§ 1. Атомная механика
В последних нескольких главах мы с вами рассмотрели многие существенные понятия, без которых невозможно разобраться ни в явлении света, ни вообще в электромагнитном излучении. (Некоторые специальные вопросы — теорию показателя преломления плотного вещества и полное внутреннее отражение — мы отложим до будущих времен.) Мы имели дело с так называемой «классической теорией» электромагнитных волн, и для множества явлений она давала достаточно точное описание природы. И нас не очень заботило при этом, что световая энергия всегда доставляется порциями — «фотонами».
Очередной темой, которой мы собираемся заняться (в главах, начиная с 39), является проблема поведения сравнительно крупных массивов вещества — их механических или, скажем, их тепловых свойств. Знакомясь с этими свойствами, мы увидим, что старая классическая теория здесь немедленно терпит неудачу, терпит по той причине, что вещество на самом деле состоит из частиц атомных размеров. И если все же мы намерены пользоваться старой теорией, то только потому, что это единственное, в чем мы можем разобраться с помощью изученной нами классической механики. Но наши успехи не будут велики. Мы обнаружим, что в отличие от теории света теория вещества на этом пути довольно быстро наталкивается на затруднения. Можно было бы, конечно, обойти все атомные эффекты стороной. Но вместо этого мы решили здесь вклинить небольшой экскурс в основные идеи квантовых свойств вещества, в квантовые представления атомной физики. Надо же, чтоб вы хоть примерно представляли, как выглядит то, что мы обходим. Все равно ведь атомные эффекты до того важны, что нам не миновать познакомиться с ними вплотную.
Стало быть, сейчас мы перейдем к введению в предмет квантовой механики. Но по-настоящему проникнуть в суть предмета вы сможете лишь намного позже.
Квантовая механика — это описание поведения мельчайших долек вещества, в частности всего происходящего в атомных масштабах. Поведение тела очень малого размера не похоже ни на что, с чем вы повседневно сталкиваетесь. Эти тела не ведут себя ни как волны, ни как частицы, ни как облака, или биллиардные шары, или грузы, подвешенные на пружинах,— словом, они не похожи ни на что из того, что вам хоть когда-нибудь приходилось видеть.
Ньютон считал, что свет состоит из частиц. А потом оказалось, как мы уже убедились, что свет ведет себя подобно волнам. Позже, однако (в начале XX века), обнаружили, что, действительно, поведение света временами напоминает частицу. Об электроне же, наоборот, сначала думали, что он похож на частицу, а потом было выяснено, что во многих отношениях он ведет себя как волна. Значит, на самом деле его поведение ни на что не похоже. И мы сдались. Мы так и говорим: «Он ни на что не похож».
Однако, к счастью, есть еще одна лазейка: дело в том, что электроны ведут себя в точности подобно свету. Квантовое поведение всех атомных объектов (электронов, протонов, нейтронов, фотонов и т. д.) одинаково: всех их можно назвать «частицами-волнами» (годится, впрочем, и любое другое название). Значит, все, что вы узнаете про свойства электронов (а именно они будут служить нам примером), все это будет применимо к любым «частицам», включая фотоны света.
В течение первой четверти нашего века постепенно накапливалась информация о поведении атомов и других мельчайших частиц, и знакомство с этим поведением вело ко все большему замешательству среди физиков. В 1926—1927 гг. оно было устранено работами Шредингера, Гейзенберга и Борна. Им удалось в конце концов получить непротиворечивое описание поведения вещества атомных размеров. Основные характерные черты этого описания мы и разберем в данной главе.
Раз поведение атомов так не похоже на наш обыденный опыт, то к нему очень трудно привыкнуть. И новичку в науке, и опытному физику — всем оно кажется своеобразным и туманным. Даже большие ученые не понимают его настолько, как им хотелось бы, и это совершенно естественно, потому что весь непосредственный опыт человека, вся его интуиция — все прилагается к крупным телам. Мы знаем, что будет с большим предметом; но именно так мельчайшие тельца и не поступают. Поэтому, изучая их, приходится прибегать к различного рода абстракциям, напрягать воображение и не пытаться связывать их с нашим непосредственным опытом.
В этой главе мы сразу же попробуем ухватить самый основной элемент таинственного поведения в самой странной его форме. Мы выбрали для анализа такое явление, которое невозможно, совершенно, абсолютно невозможно объяснить классическим образом. В этом явлении таится самая суть квантовой механики. Но на самом деле в нем прячется только одна-единственная тайна. Мы не можем раскрыть ее в том смысле, что не можем «объяснить», как она работает. Мы просто расскажем вам, как она работает. Рассказывая об этом, мы познакомим вас с основными особенностями всей квантовой механики.
§ 2. Опыт с пулеметной стрельбой
Пытаясь понять квантовое поведение электронов, мы сопоставим его с привычными нам движениями обычных частиц, похожих на пулю, и обычных волн, похожих на волны на воде. Сперва мы займемся стрельбой из устройства, схематически показанного на фиг. 37.1.
Фиг. 37.1. Опыт со стрельбой из пулемета.
Это пулемет, выпускающий целый сноп пуль. Он не очень хорош, этот пулемет. При стрельбе его пули рассеиваются на довольно широкий угол, как это изображено на рисунке. Перед пулеметом стоит плита (броневая), а в ней есть две дыры, через которые пуля свободно проходит. За плитой расположен земляной вал, который «поглощает» попавшие в него пули. Перед валом стоит предмет, который мы назовем «детектором». Им может служить, скажем, ящик с песком. Любая пуля, попав в детектор, застревает в нем. Если нужно, ящик открывают и все попавшие внутрь пули пересчитывают. Детектор можно передвигать взад и вперед (в направлении х). Этот прибор позволяет экспериментально ответить на вопрос: «Какова вероятность того, что пуля, проникшая сквозь плиту, попадет в вал на расстоянии х от середины?» Заметьте, что мы говорим только о вероятности, потому что невозможно сказать определенно, куда попадет очередная пуля. Пуля, даже попавшая в дыру, может срикошетить от ее края и уйти вообще неизвестно куда. Под «вероятностью» мы понимаем шанс попасть пулей в детектор, который установлен в х метрах от середины. Этот шанс можно измерить, подсчитав, сколько пуль попало в детектор за определенное время, а затем разделив это число на полное число пуль, попавших в вал за то же время. Или, полагая, что скорость стрельбы была одинакова, можно считать вероятность пропорциональной числу пуль, попавших в детектор за условленное время.
Для наших целей надо вообразить немного идеализированный опыт, когда пули не дают осколков и остаются целыми. Тогда мы обнаружим, что пули всегда попадают в детектор порциями: если уж мы что-то нащупали в детекторе, то это всегда целая пуля, а не половина и не четвертушка. Даже когда скорость стрельбы становится очень малой, все равно в детекторе за определенное время либо ничего не накапливается, либо обнаруживается целое — непременно целое — число пуль. Стало быть, размер порции не зависит от скорости стрельбы. Мы говорим поэтому: «Пули всегда приходят равными порциями». С помощью нашего детектора мы измеряем как раз вероятность прихода очередных порций как функцию х. Результат таких измерений (мы, правда, пока еще не провели такого эксперимента и сейчас просто воображаем, каким будет результат) изображен на графике фиг. 37.1,в. Вероятность в нем отложена вправо, а х — по вертикали, согласуясь с движением детектора. Вероятность обозначена P12, чтобы подчеркнуть, что пули могли проходить и сквозь отверстие 1, и сквозь отверстие 2. Вы, конечно, не удивитесь, что вероятность P12 близ середины графика велика, а по краям мала. Вас может, однако, смутить, почему наибольшее значение Р12 оказалось при х=0. Это легко понять, если один раз проделать опыт, заткнув дырку 2, а другой раз — дырку 1. В первом случае пули смогут проникать лишь сквозь дырку 1 и получится кривая P1(см. фиг. 37.1,б). Здесь, как и следовало ожидать, максимум P1 приходится на то х, которое лежит по прямой от пулемета через дырку 1. А если заткнуть дырку 1, то получится симметричная кривая Р2 — распределение вероятностей для пуль, проскочивших сквозь отверстие 2. Сравнив части б и в на фиг. 37.1, мы получаем важный результат
(37.1)
т. е. вероятности просто складываются. Действие двух дырок складывается из действий каждой дырки в отдельности. Этот результат наблюдений мы назовем отсутствием интерференции по причине, о которой вы узнаете после. На этом мы покончим с пулями.
Они приходят порциями, и вероятность их попадания складывается без интерференции.
§ 3. Опыт с волнами
Теперь проведем опыт с волнами на воде. Прибор показан схематически на фиг. 37.2.
Фиг. 37.2. Опыт с волнами на воде.
Это мелкое корытце, полное воды. Предмет, обозначенный как «источник волн», колеблясь при помощи моторчика вверх и вниз, вызывает круговые волны. Справа от источника опять стоит перегородка с двумя отверстиями, а дальше — вторая стенка, которая для простоты сделана поглощающей (чтобы волны не отражались): насыпана песчаная отмель. Перед отмелью помещается детектор; его опять, как и раньше, можно передвигать по оси х. Теперь детектор — это устройство, измеряющее «интенсивность» волнового движения. Представьте себе приспособление, измеряющее высоту волн. Если его шкалу откалибровать пропорционально квадрату высоты, то отсчеты шкалы смогут давать интенсивность волны. Детектор, таким образом, будет определять энергию, переносимую волной, или, точнее, долю энергии, доставляемую детектору.
Первое, в чем можно убедиться при помощи такого волнового аппарата,— это что интенсивность может быть любой величины. Когда источник движется еле-еле, то и детектор показывает тоже чуть заметное движение. Если же движение возрастет, то и в детекторе интенсивность подскочит. Интенсивность волны может быть какой угодно. Мы уже не скажем, что в интенсивности есть какая-то «порционность».
Заставим теперь волновой источник работать стабильно, а сами начнем измерять интенсивность волн при различных значениях х. Мы получим интересную кривую (кривая I12 на фиг. 37.2,в).
Но мы уже видели, откуда могут возникать такие картинки,— это было тогда, когда мы изучали интерференцию электрических волн. И здесь можно видеть, как первоначальная волна дифрагирует на отверстиях, как от каждой щели расходятся круги волн. Если на время одну щель прикрыть и измерить распределение интенсивности у поглотителя, то кривые выйдут довольно простыми (см. фиг. 37.2,б).
Кривая I1 — это интенсивность волн от щели 1 (когда ее измеряли, щель 2 была закрыта), а кривая I2 — интенсивность волн от щели 2 (при закрытой щели 1).
Мы видим со всей определенностью, что интенсивность I12, наблюдаемая, когда оба отверстия открыты, не равна сумме интенсивностей I1 и I2. Мы говорим, что здесь происходит «интерференция», наложение двух волн. В некоторых местах (где на кривой I12 наблюдается максимум) волны оказываются «в фазе», пики волн складываются вместе, давая большую амплитуду и тем самым большую интенсивность. В этих местах говорят о «конструктивной интерференции». Она наблюдается в тех местах, расстояние которых от одной из щелей на целое число длин волн больше (или меньше) расстояния от другой.
А в тех местах, куда две волны приходят со сдвигом фаз π (т. е. находятся «в противофазе»), движение волны представляет собой разность двух амплитуд. Волны «интерферируют деструктивно», интенсивность получается маленькой. Это бывает там, где расстояние от щели 1 до детектора отличается от расстояния между детектором и щелью 2 на нечетное число полуволн. Малые значения I12 на фиг. 37.2 отвечают местам, где две волны интерферируют деструктивно.
Вспомните теперь, что количественную связь между I1, I2 и I12 можно выразить следующим образом: мгновенная высота волны в детекторе от щели 1 может быть представлена в виде (действительной части) h'1eiωt, где «амплитуда» h'1, вообще говоря, комплексное число. Интенсивность пропорциональна среднему квадрату высоты, или, пользуясь комплексными числами, |h'1|2. Высота волн от щели 2 тоже равна h2eiωt, а интенсивность пропорциональна |h'2|2. Когда обе щели открыты, высоты волн складываются, давая высоту (h'1+h'2)eiωt и интенсивность |h1+h2|2. Множитель пропорциональности нас сейчас не интересует, так что формулу для интерферирующих волн можно записать в виде
(37.2)
Вы видите, что ничего похожего на то, что было с пулями, не получается. Раскрыв |h1+h2|2, мы напишем
(37.3)
где δ — разность фаз между h1 и h2. Вводя интенсивности из (37.2), можем написать
(37.4)
Последний член и есть «интерференционный член».
На этом мы покончим с волнами. Интенсивность их может быть любой, между ними возникает интерференция.
§ 4. Опыт с электронами
Представим себе теперь такой же опыт с электронами. Схема его изображена на фиг. 37.3.
Фиг. 37.3. Опыт с электронами.
Мы поставим электронную пушку, которая состоит из вольфрамовой проволочки, нагреваемой током и помещенной в металлическую коробку с отверстием. Если на проволочку подано отрицательное напряжение, а на коробку — положительное, то электроны, испущенные проволокой, будут разгоняться стенками и некоторые из них проскочат сквозь отверстие. Все электроны, которые выскочат из пушки, будут обладать (примерно) одинаковой энергией. А перед пушкой мы поставим снова стенку (на этот раз тонкую металлическую пластинку) с двумя дырочками. За стенкой стоит другая пластинка, она служит «земляным валом», поглотителем. Перед нею — подвижный детектор, скажем счетчик Гейгера, а еще лучше — электронный умножитель, к которому подсоединен динамик.
Заранее предупреждаем вас: не пытайтесь проделать этот опыт (в отличие от первых двух, которые вы, быть может, уже проделали). Этот опыт никогда никто так не ставил. Все дело в том, что для получения интересующих нас эффектов прибор должен быть чересчур миниатюрным. Мы с вами ставим сейчас «мысленный эксперимент», отличающийся от других тем, что его легко обдумать. Что должно в нем получиться, известно заранее, потому что уже проделано множество опытов на приборах, размеры и пропорции которых были подобраны так, чтобы стал заметен тот эффект, который мы сейчас опишем.
Первое, что мы замечаем в нашем опыте с электронами, это резкие «щелк», «щелк», доносящиеся из детектора (вернее, из динамика). Все «щелк» одинаковы. Никаких «полущелков».
Мы замечаем также, что они следуют совершенно не регулярно. Скажем, так: щелк..... щелк-щелк... щелк...... щелк.... щелк-щелк... ... щелк... и т. д. Кому случалось видеть счетчик Гейгера, знает, как он щелкает. Если подсчитать, сколько раз динамик щелкнул за достаточно длительное время (скажем, за несколько минут), а потом снова подсчитать, сколько он отщелкал за другой такой же промежуток времени, то оба числа будут почти одинаковыми. Можно поэтому говорить о средней частоте, с которой слышатся щелчки (столько-то «щелк» в минуту в среднем).
Когда мы переставляем детектор, частота щелчков то растет, то падает, но величина (громкость) каждого «щелк» всегда остается одной и той же. Если мы охладим проволоку в пушке, частота щелчков спадет, но каждый «щелк» будет звучать, как прежде. Поставим у поглотителя два отдельных детектора; тогда мы сразу заметим, что щелкает то один из них, то другой, но никогда оба вместе. (Разве что иногда наше ухо не разделит двух щелчков, последовавших очень быстро один за другим.) Мы заключаем поэтому, что все, что попадает в детектор, приходит туда «порциями». Все «порции» одной величины; в детектор (или поглотитель) попадает только целая «порция»; в каждый момент в поглотитель попадает только одна порция. Мы говорим: «Электроны всегда приходят одинаковыми порциями».
Как и в опыте со стрельбой из пулемета, мы попытаемся теперь поискать в новом опыте ответ на вопрос: «Какова относительная вероятность того, что электронная «порция» попадет в поглотитель на разных расстояниях х от середины?» Как и в том опыте, мы получим относительную вероятность, подсчитывая частоту щелчков при стабильно работающей пушке. Вероятность, что порции окажутся на определенном расстоянии х, пропорциональна средней частоте щелчков при этом х. В результате нашего опыта получена интереснейшая кривая P12, изображенная на фиг. 37.3,в. Да! Именно так и ведут себя электроны!
§ 5. Интерференция электронных волн
Попытаемся проанализировать кривую на фиг. 37.3 и посмотрим, сможем ли мы понять поведение электронов. Первое, что хочется отметить, это что раз они приходят порциями, то каждая из порций (ее тоже естественно именовать электроном) проходит либо сквозь отверстие 1, либо сквозь отверстие 2. Мы зафиксируем это в виде «Утверждения».
Утверждение А: Каждый электрон проходит либо сквозь отверстие 1, либо сквозь отверстие 2.
Если это предположить, то все электроны, достигшие поглотителя, можно разбить на два класса: 1) проникшие сквозь отверстие 1; 2) проникшие сквозь отверстие 2. Значит, полученная кривая — это сумма эффектов от электронов, прошедших сквозь отверстие 1, и электронов, прошедших сквозь отверстие 2. Давайте проверим это соображение экспериментально. Сначала проведем измерения с электронами, которые пройдут сквозь отверстие 1. Закроем отверстие 2 и подсчитаем щелчки в детекторе. Из частоты щелчков мы получим значение P1. Результат измерений показан на кривой P1 фиг. 37.3,б. Выглядит это вполне разумно. Точно таким же образом измерим P2 — распределение вероятностей для электронов, прошедших сквозь отверстие 2. Оно тоже показано на рисунке.
Кривая P12, полученная, когда оба отверстия открыты, явным образом не совпадает с суммой P1+P2 (суммой вероятностей при только одном работающем отверстии). По аналогии с нашим опытом с волнами на воде мы скажем: «Здесь есть интерференция»:
(37.5)
Откуда же могла появиться интерференция? Может, надо сказать так: «То, что порции проходят либо сквозь отверстие 1, либо сквозь отверстие 2,— это, по-видимому, неверно, ведь если бы это было так, то складывались бы вероятности. Должно быть, их движение сложней. Они разбиваются пополам и...» Да нет же! Это невозможно, они ведь всегда приходят целыми порциями... «Ну ладно, тогда может кое-кто из них, пройдя сквозь отверстие 1, заворачивает в 2, а после опять в 1, и так несколько раз, или еще как-то бродит по обоим отверстиям.
Тогда, закрыв отверстие 2, мы отрежем им путь и изменим вероятность того, что электрон, выйдя из отверстия 1, попадет в конце концов в поглотитель...» Но посмотрите-ка! Ведь есть такие точки на кривой, в которые при обоих открытых отверстиях попадает очень мало электронов, а при одном закрытом отверстии их попадает гораздо больше. Выходит, закрытие одного отверстия увеличивает число электронов, проходящих через другое. И наоборот, середина кривой P12 более чем вдвое превышает сумму P1+P2. Здесь, закрыв одно отверстие, вы тем самым уменьшаете число электронов, проходящих сквозь другое. Объяснить оба эффекта, предполагая, что электроны блуждают по сложным траекториям, пожалуй, довольно трудно.
Все это выглядит весьма таинственно. И тем таинственней, чем больше об этом думаешь. Идей, объясняющих кривую Р12 как результат сложного движения отдельных электронов через оба отверстия, было сфабриковано немало. Но ни одна из этих попыток не была успешной. Ни одна не смогла выразить Р12 через P1 и Р2.
При этом, как ни странно, математика, связывающая P1 и Р2 с P12, проста до чрезвычайности. Ведь кривая P12 ничем не отличается от кривой I12 на фиг. 37.2, а последнюю-то получить очень просто. То, что приближается к поглотителю, может быть описано двумя комплексными числами φ1 и φ2 (это функции от х). Квадрат абсолютной величины φ1 дает эффект от одного отверстия 1: P1=|φ1|2. Эффект, полученный при открытом отверстии 2, точно таким же образом получается из φ2, т. е. Р2=|φ212. А общее действие обоих отверстий выразится в виде P12=|φ1+φ2|2. Выкладки абсолютно те же, что и для волн на воде! (А попробуйте-ка, кстати, получить такой простой результат, считая, что электроны шныряют взад и вперед сквозь пластинку по необычным траекториям.)
В конце концов мы приходим к следующему заключению: электроны приходят порциями, подобно частицам, а вероятность прибытия этих порций распределена так же, как и интенсивность волн. Именно в этом смысле электрон и ведет себя «частично как частица, а частью как волна».
Заметим, кстати, что, имея дело с классическими волнами, мы определили интенсивность как среднее по времени от квадрата амплитуды волны и применили комплексные числа как математический прием, облегчающий расчеты. Но в квантовой механике амплитуды обязаны представляться комплексными числами. Одной только действительной части амплитуд недостаточно. Пока, впрочем, это выглядит лишь как техническая подробность, потому что формулы с виду одни и те же.
А поскольку вероятность прохода сквозь оба отверстия выражается столь просто (хотя и не равна сумме P1+Р2), то больше по этому поводу сказать нечего. Но имеется еще множество тонкостей, связанных с таким поведением природы. Хотелось бы рассказать о некоторых из них. Во-первых, раз число частиц, достигающих определенной точки, не равно числу прохождений сквозь отверстие 1 плюс число прохождений через отверстие 2 (как этого можно было ожидать, основываясь на «Утверждении А»), то, несомненно, «Утверждение А» неверно. Неверно, что электроны проходят либо сквозь отверстие 1, либо сквозь отверстие 2. Но этот вывод можно проверить и иначе.
§ 6. Как проследить за электроном?
Попытаемся проделать такой опыт. В наш электронный прибор как раз за стенкой между двумя отверстиями поместим сильный источник света (фиг. 37.4).
Фиг. 37.4. Другой опыт с электронами.
Известно, что электрические заряды рассеивают свет. Поэтому, каким бы путем электрон ни прошел к детектору, он обязательно рассеет немного света в наш глаз, и мы увидим, где он проскочил. Скажем, если он проскользнет сквозь отверстие 2, как это показано на рисунке, то мы увидим, как где-то около точки А что-то блеснуло. Если же он проскочит сквозь верхнее отверстие, то блеснет где-то поблизости от отверстия 1. А если бы случилось так, что свет блеснет сразу в двух местах, потому что электрон разделился пополам, то... Но лучше приступим к опыту!
Вот что мы увидим: всякий раз, когда мы слышим из детектора «щелк», мы также видим вспышку света или у отверстия 1, или у отверстия 2, но никогда у обоих отверстий сразу! Так происходит при любом положении детектора. Отсюда мы делаем вывод, что когда мы смотрим на электрон, то обнаруживаем, что он проходит или через одно отверстие, или через другое. «Утверждение А», как показывает эксперимент, выполняется с необходимостью.
Что же в таком случае неверно в наших доводах против правильности «Утверждения А»? Почему же все-таки P12не равно P1+Р2? Продолжим наш опыт! Давайте проследим за электронами и посмотрим, что они поделывают. Для каждого положения детектора (для каждого фиксированного х) мы подсчитаем, сколько электронов в него попало, и одновременно проследим (наблюдая вспышки), через какие отверстия они прошли. Следить мы будем так: услышав «щелк», мы поставим палочку в первом столбце, если заметим вспышку у первого отверстия; если же вспышка блеснет у отверстия 2, то мы отметим это палочкой во второй колонке. Каждый попадающий в детектор электрон будет отнесен к одному из двух классов: либо к классу электронов, проникших сквозь отверстие 1, либо к классу электронов, проникших сквозь отверстие 2. Количество палочек, накопившихся в первой колонке, даст нам р1 — вероятность того, что электрон пройдет к детектору сквозь отверстие 1; точно так же вторая колонка даст Р'2 — вероятность того, что электрон воспользовался отверстием 2. Повторив эти измерения для многих значений х, мы получим кривые р'1 и Р'2, показанные на фиг. 37.4,б.
Ну что ж, ничего неожиданного в них нет! Кривая P'1 вышла похожей на кривую P1, которая получалась, когда отверстие 2 закрывали, а кривая P'2 похожа на то, что мы получали, когда закрывали отверстие 1. Итак, никаких блужданий от дырки к дырке не существует. Когда мы следим за электронами, то оказывается, что они проникают сквозь стенку со щелями в точности так, как мы ожидали. Закрыты ли отверстия или открыты, все равно те электроны, которые мы видели проникающими сквозь отверстие 1, распределены одинаково.
Но погодите! Какова же теперь полная вероятность — вероятность того, что электрон попал в детектор любым путем? У нас уже есть сведения об этом. Сделаем вид, что мы не замечали световых вспышек, т. е. сложим палочки, стоящие в обеих колонках. Нам нужно только сложить числа. Для вероятности того, что электрон попал в поглотитель, пройдя через любое из отверстий, мы действительно получим Р'12=P1+P2. Выходит, что, хоть нам и удалось проследить, через какое отверстие проходят электроны, никакой прежней интерференционной кривой P12 не вышло, получилась новая кривая Р'12 — кривая без интерференции! А выключите свет — и снова возникнет Р12.
Мы приходим к заключению, что, когда мы смотрим на электроны, распределение их на экране совсем не такое, как тогда, когда на них не смотрят. Уж не от включения ли света меняется ход событий? Должно быть, электроны — вещь очень деликатная; свет, рассеиваясь на электронах, толкает их и меняет их движение. Мы ведь знаем, что электрическое поле, действуя на заряд, прилагает к нему силу. От этого, по-видимому, и следует ожидать изменения движения. Во всяком случае, свет оказывает на электроны большое влияние. Пытаясь «проследить» за электронами, мы изменили их движение. Толчки, испытываемые электронами при рассеянии фотонов, очевидно, таковы, что движение электронов сильно изменяется: электрон, который прежде мог попасть в максимум P12, теперь приземляется в минимуме Р12; вот поэтому никакой интерференции и не заметно.
«Но к чему же такой яркий источник света? — можете вы подумать.— Сбавьте яркость! Световые волны ослабнут и не смогут так сильно возмущать электроны; ослабляя свет все больше и больше, можно в принципе добиться того, что воздействием света на электрон можно будет вообще пренебречь». Будь по-вашему. Давайте попробуем.
Первое, что мы замечаем, это что блеск света, рассеянного на электронах, не слабеет. Сила вспышек остается прежней. От того, что свет стал тускнеть, изменилось лишь одно: временами, услышав щелчок детектора, мы никакой вспышки не замечаем; электрон прошел незамеченным. Мы просто обнаруживаем, что свет ведет себя так же, как электроны: мы знаем, что он «волнист», а теперь убеждаемся, что он к тому же распространяется «порциями». Он доставляется—или рассеивается — порциями, которые мы называем «фотонами». Понижая интенсивность источника света, мы не меняем величины фотонов, а меняем только темп, с каким они испускаются. Этим и объясняется, почему при притушенном свете некоторые электроны проскальзывают к детектору незаметно. Просто как раз в тот момент, когда электрон двигался к детектору, фотона в нужном месте не оказалось.
Все это немного нас обескураживает. Если правильно, что всякий раз, когда мы «видим» электрон, получаются одинаковые вспышки, то все увиденные нами до сего времени электроны были возмущенными электронами. Давайте тогда опыт с тусклым светом проведем иначе. Теперь, услышав щелчок в детекторе, мы будем ставить палочку в одну из трех колонок: в первую, если электрон замечен у отверстия 1, во вторую, если его видели у отверстия 2, и в третью, если его вообще не видели. Обработав данные (рассчитав вероятности), мы получим следующие результаты: «виденные у отверстия 1» будут распределены по закону P'1, «виденные у отверстия 2» — по закону Р'2 (так что «виденные либо у отверстия 1, либо у отверстия 2» распределяются по закону P'12), а «незамеченные» распределены «волноподобно», как Р12 на фиг. 37.3! Если электроны не видимы, возникает интерференция!
Это уже можно понять. Когда мы не видим электрон, значит, фотон не возмутил его; а если уж мы его заметили, значит, он возмущен фотоном. Степень возмущения всегда одна и та же, потому что все фотоны света производят эффекты одинаковой величины, достаточной для того, чтобы смазать любые интерференционные эффекты.
Но нет ли хоть какого-нибудь способа увидеть электрон, не возмущая его? Мы уже говорили о том, что импульс, уносимый фотоном, обратно пропорционален его длине волны (р=h/λ). Чем больше импульс у фотона, тем сильнее он толкает электрон, когда рассеивается на нем. Ага! Раз мы хотим как можно слабее возмущать электроны, то не стоит снижать интенсивность света, лучше снизить его частоту (или, что то же самое, увеличить длину волны). Нужно осветить электроны красным светом. Можно воспользоваться даже инфракрасным светом или радиоволнами (как в радаре). При помощи оборудования, приспособленного для восприятия длинноволнового света, можно тоже разглядеть, куда направился электрон. Может быть, более «мягкий» свет поможет нам избежать сильного возмущения электронов.
Ну что ж, примемся экспериментировать с длинными волнами. Будем повторять наш опыт, увеличивая все больше и больше длину волны. На первых порах ничего не изменится, все результаты будут прежними. А потом произойдет ужасно неприятная вещь. Вы помните, что, изучая микроскоп, мы заметили, что вследствие волновой природы света появляются ограничения на расстояния, на которых два пятна еще не сливаются в одно. Это расстояния порядка длины волны света. И вот теперь это ограничение опять всплывает. Как только длина волны сравняется с промежутком между отверстиями, вспышки станут такими размытыми, что невозможно будет разобрать, возле какого отверстия произошла вспышка! Мы не сможем больше угадывать, какой дыркой воспользовался электрон! Известно, что где-то проскочил, а где — неясно! И это как раз при таком цвете, когда толчки становятся еле заметными, а кривая Р'12 начинает походить на P12, т. е. начинает чувствоваться интерференция. И только при длинах волн, намного превышающих расстояние между отверстиями (когда уже нет никакой возможности разобрать, куда прошел электрон), возмущение, причиняемое светом, становится таким слабым, что снова появляется кривая Р12 (см. фиг. 37.3).
В нашем опыте мы обнаружили, что невозможно приспособить свет для того, чтобы узнавать, через какое отверстие проник электрон, и в то же время не исказить картины. Гейзенберг предположил, что новые законы природы были бы совместимы друг с другом только в том случае, если бы существовали некоторые фундаментальные ограничения на наши экспериментальные возможности, ограничения, которых прежде не замечали. Он предложил в качестве общего принципа свой принцип неопределенности. В терминах нашего эксперимента он звучит следующим образом: «Невозможно соорудить аппарат для определения того, через какое отверстие проходит электрон, не возмущая электрон до такой степени, что интерференционная картина пропадает». Если аппарат способен определять, через какую щель проходит электрон, он не способен оказаться столь деликатным, чтобы не исказить картину самым существенным образом. Никому никогда не удалось изобрести или просто указать способ, как обойти принцип неопределенности. Значит, мы обязаны допустить, что он описывает одну из основных характеристик природы.
Полная теория квантовой механики, которой мы в настоящее время пользуемся для описания атомов, а значит, и всего вещества, зависит от правильности принципа неопределенности. Квантовая механика весьма успешно справляется со своими задачами; это укрепляет нашу веру в принцип. Но если когда-нибудь удастся «разгромить» принцип неопределенности, то квантовая механика начнет давать несогласованные результаты и ее придется исключить из рядов правильных теорий явлений природы.
«Ну, хорошо,— скажете вы,— а как же быть с «Утверждением А»? Значит, верно все-таки, что электрон проходит либо сквозь отверстие 1, либо сквозь 2? Или же это неверно?» Единственный ответ, который может быть дан, таков: мы нашли из опыта, что существует некоторый определенный способ, которым мы должны рассуждать, чтобы не прийти к противоречиям.
Вот как мы обязаны рассуждать, чтобы не делать ошибочных предсказаний. Если вы следите за отверстиями, а точнее, если у вас есть прибор, способный узнавать, сквозь какое отверстие из двух проник электрон, то вы можете говорить, что он прошел сквозь отверстие 1 (или 2). Но если вы не пытались узнать, где прошел электрон, если в опыте не было ничего возмущавшего электроны, то вы не смеете думать, что электрон прошел либо сквозь отверстие 1, либо сквозь отверстие 2. Если вы все же начнете так думать и затем делать из этой мысли различные выводы, то, несомненно, натворите ошибок в своем анализе. Вы вынуждены балансировать на этом логическом канате, если хотите успешно описывать природу.
Если движение всего вещества, подобно электронам, нужно описывать, пользуясь волновыми понятиями, то как быть с пулями в нашем первом опыте? Почему мы не увидели там интерференционной картины? Дело оказывается в том, что у пуль длина волны столь незначительна, что интерференционные полосы становятся очень тонкими. Столь тонкими, что никакой детектор разумных размеров не разделит их на отдельные максимумы и минимумы. Мы с вами видели только нечто усредненное — это и есть классическая кривая. На фиг. 37.5 мы попытались схематически изобразить, что происходит с крупными телами.
Фиг. 37.5. Интерференционная картина при рассеянии пуль. а — истинная (схематично); б — наблюдаемая.
На фиг. 37.5, а показано распределение вероятностей для пуль, предсказываемое квантовой механикой. Предполагается, что резкие колебания должны дать представление об интерференционной картине от очень коротких волн. Но любой физический детектор неизбежно вынужден будет накрыть сразу множество зигзагов этой кривой, так что измерения, проведенные с его помощью, дадут плавную кривую, показанную на фиг. 37.5,6.
§ 7. Исходные принципы квантовой мвханики
Теперь подытожим основные выводы из наших опытов. Сделаем мы это в такой форме, чтобы они оказались справедливыми для всего класса подобных опытов. Сводку итогов можно записать проще, если сперва определить «идеальный опыт», т. е. опыт, в котором отсутствуют неопределенные внешние влияния и нет никаких не поддающихся учету изменений, колебаний и т. д. Точная формулировка будет такова: «Идеальным опытом называется такой, в котором все начальные и конечные условия опыта полностью определены». Такую совокупность начальных и конечных условий мы будем называть «событием». (Например: «электрон вылетает из пушки, попадает в детектор, и больше ничего не происходит».) А сейчас дадим нашу сводку выводов.
1) Вероятность события в идеальном опыте дается квадратом абсолютной величины комплексного числа φ, называемого амплитудой вероятности.
(37 6)
2) Если событие может произойти несколькими взаимно исключающими способами, то амплитуда вероятности события — это сумма амплитуд вероятностей каждого отдельного способа. Возникает интерференция.
(37.7)
3) Если ставится опыт, позволяющий узнать, какой из этих взаимно исключающих способов на самом деле осуществляется, то вероятность события—это сумма вероятностей каждого отдельного способа. Интерференция отсутствует.
(37.8)
Быть может, вам все еще хочется выяснить: «А почему это? Какой механизм прячется за этим законом?» Так вот: никому никакого механизма отыскать не удалось. Никто в мире не сможет вам «объяснить» ни на капельку больше того, что «объяснили» мы. Никто не даст вам никакого более глубокого представления о положении вещей. У нас их нет, нет представлений о более фундаментальной механике, из которой можно вывести эти результаты.
Мы хотели бы подчеркнуть очень важное различие между классической и квантовой механикой. Мы уже говорили о вероятности того, что электрон попадает туда-то и туда-то в данных обстоятельствах. Мы подразумевали, что с нашим (да и с самым лучшим) экспериментальным устройством невозможно будет предсказывать точно, что произойдет. Мы способны только определять шансы! Это означало бы, если это утверждение правильно, что физика отказалась от попыток предсказывать точно, что произойдет в определенных условиях. Да! Физика и впрямь сдалась. Мы не умеем предсказывать, что должно было бы случиться в данных обстоятельствах. Мало того, мы уверены, что это немыслимо: единственное, что поддается предвычислению,— это вероятность различных событий. Приходится признать, что мы изменили нашим прежним идеалам понимания природы. Может быть, это шаг назад, но никто не научил нас, как избежать его!
Сделаем теперь несколько замечаний об одном утверждении, которое иногда делали те, кто не хотел пользоваться приведенным описанием. Они говорили: «Может быть, в электроне происходят какие-то внутренние процессы, имеются какие-то внутренние переменные, о чем мы пока ничего не знаем. Может быть, именно поэтому мы не умеем предугадывать, что случится. А если бы мы могли попристальней вглядеться в электрон, то смогли бы сказать, куда он придет». Насколько нам известно, такой возможности нет. Трудности все равно остаются. Предположим, что внутри электрона есть механизм какого-то рода, определяющий, куда электрон собирается попасть. Тогда эта машина должна определить также, через какое отверстие он намерен проследовать. Но не забывайте, что вся эта внутриэлектронная механика не должна зависеть от того, что делаем мы, и, в частности, от того, открыли мы данное отверстие или нет. Значит, если электрон, отправляясь в путь, уже прикинул, сквозь какую дырку он протиснется и где он приземлится, то для электронов, облюбовавших отверстие 1, мы получим распределение P1, а для остальных — распределение P2. А тогда для тех электронов, которые прошли через оба отверстия, с необходимостью распределение окажется суммой P1+P2. Не видно способа обойти этот вывод. Но мы экспериментально доказали, что он неверен. Никто еще не нашел отгадки этой головоломки. Стало быть, в настоящее время приходится ограничиваться расчетом вероятностей. Мы говорим «в настоящее время», но мы очень серьезно подозреваем, что все это — уже навсегда и разгрызть этот орешек человеку не по зубам, ибо такова природа вещей.
§ 8. Принцип неопределенности
Вот как сам Гейзенберг сформулировал свой принцип неопределенности: если вы изучаете какое-то тело и вы в состоянии определить x-компоненту импульса тела с неопределенностью Δр, то вы не можете одновременно определить координату х тела с точностью, большей чем Δx=h/Δр.
Произведение неопределенностей в положении тела и в его импульсе в любой момент должно быть больше постоянной Планка. Это частный случай принципа неопределенности. Более общая формулировка была высказана в предыдущем параграфе: нельзя никаким образом устроить прибор, определяющий, какое из двух взаимно исключающих событий осуществилось, без того, чтобы в то же время не разрушилась интерференционная картина.
Сейчас на одном частном случае мы покажем, что, если не иметь в своем распоряжении какого-нибудь принципа, наподобие принципа Гейзенберга, трудностей избежать никак нельзя. Представим себе такое видоизменение опыта, показанного на фиг. 37.3, в котором стенкой с отверстиями служит пластинка на катках, способная откатываться вверх и вниз (в x-направлении), как показано на фиг. 37.6.
Фиг. 37.6. Опыт, в котором измеряется отдача стенки.
Внимательно следя за движением пластинки, можно попытаться узнать, сквозь какое отверстие прошел электрон. Представьте, что случится, когда детектор поставят в точку х=0. Когда электрон проходит через отверстие 1, он должен отклониться вниз от пластинки, чтобы попасть в детектор. Так как изменилась вертикальная компонента импульса, то к пластинке приложится сила отдачи — тот же импульс, но в противоположном направлении. Пластинка испытает толчок вверх. А когда электрон пройдет сквозь нижнее отверстие, пластинка почувствует толчок вниз. И при любом другом положении детектора импульс, получаемый пластинкой, будет тоже неодинаков: когда электрон проскакивает через верхнюю дырку — один, когда сквозь нижнюю — другой. И, значит, не трогая электрон, ни капельки не возмущая его, а лишь следя за пластинкой, можно узнать, каким путем воспользовался электрон.
Чтобы определить это, нам нужно только знать, каков был импульс экрана до прихода электрона. Тогда, измерив импульс экрана после пролета электрона, мы сразу увидим, насколько он переменился. Но вспомните, что, согласно принципу неопределенности, при этом уже невозможно будет знать положение пластинки с произвольной точностью. Однако если мы не знаем точно, где она находится, как же мы узнаем, где эти два отверстия? Для каждого нового электрона, проникающего сквозь пластинку, отверстия окажутся на новом месте. А это значит, что центр нашей интерференционной картины для каждого электрона тоже будет на новом месте. Интерференционные полосы (колебания вероятности) смажутся. В следующей главе мы докажем численно, что при измерении импульса пластинки (достаточно точном для того, чтобы из измерений отдачи узнать номер отверстия) неопределенности в координате х пластинки как раз хватит на то, чтобы сдвинуть возникающую в детекторе картину вверх или вниз на расстояние от максимума до ближайшего минимума. От этих случайных сдвигов картина интерференции размажется и от нее, в конце концов, не останется и следа.
Принцип неопределенности «спасает» квантовую механику. Гейзенберг понимал, что если б можно было с большей точностью измерять и положение, и импульс одновременно, то квантовая механика рухнула бы. Вот он и допустил, что это невозможно. Тогда люди принялись придумывать способы, как все-таки это сделать. Но никому не удалось представить себе способ, как измерять положение и импульс чего угодно — экрана, электрона, биллиардного шара, любого предмета — с большей точностью. И квантовая механика продолжает вести свой рискованный, впрочем, вполне четко очерченный образ жизни.