Том 1. Механика, излучение и теплота — страница 32 из 54

§ 1. Результирующее поле n одинаковых осцилляторов

Настоящая глава — непосредственное продолжение предыдущей, хотя название «Интерференция» здесь заменено словом «Дифракция». До сих пор никому не удалось удовлетворительным образом определить разницу между дифракцией и интерференцией. Дело здесь только в привычке, а существенного физического различия между этими явлениями нет. Единственное, что можно сказать по этому поводу,— это следующее: когда источников мало, например два, то результат их совместного действия обычно называют интерференцией, а если источников много, то чаще говорят о дифракции. Поэтому мы не будем утруждать себя вопросом — интерференция это или дифракция, а просто продолжим наше обсуждение с того места, где мы остановились в предыдущей главе.

Обсудим теперь случай, когда имеется n осцилляторов, расположенных на равных расстояниях один от другого и обладающих равными амплитудами, но разными фазами создаваемых ими полей. Разность фаз создается либо из-за выбора определенных фазовых сдвигов колебаний осцилляторов, либо потому, что мы находимся под углом к осцилляторам и возникает разность хода лучей. Независимо от причины возникновения разности фаз необходимо вычислить сумму такого вида:

где φ — разность фаз соседних осцилляторов для некоторого направления лучей. В данном частном случае φ=α+2πd1/λsinθ. Вычислим сумму R. Для этого воспользуемся геометрическим способом сложения. Длина первого слагаемого А, а его фаза равна нулю; длина второго также А, а фаза его равна φ. Следующее слагаемое имеет снова длину А и фазу, равную 2φ, и т. д. В конце концов получается часть правильного многоугольника с n сторонами (фиг. 30.1).

Фиг. 30.1. Результирующая амплитуда шести аквидистантных источников при разности фаз φ между каждыми двумя соседними источниками.


Вершины многоугольника лежат, конечно, на окружности, и чтобы легче было определить результирующую амплитуду, найдем радиус этой окружности. Пусть Q есть ее центр. Тогда угол OQS равен как раз фазе φ (поскольку радиус QS образует с А2 такой же угол, как QO с A1). Следовательно, радиус r должен удовлетворять равенству А=2rsinφ/2, откуда мы и находим величину r. Далее, большой угол OQT равен nφ; следовательно, AR=2rsinnφ/2. Исключая из обоих равенств r, получаем

(30.2)

Таким образом, суммарная интенсивность оказывается равной

(30.3)

Проанализируем это выражение и обсудим вытекающие из него следствия. Прежде всего, положив n=1, получим, как и следовало ожидать, I=I0. Проверим формулу для n=2: с помощью соотношения sinφ=2sin φ/2cosφ/2 сразу находим АR=2Acosφ/2, что совпадает с (29.12).

Мы вынуждены рассматривать сложение полей от многих источников потому, что в этом случае интенсивность в одном направлении получается много больше, чем в соседних, т. е. все побочные максимумы интенсивности оказываются гораздо меньше основного. Чтобы понять этот факт, начертим кривую соответствующую выражению (30.3) для больших n и φ, близких к нулю. Прежде всего, когда φ точно равно нулю, мы получаем отношение 0/0, но фактически для бесконечно малых φ отношение синусов равно n2, так как синус можно заменить его аргументом. Таким образом, максимум кривой в n2 раз больше интенсивности одного осциллятора. Этот результат легко понять, поскольку при нулевой разности фаз все n маленьких векторов складываются в один вектор, в n раз больший исходного, а интенсивность увеличивается в n2 раз.

С ростом фазы φ отношение двух синусов падает и обращается в нуль в первый раз при nφ/2=π, поскольку sinπ=0. Другими словами, значение φ=2π/n отвечает первому минимуму кривой (фиг. 30.2). С точки зрения векторов на фиг. 30.1 первый минимум возникает в том случае, когда стрелки векторов возвращаются в исходную точку, при этом полная разность фаз от первого до последнего осциллятора равна 2π.

Перейдем к следующему максимуму и покажем, что он действительно, как мы и ждали, много меньше первого. Для точного определения положения максимума необходимо учитывать, что и числитель, и знаменатель в (30.3) оба меняются с изменением φ. Мы не станем этого делать, поскольку при большом n sinφ/2 меняется медленнее sinφ/2 и условие sinφ/2=1 дает положение максимума с большой точностью. Максимум sin2nφ/2 достигается при nφ/2=Зπ/2 или φ=Зπ/n. Это означает, что стрелки векторов описывают полторы окружности.

Подставляя φ=3π/n, получаем sin23π/2=1 в числителе (30.3) (с этой целью и был выбран угол φ) и sin23n/2n в знаменателе. Для достаточно большого n можно заменить синус его аргументом: sin 3π/2n=3π/2n. Отсюда интенсивность во втором максимуме оказывается равной I=I0(4n2/9π2). Но n2I0 — не что иное, как интенсивность в первом максимуме, т. е. интенсивность второго максимума получается равной 4/9π2от максимальной, что составляет 0,047, или меньше 5%! Остальные максимумы, очевидно, будут еще меньше. Таким образом, возникает очень узкий основной максимум и очень слабые дополнительные максимумы по обе стороны от основного.

Можно показать, что площадь под кривой интенсивности, включая все максимумы, равна 2πnI0 и в два раза превышает площадь пунктирного прямоугольника на фиг. 30.2.

Фиг. 30.2. Зависимость интенсивности от фазового угла для большого числа осцилляторов с одинаковыми амплитудами.


Посмотрим теперь, что дает формула (30.3) в приложении к разным случаям. Пусть источники расположены на одной линии, как показано на фиг. 30.3.

Фиг. 30.3. Устройство из n одинаковых осцилляторов, расположенных на линии. Фаза колебания s-го осциллятора равна as=sa.


Всего имеется n источников на расстоянии d друг от друга, и сдвиг фазы между соседними источниками выбран равным α. Тогда для лучей, распространяющихся в заданном направлении θ, отсчитываемом от нормали, вследствие разности хода лучей от двух соседних источников возникает дополнительный сдвиг фазы 2πd(1/λ)sinθ. Таким образом,

(30.4)

Рассмотрим сначала случай α=0. Все осцилляторы колеблются с одной фазой; требуется найти интенсивность их излучения как функцию угла θ. Подставим с этой целью φ=kdsinθ в формулу (30.3) и посмотрим, что получится в результате. Прежде всего при φ=0 возникает максимум. Значит, осцилляторы, колеблющиеся с одной фазой, дают мощное излучение в направлении θ=0. Интересно узнать, где находится первый минимум.

Он возникает при φ=2π/n; другими словами, первый минимум кривой интенсивности определяется из соотношения (2πd/λ)sinθ=2π/n. Сокращая на 2π, получаем

(30.5)

Теперь разберем с физической точки зрения, почему минимум возникает именно в этом месте. В этом выражении nd есть полная длина L нашей системы осцилляторов. Обращаясь к фиг. 30.3, мы видим, что ndsinθ=Lsinθ=Δ. Формула (30.5) подсказывает нам, что минимум возникает при Δ, равном одной длине волны. Но почему минимум получается при Δ=λ? Дело в том, что поля от отдельных осцилляторов равномерно распределены по фазе от 0 до 360°. Стрелки (см. фиг. 30.1) описывают полную окружность; мы складываем равные векторы, имеющие произвольные направления, а в этом случае сумма равна нулю. Вот при таких значениях угла, когда Δ=λ, возникает минимум. Это и есть первый минимум.

Формула (30.3) имеет еще одну важную особенность: при увеличении угла φ на число, кратное 2π, значение интенсивности не меняется. Поэтому для φ=2π, 4π, 6π и т. д. также возникают резкие и высокие максимумы. Вблизи этих максимумов интенсивность повторяет свой ход (см. фиг. 30.2). Зададимся вопросом, в силу каких геометрических соотношений возникают другие максимумы? Условие появления максимума записывается в виде φ=2πm, где m — любое целое число. Отсюда получаем (2πd/λ)sinθ=2πm. Сокращая на 2π, получаем

(30.6)

Это соотношение очень похоже на формулу (30.5). Однако там было ndsinθ=λ. Разница в том, что здесь нужно взять каждый отдельный источник и выяснить, что для него означает условие dsinθ=mλ; угол θ здесь таков, что разность хода δ=mλ. Другими словами, волны, идущие от источников, различаются по фазе на величину, кратную 360°, и, следовательно, все находятся в фазе. Поэтому при сложении волн возникает столь же высокий максимум, как и в рассмотренном ранее случае m=0. Побочные максимумы и весь ход интенсивности здесь такие же, как в случае φ=0. Таким образом, наша система посылает пучки лучей в разных направлениях, причем каждый пучок имеет высокий центральный максимум и ряд слабых боковых. Главные (центральные) максимумы в зависимости от величины m называются максимумами нулевого, первого и т. д. порядков; m называют порядком максимума.

Обратите внимание на такой факт: если d меньше λ, то формула (30.6) имеет единственное решение при m=0. Поэтому для малого расстояния между источниками возникает один-единственный пучок, сконцентрированный около θ=0. (Разумеется, есть еще пучок в обратном направлении.) Чтобы получить максимумы других порядков, расстояние d должно быть больше одной длины волны.

§ 2. Дифракционная решетка

На практике равенство фаз осцилляторов или антенн достигается с помощью проводов и всяких специальных устройств. Возникает вопрос, можно ли и как создать подобную систему для света. Сейчас мы еще не умеем делать маленькие радиостанции оптической частоты в буквальном смысле слова, соединять их крохотными проволочками и устанавливать для всех них одинаковые фазы. Однако есть другой очень простой способ, позволяющий добиться этой цели.

Предположим, у нас имеется большое количество параллельных проводов, отстоящих друг от друга на расстоянии d, и источник радиоволн, расположенный очень далеко, практически на бесконечности. Этот источник создает электрическое поле у каждой из проволочек с одной и той же фазой. (Можно взять и объемную систему проводов, но мы ограничимся плоской системой.) Тогда внешнее электрическое поле будет двигать электроны взад и вперед в каждой проволочке, в результате они становятся новыми излучателями. Такое явление называется рассеянием: свет от некоторого источника вызывает движение электронов в среде, а оно в свою очередь генерирует собственные волны. Поэтому достаточно взять ряд проволок на равном расстоянии друг от друга, подействовать на них радиоволнами от удаленного источника, и получается нужная нам система без всяких специальных контуров и т. п. Если лучи падают по нормали к плоскости проводов, фазы колебаний будут одинаковыми и возникнет та картина, о которой говорилось выше. Так, при расстоянии между проволочками, превышающем длину волны, максимальная интенсивность рассеяния получается в направлении нормали и в других направлениях, определяемых формулой (30.6.).

Точно такое же устройство годится и для света! Только вместо проволок берут стеклянную пластинку и наносят на нее ряд штрихов так, чтобы каждый из них рассеивал свет иначе, чем остальная поверхность пластинки. Если затем направить на пластинку пучок света, то каждый штрих станет источником, а если расстояние между штрихами будет достаточно мало, но не меньше одной длины волны (практически таких малых расстояний все равно невозможно добиться), возникает удивительное явление: лучи идут через пластинку не только по прямой, но и под конечным углом к нормали, зависящим от расстояния между штрихами! Устройства такого типа действительно существуют и широко используются, их называют дифракционными решетками.

Одна из разновидностей дифракционных решеток представляет собой обычную стеклянную пластинку, прозрачную и бесцветную, с нацарапанными на ней штрихами. Число штрихов на 1 мм зачастую достигает нескольких сотен, а расстояние между ними выдерживается с большой точностью. Действие такой решетки можно наблюдать, посылая сквозь нее с помощью проектора узкую вертикальную полоску света (изображение щели) на экран. Помещая решетку на пути света так, чтобы штрихи были расположены вертикально, мы увидим на экране ту же самую полоску света, но по сторонам от нее, кроме того, будут и другие полосы, окрашенные в разные цвета. Разумеется, мы получили не что иное, как уширенное изображение щели; угол θ в (30.6) зависит от λ, и разная окраска света, как мы знаем, соответствует разным частотам и разным длинам волн. Самой большой видимой длиной волны обладает красный свет; в силу условия dsinθ=λ ему соответствует наибольшее θ. И мы действительно обнаруживаем, что на экране красная полоса лежит дальше всех от центра изображения! С другой стороны должна быть такая же полоса; и в самом деле, мы видим на экране вторую полосу. Выражение (30.6) имеет еще одно решение с m=2. На соответствующем ему месте на экране видно какое-то расплывчатое слабое пятно, а дальше в сторону чуть заметен еще целый ряд слабых полосок.

Только что мы сказали, что максимумы всех порядков должны иметь одинаковую интенсивность, а у нас интенсивность получается разная, и, более того, правый и левый максимумы первого порядка отличаются по своей яркости! Причина здесь кроется в том, что решетки изготовляются особым способом, чтобы как раз и получался подобный эффект. Как это делается? Если бы дифракционные решетки имели бесконечно тонкие штрихи, расположенные на строго равном расстоянии друг от друга, то интенсивности максимумов всех порядков были бы одинаковы. Но фактически, хотя мы пока разобрали только простейший случай, мы могли бы также взять систему, состоящую из пар антенн, причем в каждой паре установили бы определенную разность фаз и интенсивности. Тогда можно было бы получить разную интенсивность у максимумов разных порядков. На дифракционную решетку часто наносят не ровные, а пилообразные штрихи. Специально подбирая форму «зубцов», можно увеличить интенсивность спектра данного порядка по отношению к остальным. В практической работе с решетками желательно иметь максимальную яркость в одном из порядков. Мы отложим пока весьма сложное объяснение этих фактов, скажем только, что такие решетки оказываются гораздо более полезными в применениях.

До сих пор мы рассматривали случай, когда фазы всех источников равны. Однако полученная нами формула (30.3) годится также и тогда, когда сдвиг фаз φ каждого источника по сравнению с предыдущим постоянен и равен α. Это означает, что антенны должны быть соединены по схеме, обеспечивающей небольшой сдвиг фазы между ними. Можно ли создать подобное устройство для света? Да, и очень просто. Пусть источник света находится на бесконечности и свет падает на решетку под некоторым углом, равным θвх (фиг. 30.4); рассмотрим рассеянный пучок света, выходящий под углом θвыхвых — это наш старый угол θ, а θвх нужен для создания разности фаз у источников).

Фиг. 30.4. Разность хода двух лучей, отраженных соседними линиями решетки, равна dsinθвых— dsinθвх.


Пучок света от бесконечно удаленного источника падает сначала на первый штрих, затем на второй и т. д., сдвиг фазы света, попадающего на два соседних штриха, есть α=- dsinθвх/λ. Отсюда получаем формулу для дифракции света, падающего на решетку под некоторым углом:

(30.7)

Попытаемся найти направление максимальной интенсивности в этом случае. Условие возникновения максимума по-прежнему состоит в том, что φ должно быть числом, кратным 2π. Здесь следует отметить несколько интересных моментов.

Прежде всего, рассмотрим весьма интересный случай, соответствующий m=0; когда d меньше λ, тогда m=0 и других решений не возникает. Тогда получаем sinθвх=sinθвых, т. е. рассеянный луч выходит в том же направлении, что и первоначальный луч, падающий на дифракционную решетку. Но не следует думать, что свет просто «проходит насквозь». Мы ведь говорим о других лучах. Свет, проходящий насквозь, идет от первоначального источника, а мы имеем в виду свет, возникающий при рассеянии. Получается так, что рассеянный пучок света идет в том же направлении, что и первоначальный; более того, оба пучка могут интерферировать друг с другом, о чем мы расскажем в последующих главах.

В нашем случае имеется еще одно возможное решение. При заданном θвх угол θвых может быть равен дополнительному к θвх углу (π-θвх). Таким образом, кроме луча в направлении падающего пучка света, возникает еще один луч. Легко заметить, что его направление подчиняется правилу: угол падения равен углу рассеяния. Этот луч мы назовем отраженным.

Так мы подходим к пониманию основного механизма процесса отражения: падающий свет возбуждает движение атомов отражающего тела, а оно в свою очередь генерирует новую волну, и одно из направлений рассеянной волны (единственное для расстояния между рассеивателями, малого по сравнению с длиной волны) таково, что угол падения луча света равен углу, под которым выходит отраженный луч!

Перейдем теперь к особому случаю, когда d→0. Имеется, скажем, плотное тело конечных размеров. Потребуем еще, чтобы разность фаз между соседними рассеивателями стремилась к нулю. Иначе говоря, будем ставить все новые и новые антенны в промежутках между прежними, так что разности фаз будут становиться все меньше по мере уменьшения расстояния до соседних антенн, но общее число антенн пусть растет так, что полная разность фаз между первой и последней антенной остается постоянной. Посмотрим, как видоизменится формула (30.3), если полная разность фаз nφ остается постоянной (пусть nφ=Ф), а число n и фаза φ стремятся соответственно к бесконечности и нулю. Теперь значение φ так мало, что sinφ=φ, и если учесть также, что n2I0 есть интенсивность в центре максимума Im, то мы получим

(30.8)

На фиг. 30.2 показан ход этой предельной зависимости.

В данном случае дифракционная картина в общих чертах получается такой же, как и для конечного промежутка d>λ, те же боковые максимумы, нет только максимумов высших порядков. Когда все рассеиватели находятся в фазе, возникает максимум в направлении θвых=0 и минимум при Δ=λ, в точности как для конечных d и n. Таким образом, оказывается возможным рассмотреть непрерывное распределение рассеивателей или осцилляторов, используя интегралы вместо сумм.

Для примера возьмем длинную линию, составленную из осцилляторов, которые колеблются вдоль нее (фиг. 30.5).

Фиг. 30.5. Распределение интенсивности излучения непрерывной линии осцилляторов имеет высокий центральный максимум и многочисленные слабые боковые максимумы.


Такое устройство дает максимальную интенсивность в направлении, перпендикулярном нити. Кверху и книзу от экваториальной плоскости имеется небольшая интенсивность, но она очень мала. Пользуясь этим результатом, перейдем к более сложному устройству. Предположим, у нас имеется целый набор нитей, каждая из которых излучает в экваториальной плоскости. Если мы находимся в центральной плоскости, перпендикулярной всем проволокам, интенсивность излучения набора длинных линий в разных направлениях определяется так же, как и в случае бесконечно коротких линий,— нужно сложить вклады от всех длинных проволок. Вот почему вместо крошечных решеток — антенн, которые мы рассматривали, можно было бы использовать решетки с длинными и узкими щелями. Каждая из длинных щелей излучает в своем собственном направлении не вверх и не вниз, а только перпендикулярно щели, и, поставив их рядом друг с другом в горизонтальной плоскости, мы получим интерференцию.

Таким образом, можно создать еще более сложные устройства, размещая рассеиватели по линии, в плоскости или в пространстве. Сначала мы располагали рассеиватели на линии, а затем проанализировали случай, когда они заполняют полосу; для получения ответа каждый раз нужно было просуммировать вклады отдельных рассеивателей. Последний принцип справедлив во всех случаях.

§ 3. Разрешающая способность дифракционной решетки

Теперь мы способны понять еще ряд интересных явлений. Например, попробуем использовать решетку для определения длины волны света. На экране изображение щели развертывается в целый спектр линий, поэтому с помощью дифракционной решетки можно разделить свет по составляющим его длинам волн.

Возникает интересный вопрос: предположим, что имеются два источника с несколько разными частотами излучения или несколько разными длинами волн; насколько близкими должны быть эти частоты, чтобы по дифракционной картине нельзя было отделить одну частоту от другой? Красные и синие линии четко различаются. А вот если один луч красный, а другой чуть-чуть покраснее, самую малость. Насколько близки они должны быть? Ответ дается величиной, которая называется разрешающей способностью решетки. Ниже мы используем один из способов ее определения.

Предположим, что удалось найти дифракционный максимум для лучей определенного цвета, расположенный под некоторым углом. Если мы изменим длину волны, то и значение фазы (2πdsinθ)/λ будет иным и максимум, разумеется, возникнет при каком-то другом угле. Именно поэтому красные и синие полосы на экране разделяются. Насколько должны отличаться углы, чтобы мы смогли различить два разных максимума? Если верхушки максимумов совпадают, мы, конечно, не сможем различить их один от другого. Если же максимумы достаточно далеки друг от друга, то на картине распределения света возникают два горба.

Чтобы заметить, когда начинает вырисовываться двойной горб, лучше всего воспользоваться простым правилом, называемым обычно правилом (или критерием) Рэлея (фиг. 30.6).

Фиг. 30.6. Иллюстрация критерия Рэлея. Максимум одного распределения совпадает с минимумом другого.


По этому правилу первый минимум на дифракционной картине для одной длины волны должен совпадать с максимумом для другой длины волны. Теперь уже нетрудно вычислить разность длин волн, когда один минимум в точности «садится» на максимум другого пучка. Лучше всего для этого воспользоваться геометрическим способом.

Чтобы возник максимум при длине волны λ', расстояние Δ (см. фиг. 30.3) должно быть равно nλ', а чтобы возник максимум порядка m, расстояние Δ должно быть равно mnλ'. Другими словами, (2πd/λ'), sinθ=2πm и ndsinθ, равное Δ, естьλ', умноженная на mn, или соответственно mnλ'. Если мы хотим, чтобы под тем же углом для другого луча с длиной волны λ, появился минимум, расстояние Δ должно превышать mnλ ровно на одну длину волны λ, т. е. Δ=mnλ+λ=mnλ'. Отсюда, полагая λ'=λ+δλ, получаем

(30.9)

Отношение λ/δλ называется разрешающей способностью дифракционной решетки; она равна, как видно из формулы, полному числу линий в решетке, умноженному на порядок максимума луча. Легко убедиться, что эта формула эквивалентна следующему утверждению: разность частот должна быть равна обратной величине разности времен прохождения для самых крайних интерферирующих лучей[21]

Полезно запомнить именно эту общую формулу, потому что она применима не только для решеток, но и для любых устройств, тогда как вывод формулы (30.9) связан со свойствами дифракционных решеток.

§ 4. Параболическая антенна

Рассмотрим теперь еще один вопрос, связанный с разрешающей способностью. Речь идет об антеннах радиотелескопов, использующихся для определения положения источников радиоволн на небе и их угловых размеров. Если бы мы взяли нашу старую антенну и с ее помощью приняли сигналы, то, конечно, не могли бы сказать, откуда они пришли. А знать, где находится источник, очень важно. Можно, конечно, покрыть всю Австралию проводами-диполями, расположенными на равном расстоянии друг от друга. Затем подсоединить все диполи к одному приемнику так, чтобы уравнять запаздывание сигналов в соединительных проводах. Тогда сигналы от всех диполей придут к приемнику с одной фазой. Что в результате получится? Если источник расположен достаточно далеко и прямо над нашей системой, то сигналы от всех антенн придут к приемнику в фазе.

Но предположим, что источник расположен под небольшим углом θ к вертикали. Тогда сигналы, принятые различными антеннами, будут немного сдвинуты по фазе. В приемнике все эти сигналы с разными фазами складываются, и мы ничего не получим, если только угол θ достаточно велик. Но как велик должен быть этот угол? Ответ: мы получим нуль, если угол Δ/L=θ (см. фиг. 30.3) соответствует сдвигу фаз в 360°, т. е. если Δ равно длине волны λ.

Этот результат легко понять, если учесть, что векторы, соответствующие сигналам от разных антенн, образуют замкнутый многоугольник и их сумма тогда обращается в нуль. Наименьший угол, который антенное устройство длиной L еще может разрешить, есть θ=λ/L. Заметим, что кривая чувствительности антенны при приеме имеет точно такой же вид, как и распределение интенсивности, даваемое антеннами-передатчиками. Здесь проявляется так называемый принцип обратимости. Согласно этому принципу, для любых антенных устройств, при любых углах и т. п. справедливо правило: относительная чувствительность в разных направлениях совпадает с относительной интенсивностью для тех же направлений, если заменить приемник передатчиком.

Бывают антенные устройства и другого типа. Вместо того чтобы выстраивать целую систему диполей с кучей соединительных проводов между ними, можно расположить их по кривой, а приемник поставить в такую точку, где он мог бы фиксировать отраженные сигналы. Кривая выбирается с таким хитрым расчетом, чтобы все лучи от далекого источника после рассеяния доходили к приемнику за одно и то же время (см. фиг. 26.12). Значит, кривая должна быть параболой; тогда если источник находится на ее оси, то в фокусе возникает большая интенсивность рассеянного излучения. Легко найти разрешающую способность такого устройства. Расположение антенн по параболе здесь несущественно. Параболическая форма выбрана просто для удобства, она позволяет собирать все сигналы за одинаковое время и притом без проводов. Минимальный угол разрешения такого устройства по-прежнему равен θ=λ/L, где L — расстояние между крайними антеннами. Этот угол не зависит от промежутка между соседними антеннами, они могут быть размещены очень близко одна от другой, фактически вместо системы антенн можно даже взять сплошной кусок металла. В принципе это то же самое, что и зеркало телескопа. Итак, мы нашли разрешающую способность телескопа! (Иногда разрешающую способность пишут в виде θ=1,22 λ/L, где L — диаметр телескопа. Множитель 1,22 появляется по следующей причине: при выводе формулы θ=λ/L интенсивность всех диполей считалась одинаковой независимо от их положения, но, поскольку телескопы обычно делают круглыми, а не квадратными, интенсивность сигналов от краев меньше, чем от середины; в отличие от случая квадратного сечения края дают относительно малый вклад. Следовательно, эффективный диаметр короче истинного, что и учитывается множителем 1,22. На самом же деле такая точность в формуле для разрешающей способности кажется слишком педантичной[22].)

§ 5, Окрашенные пленки; кристаллы

Выше были рассмотрены некоторые эффекты, возникающие при интерференции нескольких волн. Но можно привести ряд других примеров, основной механизм которых слишком сложен, чтобы говорить о нем в данный момент (мы обсудим его впоследствии), а пока разберем возникающие в этих примерах интерференционные явления.

Например, когда свет падает на поверхность среды с показателем преломления n по нормали к поверхности, то часть света отражается. Причину отражения сейчас нам было бы трудно понять; мы поговорим о ней позже. Сейчас же предположим, что факт отражения света при входе и выходе света из преломляющей среды нам уже известен. Тогда при отражении света от тонкой пленки возникнет совокупность двух волн, отраженных от передней и задней поверхностей пленки; при достаточно малой толщине пленки эти волны будут интерферировать, усиливая или ослабляя друг друга в зависимости от знака разности фаз. Например, может случиться, что красный свет будет отражаться с усилением, а синий свет, который имеет другую длину волны,—с ослаблением, так что отраженный луч будет иметь яркую красную окраску. Если мы изменим толщину пленки и будем наблюдать отражение, скажем, в тех местах, где пленка потолще, то сможем увидеть обратную картину, т. е. красные волны будут ослабляться, а синие нет, и пленка будет казаться синей, или зеленой, или желтой, в общем любого цвета. Таким образом, мы видим тонкую пленку окрашенной, а если будем смотреть на нее под другим углом, то расцветка будет иной, так как время прохождения света через пленку меняется с изменением угла зрения. Так становится понятной причина возникновения сложной цветовой гаммы на пленках нефти, мыльных пузырях и во многих других подобных случаях. Сущность явления всюду одна — сложение волн с разными фазами.

Отметим еще одно важное применение дифракции. Возьмем дифракционную решетку и спроектируем ее изображение на экран. Для монохроматического света в определенных местах экрана возникнут максимумы — основные и более высоких порядков. По расположению максимумов и длине волны можно найти расстояние между линиями решетки. А по отношению интенсивностей различных максимумов можно найти форму штрихов решетки и различить пиловидную, прямолинейную и разные другие формы, даже не глядя на решетку. Этот принцип служит для определения положения атомов в кристалле. Единственная сложность состоит в том, что кристалл трехмерен; он представляет собой периодическую трехмерную решетку, составленную из атомов. Мы не можем использовать здесь видимый свет, потому что длина волны источника должна быть меньше расстояния между атомами, иначе никакого эффекта не будет; следовательно, нужно взять излучение с очень малыми длинами волн, т. е. рентгеновские лучи. Итак, освещая кристалл рентгеновскими лучами и найдя интенсивности максимумов разного порядка, можно определить расположение атомов в кристалле, даже не имея возможности увидеть все это собственными глазами! Именно таким путем было найдено расположение атомов в разных веществах. В гл. 1 мы привели несколько схем, показывающих размещение атомов в кристалле соли и ряде других веществ. Мы еще вернемся к этому вопросу в дальнейшем и обсудим его подробно, а пока не будем заниматься этой интереснейшей проблемой.

§ 6. Дифракция на непрозрачном экране

Рассмотрим сейчас весьма интересное явление. Пусть имеется непрозрачный лист с отверстиями, и по одну сторону от него расположен источник света. Нас интересует, какое изображение возникнет на экране по другую сторону листа. Каждый скажет, что свет пройдет через отверстия и создаст на экране какое-то изображение. Оказывается, что это изображение можно получить с хорошей степенью точности, если предположить, что источники света равномерно распределены по ширине отверстий, а фазы источников точно такие, как если бы непрозрачного листа вовсе не было. Источников в отверстиях на самом деле, конечно, нет; во всяком случае, это как раз то место, где их наверняка не может быть. Тем не менее правильная дифракционная картина получается, если считать, что источники расположены именно в отверстиях; факт довольно странный. Позже мы объясним, почему такое предположение правильно, а пока примем его на веру.

В теории дифракции есть один род дифракционных явлений, который стоит кратко обсудить. Речь идет о дифракции на непрозрачных экранах. Обычно в элементарных курсах о них говорят гораздо позже, так как для их объяснения нужно использовать довольно сложные формулы суммирования малых векторов. В остальном эти явления не отличаются от уже рассмотренных нами. Все интерференционные явления по существу одинаковы; в них не входят сколько-нибудь сложные понятия, только условия возникновения могут быть более сложными, и тогда векторы поля труднее складывать, вот и все.

Предположим, что свет приходит из бесконечности, попадает на предмет и отбрасывает от него тень. На фиг. 30.7 изображен экран, на который свет отбрасывает тень от предмета АВ, причем источник света удален на расстояние, много большее длины волны.

Фиг. 30.7. Далекий источник отбрасывает тень от непрозрачного предмета на экран.


Казалось бы, вне тени интенсивность света максимальна, а внутри должна быть полная темнота. На самом же деле, если откладывать интенсивность как функцию расстояния до края тени, интенсивность будет сначала расти, а затем начнет спадать, колеблясь самым прихотливым образом вблизи края тени (фиг. 30.9). Посмотрим, отчего это происходит. Для объяснения воспользуемся недоказанной нами теоремой, что вместо истинной картины опыта можно ввести эффективные источники, равномерно распределенные вне объекта.

Представим себе эти эффективные источники в виде большого количества близко расположенных антенн и найдем интенсивность в некоторой точке Р. Это очень похоже на то, чем мы занимались до сих пор. Но не вполне, поскольку наш экран теперь находится не на бесконечности. В данном случае нас интересует интенсивность интерферирующих лучей на конечном расстоянии, а не на бесконечности. Интенсивность в некоторой точке дается суммой вкладов от каждой антенны. Сначала возьмем антенну в точке D, прямо напротив Р. Если слегка изменить угол, скажем, подняться на высоту h, лучу потребуется больше времени, чтобы попасть в точку Р (амплитуда тоже изменится, так как расстояние до источника увеличилось, но разница эта очень мала, поскольку расстояние все равно велико, и гораздо менее важна, чем изменение фазы излучения). Далее, разность EP-DP равна h2/2s, т. е. разность фаз пропорциональна квадрату удаления от точки D, тогда как раньше у нас s было бесконечно и разность фаз была линейно связана с h. Когда фазы зависят от h линейно, каждый вектор повернут относительно предыдущего на постоянный угол. Теперь же мы должны построить кривую, складывая бесконечно малые векторы при условии, что образуемый ими угол с осью абсцисс растет с увеличением длины кривой не линейным, а квадратичным образом. Явный вид кривой находится с помощью довольно сложных математических методов, но мы всегда можем построить эту кривую, просто откладывая векторы под требуемым углом. В конечном счете мы получаем замечательную кривую (называемую спиралью Корню), изображенную на фиг. 30.8. Как ею пользоваться? Пусть требуется определить интенсивность, скажем, в точке Р.

Сложим волны с разными фазами от точки D вверх до бесконечности и вниз от D до точки Вр. Таким образом, нужно отложить ряд стрелок под постоянно растущим углом, начиная с точки Вр на фиг. 30.8.

Фиг. 30.8. Сложение амплитуд большого числа осцилляторов, излучающих с одной фазой. Разность фаз за счет запаздывания пропорциональна квадрату расстояния от точки D на фиг. 30.7.


Фиг. 30.9, Ход интенсивности вблизи края тени. Геометрический край menu находится в точке х0.


Весь вклад от области над Вр дается спиральной кривой. Если бы суммирование заканчивалось в некоторой точке, то полная амплитуда представилась бы вектором от Вр до этой точки; в нашем случае суммирование ведется до бесконечности, так что искомая амплитуда есть вектор Вр∞. Точка на кривой, соответствующая точке Вр на предмете, зависит от положения точки Р, потому что точка D кривой (точка перегиба) всегда относится к выбранной точке Р. Следовательно, в зависимости от положения Р над В начальная точка, откуда проводится вектор, попадает в разные места нижней спирали, и результирующий вектор Вр∞ имеет многочисленные максимумы и минимумы (фиг. 30.9).

Но если мы находимся в точке Q, по другую сторону от Р, то нам понадобится только верхний конец спиральной кривой. Другими словами, начальной точкой результирующего вектора будет не D, а BQ, и, следовательно, книзу от Р интенсивность должна непрерывно падать при удалении Q в область тени.

Есть одна величина, которую можно легко вычислить сразу и таким образом убедиться, что мы здесь что-то понимаем,— это интенсивность в точке, лежащей прямо против края. Эта интенсивность равна 1/4 от интенсивности падающего света. Причина: для точки, лежащей против края предмета (когда Вр совпадает с D на фиг. 30.8), получается половина кривой в отличие от целой кривой, которая была бы получена, если бы точки лежали достаточно далеко в освещенной области. Если точка R расположена достаточно высоко, результирующий вектор проводится от центра одной спирали до центра другой, а для точки на краю тени амплитуда равна половине этого вектора; следовательно, отношение интенсивностей получается равным 1/4.

В этой главе мы вычисляли интенсивность в разных направлениях при различном расположении источников. В заключение выведем формулу, которая нам понадобится в следующей главе, посвященной показателю преломления. До сих пор мы обходились только относительными интенсивностями, а на этот раз мы получим формулу для полной величины поля при условиях, о которых будет рассказано ниже.

§ 7. Поле системы осцилляторов, расположенных на плоскости

Предположим, что имеется некоторая плоскость, которую заполняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достаточно большом расстоянии от плоскости? (Мы не можем выбрать точку наблюдения очень близко от плоскости, потому что у нас нет точных формул для поля вблизи источников.) Пусть плоскость зарядов совпадает с плоскостью XY и нас интересует поле в точке Р, лежащей на оси z, достаточно далеко от плоскости (фиг. 30.10).

Фиг. 30.10. Поле излучения осциллирующих зарядов, заполняющих плоскость.


Предположим, что число зарядов на единичной площадке равно n, а величина каждого заряда q. Все заряды совершают одинаковые гармонические колебания в одном и том же направлении, с той же амплитудой и фазой. Смещение заряда из его среднего положения описывается функцией x0cosωt. Вводя комплексную амплитуду, действительная часть которой дает реальное движение, будем описывать колебание заряда функцией x0eiωt.

Чтобы найти поле, создаваемое всеми зарядами в точке Р, нужно вычислить сначала поле отдельного заряда q, а затем сложить поля всех зарядов. Как известно, поле излучения пропорционально ускорению заряда, т. е.. — ω2x0еiωt (и одинаково для всех зарядов). Электрическое поле в точке Р, создаваемое зарядом в точке Q, пропорционально ускорению заряда q, нужно только помнить, что поле в точке Р в момент времени t определяется ускорением заряда в более ранний момент времени t'=t-r/c, где r/c — время, за которое волна проходит расстояние от Q до Р. Поэтому поле в точке Р пропорционально

(30.10)

Подставляя это значение ускорения в формулу для поля, создаваемого зарядом на большом расстоянии, получаем

(30.11)

Однако эта формула не совсем правильна, поскольку нужно брать не все ускорение целиком, а его компоненту, перпендикулярную линии QP. Мы предположим, однако, что точка Р находится от плоскости намного дальше, чем точка Q от оси z (расстояние ρ на фиг. 30.10), так что для эффектов, которые мы хотим учесть, косинус можно заменить единицей (косинус и так довольно близок к единице).

Полное поле в точке Р получается суммированием вкладов от всех зарядов в плоскости. Разумеется, мы должны взять векторную сумму полей. Но поскольку направление поля примерно одинаково для всех зарядов, в рамках сделанного приближения достаточно сложить величины всех полей. Кроме того, в нашем приближении поле в точке Р зависит только от r, следовательно, все заряды с одинаковым r создают равные поля. Поэтому, прежде всего, сложим поля всех зарядов в кольце шириной dρ и радиусом ρ. Интегрируя затем по всем ρ, получаем полное поле всех зарядов.

Число зарядов в кольце равно произведению площади кольца, 2πρdρ, на η — плотность зарядов на единицу площади. Отсюда

Интеграл берется в пределах ρ=0 и ρ=∞. Время t, конечно, зафиксировано, так что единственными меняющимися величинами являются ρ и r. Отвлечемся пока от постоянных множителей, включая и eiωt, и вычислим интеграл

(30.13)

Для этого учтем соотношение между ρ и r:

(30.14)

При дифференцировании формулы (30.14) z нужно считать независимым от ρ, тогда

что очень кстати, поскольку при замене в интеграле ρdρ на rdr знаменатель r сокращается. Интеграл приобретает более простой вид

(30.15)

Экспонента интегрируется очень просто. Нужно поставить в знаменатель коэффициент при r в показателе экспоненты и взять саму экспоненту в точках, соответствующих пределам. Но пределы по r отличаются от пределов по ρ. Когда ρ=0, нижний предел r=z, т. е. пределы по r равны z и бесконечности. Интеграл (30.15) равен

(30.16)

Вместо (r/с)∞ мы здесь написали ∞, поскольку и то и другое означает просто сколь угодно большую величину!

А вот е-i— величина загадочная. Ее действительная часть, равная cos(-∞), с математической точки зрения величина совершенно неопределенная. [Хотя можно допустить, что она находится где-то [а может быть и всюду (?)—между +1 и -1!]Но в физической ситуации эта величина может означать нечто вполне разумное и обычно оказывается равной нулю. Чтобы убедиться, что это так в нашем случае, вернемся к первоначальному интегралу (30.15)

Выражение (30.15) можно понимать как сумму большого числа маленьких комплексных чисел, модуль которых Δr, а угол в комплексной плоскости θ=-ωr/с. Попробуем оценить эту сумму графически. На фиг. 30.11 отложены первые пять членов суммы. Каждый отрезок кривой имеет длину Δr и расположен под углом Δθ=-ω(Δr/с) к предыдущему отрезку. Сумма первых пяти слагаемых обозначена стрелкой из начальной точки к концу пятого отрезка. Продолжая прибавлять отрезки, мы опишем многоугольник, вернемся примерно к начальной точке и начнем описывать новый многоугольник. Чем большее число отрезков мы будем прибавлять, тем большее число раз мы обернемся, двигаясь почти по окружности с радиусом с/. Теперь понятно, почему интеграл дает при вычислении неопределенный ответ!

Здесь мы должны обратиться к физическому смыслу нашего примера. В любой реальной ситуации плоскость зарядов не может быть бесконечной, а должна где-то оборваться. Если плоскость резко обрывается и ее граница имеет точно форму окружности, то наш интеграл будет равен некоторому значению на этой окружности (см. фиг. 30.11).

Фиг. 30.11. Вычисление интегралаz∫∞e-iωr/cdr графическим способом; θ=—ωr/c; Δθ=—ωΔr/c;


Если же плотность зарядов постепенно уменьшается по мере удаления от центра (или обращается в нуль вне некоторой границы неправильной формы, так что для достаточно больших ρ вклад всего кольца шириной dρ равен нулю), то коэффициент η в точном интеграле убывает, стремясь к нулю. Поскольку длина добавляемых отрезков в этом случае уменьшается, а угол Δθ остается тем же самым, график кривой, соответствующей интегралу, будет иметь вид спирали. Спираль оканчивается в центре первоначальной окружности, как изображено на фиг. 30.12.

Фиг. 30.12. Вычисление интегралаz∫∞ηe-iωr/cdr графическим способом,


Физически правильное значение интеграла дается величиной А, которой на схеме соответствует расстояние от начальной точки до центра окружности, равное как нетрудно убедиться

(30.17)

Точно такой же результат мы получили бы из (30.16), положив e-iω=0.

(Есть еще одна причина, почему вклад в интеграл от больших значений r стремится к нулю,— это опущенный нами множитель, учитывающий проекцию ускорения на плоскость, перпендикулярную линии PQ.)

Нас, конечно, интересует именно случай, имеющий физический смысл, поэтому мы положим е-iω равным нулю. Возвращаясь к формуле (30.12) для поля и вводя все опущенные ранее множители, мы получаем

(30.18)

(помня, что 1/i=-i).

Интересно отметить, что iωx0eiωt в точности равно скорости зарядов, так что выражения для поля можно переписать в виде

(30.19)

Этот результат немного странен, потому что запаздывание отвечает расстоянию z, которое есть кратчайшее расстояние от Р до плоскости. Но таков ответ, и, к счастью, формула довольно проста. [Добавим кстати, что, хотя формулы (30.18) и (30.19) были получены только для достаточно большого расстояния от плоскости, обе они оказываются правильными для любых z, даже для z<λ.]

Глава 31 КАК ВОЗНИКАЕТ ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ