, что есть по крайней мере шанс, что теория струн / M-теория соприкоснётся с миром наблюдаемых явлений и войдёт в разряд экспериментальных наук.

Сколь велик этот шанс? Я не знаю, и никто не знает. Моя интуиция говорит мне, что это маловероятно, но моя интуиция основывается на полутора десятилетиях исследований в рамках традиционной концепции струн и дополнительных измерений порядка планковской длины. Возможно, мои инстинкты притупились. К счастью, вопрос будет решён без оглядки на чью-либо интуицию. Если струны достаточно крупные или некоторые из дополнительных измерений достаточно большие, то результаты грядущих экспериментов будут впечатляющими.

В следующей главе мы рассмотрим целый ряд экспериментов, в которых, среди прочего, будет проверена возможность существования относительно крупных струн и дополнительных измерений, так что пока что я лишь разожгу ваш аппетит. Если струны достигают миллиардной от миллиардной доли метра (10−18 м), то частицы, соответствующие более высоким колебательным модам (рис. 12.4), уже не будут иметь грандиозных масс, превышающих планковскую массу, как в стандартном сценарии. Их массы будут лишь в 100–1000 раз превосходить массу протона, и это уже попадает в предел достижимости построенного недавно в ЦЕРНе Большого адронного коллайдера (Large Hadron Collider — LHC). Если эти колебательные моды струн будут возбуждены в результате высокоэнергетических столкновений, то детекторы ускорителя вспыхнут огнями, как хрустальный шар на Таймс-Сквер в канун Нового года. Будет обнаружен целый букет невиданных ранее частиц, причём их массы будут связаны друг с другом, как различные гармоники одной виолончели. Под полученными данными появится такая размашистая подпись теории струн, которая впечатлила бы даже Джона Хэнкока[83]. Исследователи не смогут пропустить это, даже если забудут надеть свои очки.

Более того, если верен сценарий мира на бране, то высокоэнергетические столкновения могут даже создавать (только вообразите!) миниатюрные чёрные дыры. Хотя мы обычно думаем о чёрных дырах как о гигантских объектах в далёком космосе, но ещё со времён создания общей теории относительности стало известно, что если сжать с достаточной силой горстку материи, то возникнет миниатюрная чёрная дыра. Это не происходит из-за того, что никто (и никакое механическое устройство) даже отдалённо не может приблизиться к тому, чтобы вызвать достаточно большую силу сжатия. Единственно приемлемый механизм создания чёрных дыр включает в себя гравитационное притяжение чудовищно массивной звезды, преодолевающее направленное наружу давление, вызываемое процессами ядерного синтеза внутри неё, что и вызывает коллапс звезды. Но если сила гравитации на микроскопических масштабах гораздо больше, чем думали раньше, то микроскопические чёрные дыры могут быть порождены с помощью существенно меньшей силы сжатия, чем это представлялось. Расчёты показывают, что у Большого адронного коллайдера может хватить мощности, чтобы породить изобилие микроскопических чёрных дыр путём высокоэнергетических столкновений протонов.{178} Подумайте над тем, сколь ошеломительным это могло бы быть. Большой адронный коллайдер мог бы превратиться в фабрику по производству микроскопических чёрных дыр! Эти чёрные дыры были бы столь малы и исчезали бы за столь короткое время, что не представляли бы для нас ни малейшей угрозы (уже довольно давно Стивен Хокинг показал, что все чёрные дыры распадаются в результате квантовых процессов: крупные чёрные дыры очень медленно, а миниатюрные — очень быстро), но их порождение подтвердило бы одну из самых экзотических идей, выдвинутых когда-либо.

Космология мира на бране

Первой целью современных исследований, проводимых учёными во всём мире (включая меня), является осмысление космологии с учётом новых достижений теории струн / M-теории. Причина ясна: космология не только имеет дело с глобальными вопросами мироздания, и момент рождения Вселенной не только определяет многие элементы нашего повседневного опыта (такие как стрела времени), но и служит теоретикам тем, чем Нью-Йорк послужил Синатре[84]: первоклассной испытательной площадкой. Если теория заработает в экстремальных условиях, характеризующих самые ранние моменты существования Вселенной, то она сможет сделать это везде.

В настоящее время ведутся разработки космологии согласно теории струн / M-теории, причём исследователи идут в двух основных направлениях. В первом и более традиционном подходе предполагается, что подобно тому как инфляционная теория описывает краткий, но важный период, предшествовавший периоду, описываемому стандартной теорией Большого взрыва, так и теория струн / M-теория может описывать ещё более ранний и, возможно, ещё более важный период, предшествовавший инфляции. Здесь можно надеяться на то, что теория струн / M-теория избавит нас от неуклюжих заплаток, использованных нами, чтобы покрыть своё неведение о самых ранних моментах рождения Вселенной, а затем космологическая драма будет развёртываться согласно необычайно успешному сценарию инфляционной теории, изложенному в предыдущих главах.

Хотя и был достигнут определённый прогресс, касающийся специфических деталей, требующихся в рамках этого подхода (попытка понять, почему только три пространственных измерения Вселенной претерпели расширение, а также разработка математических методов, которые могут оказаться уместными для анализа беспространственного/вневременного царства, которое могло быть до периода инфляции), но ещё не настал тот момент, когда можно воскликнуть «Эврика!». Интуитивное ощущение состоит в том, что, в то время как в рамках инфляционной космологии размеры наблюдаемой Вселенной всё уменьшаются во всё более ранние моменты времени (и, следовательно, Вселенная становится всё более горячей, плотной и энергетически насыщенной), теория струн / M-теория справляется со столь буйным поведением (физики используют термин «сингулярное поведение»), вводя минимальный размер (как мы обсуждали это в предыдущей главе), ниже которого становятся значимыми новые и менее сингулярные физические величины. Такой подход в рамках теории струн / M-теории позволяет успешно объединить общую теорию относительности с квантовой механикой, и моё инстинктивное чувство говорит о том, что мы вскоре найдём, как применить этот подход в космологии. Но пока что неуклюжая заплатка всё ещё выглядит неуклюжей, и можно лишь догадываться, когда установится полная ясность.

Во втором подходе используется сценарий мира на бране, и в своём самом радикальном варианте он предлагает совершенно новую космологическую конструкцию. Пока что далеко не ясно, устоит ли этот подход под пристальным математическим взглядом, но он даёт действительно хороший пример того, как прорывы в фундаментальной теории могут открывать новые тропы по хорошо исхоженной территории. Этот подход назван циклической моделью.

Циклическая космология

С точки зрения времени нам известны два типа явлений: те, которые имеют явно выраженное начало, середину и конец (чтение этой книги, футбольный матч, человеческая жизнь), и, те, которые носят циклический характер, возобновляясь снова и снова (времена года, восход и закат Солнца, свадьбы Ларри Кинга[85]). Конечно, при более пристальном взгляде мы обнаруживаем, что и циклические явления имеют своё начало и конец, поскольку циклы не длятся вечно. Солнце всходит и восходит, т. е. Земля вращается вокруг своей оси, вращаясь вокруг Солнца, — так оно есть и так оно и было каждый день в течение 5 млрд лет. Но до этого Солнце и Солнечная система ещё должны были сформироваться. И когда-нибудь, через 5 млрд лет, Солнце превратится в красного гиганта и поглотит свои планеты, включая Землю; и тогда уже не будет даже понятия о восходе и закате Солнца, по крайней мере здесь.

Но это выяснилось благодаря современным научным открытиям. В древности циклические явления казались вечно циклическими. Циклы суток и времён года задают ритм работы и жизни, так что неудивительно, что в некоторых из древнейших космологий считалось, что развёртывание мира является циклическим процессом. Вместо того чтобы вводить начало, середину и конец, циклическая космология постулирует, что мир меняется во времени во многом так же, как Луна проходит свои фазы: после полного цикла всё готово к тому, чтобы начать заново и запустить ещё один цикл.

Со времён создания общей теории относительности предлагалось несколько моделей циклической космологии; самая известная из них была разработана Ричардом Толменом из Калифорнийского технологического института. Толмен предположил, что наблюдаемое расширение Вселенной может замедлиться, затем остановиться, после чего начнётся период сжатия, во время которого Вселенная будет становиться всё меньше и меньше. Но вместо того чтобы окончательно сжаться и прекратить своё существование, Вселенная могла бы претерпеть отскок: пространство могло бы сжаться только до определённого малого размера, а затем «отскочить», начав новый цикл расширения, за которым опять последует сжатие. Теория Вселенной, вечно повторяющей этот цикл — расширение, сжатие, отскок, снова расширение, — элегантно избежала бы тернистых вопросов о своём начале: в таком сценарии само понятие начала теряет смысл, поскольку Вселенная всегда была и всегда будет.

Но Толмен понял, что при ретроспективном взгляде с наших дней циклы бы повторялись только какое-то время, но не бесконечно. Причина кроется в том, что второе начало термодинамики диктует: в течение каждого последующего цикла энтропия должна возрастать.{179} А согласно общей теории относительности количество энтропии в начале каждого цикла определяет, как долго будет длиться этот цикл. Большее количество энтропии означает более длительный период расширения, прежде чем движение наружу остановится, и движение внутрь возьмёт своё. Поэтому каждый последующий цикл должен длиться гораздо дольше предыдущего; но в ретроспективном взгляде это значит, что предшествовавшие циклы должны быть всё короче и короче. Математический анализ показывает, что постоянное укорачивание циклов ведёт к тому, что они не могут бесконечно уходить в прошлое. Даже в рамках циклической концепции Толмена Вселенная имела бы начало.

В гипотезе Толмена предполагалось, что Вселенная имеет сферическую форму, что, как мы видели, было опровергнуто наблюдениями. Но недавно в рамках представлений теории струн / M-теории был разработан совершенно новый вариант циклической космологии, включающий плоскую Вселенную. Идея исходит от Пола Стейнхардта и его коллеги Нила Тьюрока из Кембриджского университета (с существенным использованием результатов, полученных в сотрудничестве с Бертом Оврутом, Натаном Зайбергом и Джастином Хури); в ней предлагается новый механизм космической эволюции.{180} Коротко говоря, они предположили, что мы живём внутри 3-браны, которая каждый триллион лет со страшной силой соударяется с другой параллельной 3-браной, находящейся неподалёку. И «взрыв» от столкновения порождает новый космологический цикл.

Основная идея этого предположения проиллюстрирована на рис. 13.7; она была предложена на несколько лет раньше Хоравой и Виттеном в другом контексте, не связанном с космологией. Хорава и Виттен пытались завершить объединение всех пяти теорий струн и обнаружили, что если одно из семи дополнительных измерений M-теории имеет очень простую форму — не окружности, как на рис. 12.7, а отрезка прямой линии, как на рис. 13.7, — и ограничено так называемыми «концевыми бранами», прикреплёнными как книгодержатель или подставка для книги, тогда можно установить прямую связь между теорией E-гетеротических струн и прочими теориями струн. Детали вывода этой связи не очевидны, но и не существенны для нас (заинтересованный читатель может полистать главу 12 «Элегантной Вселенной»); нам важно лишь то, что эта исходная идея естественным образом следует из самой теории. Стейнхардт и Тьюрок приспособили её для космологии.

Рис. 13.7. Две 3-браны, разделённые малым расстоянием

Точнее говоря, Стейнхардт и Тьюрок представили, что каждая из бран на рис. 13.7 имеет три пространственных измерения, а соединяющие их отрезки прямых линий представляют четвёртое измерение. Остальные шесть измерений свёрнуты в пространства Калаби–Яу (не отображены на рисунке), имеющие такую форму, чтобы колебательные моды струн соответствовали известным элементарным частицам.{181} Вселенная, которую мы непосредственно осознаём, соответствует одной из этих 3-бран; если угодно, вы можете считать вторую 3-брану другой Вселенной, обитатели которой (если эту Вселенную вообще кто-либо населяет) ведают только о трёх пространственных измерениях, если их технологии не сильно превосходят наши. При таком устройстве другая 3-брана (другая Вселенная) находится прямо рядом с нами. Она парит не далее чем в миллиметре от нас (по четвёртому пространственному измерению, как на рис. 13.7), но из-за липкости нашей 3-браны и слабости испытываемой нами гравитации у нас нет никаких прямых свидетельств её существования, как и её гипотетические обитатели не подозревают о нашем существовании.

Однако согласно циклической космологической модели Стейнхардта и Тьюрока не всегда было или будет так, как представлено на рис. 13.7. В их модели две 3-браны притягиваются друг к другу (словно они соединены тончайшими резиновыми нитями), и это значит, что каждая из них определяет космологическую эволюцию другой: браны втянуты в нескончаемый цикл — столкновение, отскок, снова столкновение, — в котором вечно регенерируются расширяющиеся трёхмерные миры. Посмотрим на рис. 13.8, иллюстрирующий полный цикл.

Рис. 13.8. Различные стадии в циклической космологической модели мира на бране

На первой стадии две 3-браны только что столкнулись и теперь отскакивают друг от друга. Грандиозная энергия столкновения порождает значительную массу высокотемпературного излучения и материи на каждой из отскакивающих 3-бран, и (вот что самое главное) Стейнхардт и Тьюрок утверждают, что точные свойства этой материи и излучения имеют профиль, почти идентичный профилю, возникающему в инфляционной модели. Хотя ещё есть разногласия по этому вопросу, но Стейнхардт и Тьюрок твёрдо стоят на том, что столкновение между двумя 3-бранами приводит к физическим условиям, очень близким к тем, что возникают сразу после вспышки инфляционного расширения в более традиционном подходе, рассмотренном в главе 10. Поэтому не удивительно, что для гипотетического наблюдателя, находящегося в нашей 3-бране, следующие несколько стадий циклической космологической модели будут, по сути, такими же, как в стандартной модели, проиллюстрированной на рис. 9.2 (который теперь интерпретируется как эволюция одной из 3-бран). А именно, по мере своего отскока наша 3-брана расширяется и охлаждается, из первородной плазмы постепенно сгущаются космические структуры, такие как звёзды и галактики (вторая стадия). Затем, опираясь на недавние наблюдения за сверхновыми, обсуждавшиеся в главе 10, Стейнхардт и Турк подстроили свою модель так, что примерно за 7 млрд лет (третья стадия) энергия обычных материи и излучения становится достаточно «разреженной» из-за расширения браны, так что начинает преобладать тёмная энергия, которая посредством своего отрицательного давления приводит к эре ускоренного расширения. (Для этого требуется подбирать параметры модели, но, по мнению сторонников этой модели, такой произвол оправдан, поскольку позволяет добиться согласия с наблюдениями.) Спустя примерно 7 млрд лет на Земле появляются люди и начинают наблюдать ранние этапы фазы ускоренного расширения. Затем, за следующий примерно триллион лет, происходит не особенно много нового, помимо того что наша 3-брана продолжает своё ускоренное расширение. За этот период наше трёхмерное пространство растягивается настолько колоссально, что материя и излучение почти полностью «теряются» в пространстве, так что мир на бране выглядит почти совершенно пустым и почти полностью однородным (четвёртая стадия).

К этому моменту наша 3-брана завершает свой отскок и начинает снова приближаться ко второй 3-бране. По мере приближения к следующему столкновению квантовые флуктуации струн, прикреплённых к нашей бране, наполняют её однородную пустоту мельчайшей рябью (пятая стадия). Эти флуктуации продолжают расти, по мере того как наша брана набирает скорость; затем происходит катаклизм, когда наша брана ударяется о вторую 3-брану, затем она отскакивает, и цикл возобновляется. Квантовые флуктуации отпечатывают крохотные неоднородности на излучении и материи, возникающие в ходе столкновения, и, во многом подобно инфляционному сценарию, эти отклонения от совершенной однородности перерастают в сгущения материи, которые в конечном счёте образуют звёзды и галактики.

Таковы основные стадии циклической модели (её также ласково называют большим шлепком). Её основные идеи — сталкивающиеся миры на бранах — резко отличаются от основ инфляционной теории, но тем не менее в этих двух моделях есть общие важные положения. В обеих теориях считается, что изначальная неоднородность создаётся квантовыми возмущениями. В действительности, Стейнхардт и Тьюрок утверждают, что уравнения, описывающие квантовую рябь в циклической модели, почти идентичны уравнениям инфляционной теории, так что и неоднородности, предсказываемые двумя этими теориями, тоже почти идентичны.{182} Более того, хотя в циклической модели нет стремительного инфляционного расширения, но его заменяет период в триллион лет (начиная с третьей стадии) более мягкого ускоренного расширения. Это всего лишь вопрос постановки вопроса; на то, что в инфляционной модели достигается за мгновение ока, в циклической модели уходит почти вечность. Поскольку в циклической модели столкновение не знаменует начало Вселенной, то можно неторопливо решить космологические проблемы (такие как проблема плоского пространства и проблема горизонта) за последние триллионы лет каждого предыдущего цикла. Эры мягкого, но постоянно ускоренного расширения в конце каждого цикла растягивают 3-брану, делая её плоской и вполне однородной, за исключением мельчайших, но важных квантовых флуктуаций. Так что долгая финальная стадия каждого цикла, за которой следует шлепок в начале следующего цикла, даёт среду, очень близкую к той, что возникает за кратчайший период расширения в инфляционной модели.

Беглая оценка

В настоящий момент как инфляционная, так и циклическая модели представляют собой глубокие космологические разработки, но ни одна из них не является законченной теорией. Незнание преобладающих условий в самые ранние моменты возникновения Вселенной вынуждает сторонников инфляционной космологии просто предположить, без теоретического обоснования, что в то время возникли условия, требующиеся для инфляции. Если они действительно возникали, то инфляционная теория решает многочисленные космологические загадки и объясняет стрелу времени. Но её успех в первую очередь зависит от того, что действительно происходило. Более того, инфляционная космология не была согласована с теорией струн и поэтому не разделяет успех теории струн в деле объединения квантовой механики и общей теории относительности.

В циклической модели есть свои недостатки. Как и в случае с моделью Толмена, соображения, связанные с накоплением энтропии (а также квантово-механические соображения{183}), показывают, что циклы не могли идти вечно. Циклы должны были когда-то начаться в прошлом, и поэтому, как и в инфляционной модели, нужно объяснить, как всё началось. С этой оговоркой циклическая теория, подобно инфляционной теории, решает основные космологические проблемы и устанавливает стрелу времени, указывающую направление от низкоэнтропийного шлепка через последующие стадии (рис. 13.8). Однако согласно современным представлениям циклическая модель никак не объясняет, каким образом или почему Вселенная оказалась в должной конфигурации, отражённой на рис. 13.8. Например, почему шесть пространственных измерений свернулись в требуемое многообразие Калаби–Яу, тогда как одно из дополнительных измерений послушно приняло форму пространственного сегмента, разделяющего две 3-браны? Как так вышло, что две 3-браны так совершенно выровнялись по отношению друг к другу и притягиваются как раз с нужной силой, требующейся для того, чтобы все стадии на рис. 13.8 шли так, как мы их описали? И, прежде всего, что в действительности происходит, когда две 3-браны сталкиваются в версии циклической модели взрыва?

Что касается последнего вопроса, то есть надежда, что шлепок циклической модели менее проблематичен, чем сингулярность в нулевое время, возникающая в инфляционной космологии. В рамках циклического подхода бесконечно сжимается не всё пространство, а только одно измерение между бранами; в ходе каждого цикла сами браны испытывают не сжатие, а расширение. И это, согласно Стейнхардту, Тьюроку и их сотрудникам, подразумевает конечную температуру и конечную плотность на самих бранах. Но это лишь очень предварительный вывод, поскольку пока что никому не удалось как следует выписать уравнения и вычислить, что происходит, когда сталкиваются браны. В действительности, предварительный анализ указывает на то, что в момент шлепка возникает та же проблема, что и в нулевой момент времени в инфляционной теории: известная математика перестаёт работать. Таким образом, в космологии всё ещё остаётся проблема сингулярного начала — будь это «настоящее» начало Вселенной или начало нашего текущего цикла.

Наиболее впечатляет то, как циклическая модель включает в себя тёмную энергию и наблюдаемое ускоренное расширение. Открытие в 1998 г. ускоренного расширения Вселенной явилось немалым сюрпризом для большинства физиков и астрономов. Ускоренное расширение можно включить в картину, рисуемую инфляционной космологией, если предположить, что Вселенная содержит нужное количество тёмной энергии, но это предположение выглядит неуклюжим придатком. В циклической же модели тёмная энергия естественно играет центральную роль. Триллионолетний период плавного, но неизменно ускоренного расширения необходим для «расчистки сцены», для крайнего «разжижения» наблюдаемой Вселенной и создания условий для начала следующего цикла. Как инфляционная, так и циклическая модели опираются на ускоренное расширение (в инфляционной модели ускоренное расширение нужно в начальный момент Вселенной, а в циклической модели — в конце каждого цикла), но только в циклической модели ускоренное расширение подтверждается прямыми наблюдениями. (Напомним, что согласно циклической модели мы только вошли в стадию ускоренного расширения, и такое расширения было недавно обнаружено.)

Это несомненный плюс в копилку циклической модели, но это также означает, что если в будущих наблюдениях ускоренное расширение не будет подтверждено, то инфляционная модель ещё сможет пережить это (хотя снова возникнет загадка нехватки 70% энергии в «бюджете» Вселенной), но циклическая модель станет непригодной.

Новый взгляд на пространство и время

Как сам сценарий мира на бране, так и родившаяся из него космологическая модель в высшей степени гипотетичны. Я рассказал о них не столько из-за того, что уверен в их справедливости, сколько из-за того, что хотел проиллюстрировать совершенно новые подходы к осмыслению населяемого нами пространства и его эволюции — подходы, возникшие из теории струн / M-теории. Если мы живём внутри 3-браны, то сакраментальный вопрос о материальности трёхмерного пространства получит самый определённый ответ: поскольку пространство окажется браной, то, несомненно, оно есть «нечто». И в нём не будет ничего особенного, поскольку может быть множество других бран, причём разных размерностей, дрейфующих в пространстве более высокой размерности, задаваемой теорией струн / M-теории. И если космологическая эволюция нашей 3-браны направляется повторяющимися соударениями с близлежащей браной, то время, каким мы его знаем, будет охватывать лишь один из множества циклов Вселенной, от одного «шлепка» до другого.

Такой взгляд кажется мне одновременно волнующим и смиренным. Пространство и время могут таить в себе гораздо большее, чем мы думали; в таким случае то, что мы считали «всем», может обернуться лишь малой составляющей гораздо более богатой реальности.

Часть V. Реальность и вооб