§ 1. Испарение
Эта глава посвящена дальнейшим применениям кинетической теории. В предыдущей главе мы подчеркнули один из выводов этой теории, что средняя кинетическая энергия каждой степени свободы молекулы или любого другого объекта равна 1/2kT. Сейчас центральным пунктом нашего изложения будет утверждение о том, что отнесенная к единице объема вероятность обнаружить частицу в том или ином месте пропорциональна ехр(-п.э./kT). (Это утверждение мы используем в ряде задач.)
Явления, которые мы собираемся изучить, довольно сложны: испарение жидкости, вылет электронов с поверхности металла или химическая реакция, в которой участвует много атомов. В таких случаях кинетическая теория не дает простых и точных предписаний, ситуация слишком сложна для этого. Поэтому выводы этой главы, за исключением особо оговоренных, весьма неточны. Мы только подчеркнем, что, исходя из кинетической теории, можно более или менее хорошо понять эти явления. Но гораздо более точное представление о них дают термодинамические аргументы или некоторые измерения отдельных критических величин.
Однако полезно знать, хотя бы очень приблизительно, почему то, что происходит, происходит именно так. Тогда, натолкнувшись на явление, которое содержит в себе нечто, чего мы еще не видели, или то, что проанализировать мы еще не собрались, мы, может быть, сможем более или менее точно сказать, что произошло. Такой анализ будет в высшей степени неточным, но в общих чертах верным — верным по сути, но чуть-чуть упрощенным, скажем, в некоторых тонких деталях.
Разберем первый пример — испарение жидкости. Предположим, что большой ящик при заданной температуре заполнен жидкостью и паром поровну. Будем считать, что средние расстояния между молекулами пара довольно велики, а вот в жидкости они упакованы плотно. Задача состоит в том, чтобы определить число молекул, находящихся в газовой фазе, по сравнению с числом молекул, находящихся в жидкости. Какова плотность пара при заданной температуре и как она зависит от температуры?
Пусть n — число молекул пара в единице объема. Это число, естественно, меняется с температурой. С притоком тепла испарение увеличивается. Добавим еще одну величину 1/Va, равную числу атомов в единице объема, содержащихся в жидкости; мы предполагаем, что в жидкости каждой молекуле отведен вполне определенный объем, поэтому чем больше в жидкости молекул, тем больший объем они занимают. Если Va — объем, отведенный одной молекуле, то число молекул в единичном объеме равно единичному объему, деленному на объем, занимаемый молекулой. Далее, предположим, что между молекулами действуют силы притяжения, удерживающие их внутри жидкости. Иначе нельзя понять, почему происходит конденсация. Итак, предположим, что имеется сила притяжения и существует энергия связи молекулы в жидкости, которая теряется при переходе молекул в пар. Это наводит на мысль, что для перевода какой-нибудь молекулы из жидкости в пар, нужно совершить работу W. Существует определенная разность W между энергией молекулы в жидкости и ее энергией в паре, потому что для переноса молекул в пар мы должны оторвать ее от всех молекул, к которым она притягивается.
Теперь обратимся к общему принципу, по которому отношение числа атомов в единице объема в разных областях равно n2/n1=ехр[-(Е2-E1/kT)]. Значит, n —число молекул в единичном объеме пара, деленное на 1/Va (число молекул в единичном объеме жидкости), равно
(42.1)
Таково общее правило. Это очень похоже на равновесную атмосферу в поле тяжести, когда низшие слои газа плотнее верхних, потому что для подъема молекулы на высоту h нужна энергия mgh. В жидкости молекулы размещены плотнее, чем в газе, так как их заставляет потесниться энергия «подъема» W, и отношение плотностей равно ехр(-W/kT).
Это как раз то, что мы хотели вывести — плотность пара изменяется как е в некоторой степени. Показателем служит взятая со знаком минус похожая на энергию величина, деленная на kT. Множители перед экспонентой не особенно интересны, потому что в большинстве случаев плотность пара гораздо меньше плотности жидкости. При этих обстоятельствах, когда мы далеки от критической точки, где плотности почти одинаковы, соотношение плотностей, при котором n много меньше 1/Va, обеспечивается тем, что W много больше kT. Поэтому формулы типа (42.1) интересны только тогда, когда W действительно гораздо больше kT; в этом случае е возводится в громадную отрицательную степень и если немного изменить Т, то изменится слегка и громадная степень, а это изменение повлечет за собой такие изменения экспоненты, которые будут гораздо важнее возможных изменений предэкспоненциальных множителей. Но отчего бы изменяться таким множителям, как 1/Va? Да оттого, что наше описание приблизительно. Ведь в действительности каждая молекула не имеет определенного объема; при изменении температуры объем Vа не остается постоянным — жидкости сжимаются и расширяются. Есть еще и другие мелочи вроде этой, так что действительная ситуация гораздо сложнее. Почти всюду стоят медленно изменяющиеся с температурой множители. В действительности само W медленно изменяется с температурой, потому что при разных температурах молекулам отведены разные объемы, и притяжение должно быть разным, и т. д. Итак, можно прийти к выводу, что поскольку у нас получилась формула, в которой все неизвестным образом изменяется с температурой, то на самом деле формулы никакой и нет. Но если мы знаем, что показатель у экспоненты W/kT заведомо велик, то можно убедиться, что наибольшие изменения кривой плотности пара как функции температуры обусловлены экспоненциальным множителем. Поэтому если мы будем считать W постоянной величиной, а коэффициент 1/Va — почти постоянной, то это будет хорошим приближением вдоль небольшого интервала нашей кривой. Иначе говоря, основные изменения определяются видом функции ехр(-W/kT),
Выходит, что в природе есть много, очень много процессов, для которых характерно взятие энергии взаймы; основным свойством таких процессов является экспоненциальная температурная зависимость: е возводится в отношение взятой с отрицательным знаком энергии к kT. Это полезный факт, но только в тех случаях, когда энергия велика по сравнению с kT, поскольку главная часть изменений с температурой определяется изменением kT, а не величиной постоянных и других сомножителей.
Давайте рассмотрим сейчас немного подробнее другой способ получения почти аналогичного результата для испарения. Чтобы получить (42.1), мы просто применили всегда справедливое при равновесии правило, но мало что поняли в существе явления. Поэтому невредно попытаться посмотреть детальнее, как происходит испарение. Можно описать его примерно так: молекулы пара непрерывно бомбардируют поверхность жидкости; при ударе они могут либо отскочить от поверхности, либо пробить ее. Что случается чаще, нам неизвестно, может быть, отношение этих исходов равно 50 к 50, а может быть и 10 к 90. Предположим, что поверхность пробивается всегда, потом мы посмотрим, к чему приводит предположение о более прочной поверхности. Тогда в каждый момент будет иметься определенное число атомов, сконденсировавшихся на поверхности жидкости. Число сконденсировавшихся молекул (число молекул, прошедших через площадку единичной площади) равно числу молекул в единице объема n, умноженному на скорость v. Эта скорость молекул связана с температурой; ведь известно, что в среднем 1/2mv2 равно 3/2kT. Поэтому v —какая-то средняя скорость. Конечно, нужно еще проинтегрировать по углам и сделать всякого рода усреднения, но результат прямо пропорционален корню из среднего квадрата скорости. Таким образом,
(42.2)
т. е. числу молекул, достигших единичной площадки и сконденсировавшихся.
Но атомы жидкости непрерывно пляшут, и время от времени отдельные атомы выскакивают наружу. Теперь нам нужно выяснить, часто ли это происходит. При равновесии число молекул, выскочивших за 1 сек из жидкости, равно числу молекул, поступивших за это же время на ее поверхность.
Ну, а много ли молекул выскакивает? Чтобы выскочить наружу, молекула должна как-то умудриться приобрести некоторую добавочную энергию, которая окажется больше, чем энергия ее соседок. И этот избыток энергии должен быть довольно большим, ведь наша молекула очень сильно притягивается к остальным молекулам жидкости. Обычно ей так и не удается преодолеть этого сильного притяжения, но иногда при столкновениях на ее долю выпадает излишек энергии. Шансы получить необходимую в нашем случае избыточную энергию W невелики, если W≫kT. Действительно, вероятность того, что атом приобретает энергию, большую чем W, равна ехр(-W/kT). Это общий принцип кинетической теории: шансы призанять энергию W сверх средней энергии равны е, возведенному в степень, показатель которой равен отношению W к kT со знаком минус. Предположим, что некоторым молекулам удалось получить эту энергию. Теперь можно установить, сколько молекул покидает поверхность жидкости за 1 сек. Конечно, получение молекулой нужной энергии еще не означает, что испарение обеспечено. Ведь эта молекула может находиться слишком глубоко в жидкости, а если она даже и находится у поверхности, то может двигаться не туда. Число молекул, покидающих единичную площадку за 1 сек, — это примерно число молекул на единице площади вблизи поверхности, деленное на время, которое требуется молекуле для побега, и умноженное на вероятность ехр(-W/kT) готовности молекул к побегу, в том смысле, что они уже получили достаточное количество энергии.
Предположим, что каждая молекула на поверхности жидкости занимает определенную площадку площади А. Тогда число молекул на единице поверхности жидкости равно 1/А. А много ли молекуле нужно времени, чтобы совершить свой побег? Если молекулы движутся с определенной средней скоростью v и должны пройти расстояние, равное, скажем, диаметру молекулы D (толщине наружного слоя), то время, нужное для преодоления этого расстояния, и есть время побега, если только молекула обладает достаточной энергией. Это время равно D/v. Таким образом, число испаряющихся молекул приблизительно равно
(42.3)
Заметим, что произведение площади каждой молекулы на толщину слоя приблизительно равно объему Va, отведенному каждой молекуле. Итак, для получения равновесия мы должны иметь Nc=Ne, или
(42.4)
Можно выкинуть из этого равенства скорости, потому что они равны; если даже специально отметить, что одна из них — скорость молекулы пара, а другая — скорость испаряющейся молекулы, — все равно они одинаковы, ведь мы знаем, что средняя кинетическая энергия обеих молекул (в одном направлении) равна 1/2kT. Но можно сказать: «Нет! Нет! Ведь испаряются только особо быстрые молекулы. Только они приобрели достаточный избыток энергии». Не совсем так, потому что в тот момент, когда эти молекулы выскакивают из жидкости, они теряют этот избыток, преодолевая потенциальную энергию. Поэтому при подходе к поверхности они уже движутся с замедленной скоростью v! Точно так же обстояло дело с распределением молекулярных скоростей в атмосфере — в нижних слоях молекулы были определенным образом распределены по энергиям. Те из них, которые достигали более высоких слоев, распределялись по энергиям точно так же, потому что медленные молекулы вверх совсем не поднимались, а быстрые, поднявшись, двигались медленнее. Испаряющиеся молекулы распределены по скоростям так же, как молекулы, движущиеся в глубине жидкости — поистине поразительный факт. Во всяком случае, нет смысла пытаться столь строго обсуждать нашу формулу, потому что в ней есть и другие неточности; например, мы рассматривали вероятность отражения молекул от поверхности, а не их конденсации и т. д. Мы имеем дело лишь с грубым описанием скорости испарения и конденсации и видим, естественно, что плотность пара n изменяется так же, как и раньше, но теперь мы понимаем этот процесс много лучше, а раньше писали почти произвольную формулу.
Более глубокое понимание позволит нам выяснить еще кое-что. Например, предположим, что мы откачиваем пар, причем так быстро, что пар удаляется практически с той же быстротой, с какой образуется (если наш насос очень хороший, а испарение происходит медленно). С какой скоростью будет происходить испарение, если температура жидкости Т будет поддерживаться постоянной? Предположим, что мы экспериментально уже измерили равновесную плотность пара и нам известно, сколько молекул в единице объема может быть в равновесии с жидкостью при заданной температуре. Теперь мы хотим узнать скорость испарения жидкости. Хотя мы ограничились лишь грубым анализом испарения, он все же дал нам сведения о числе прибывающих молекул пара, правда, с точностью до неизвестного коэффициента отражения. Поэтому мы можем использовать то обстоятельство, что при равновесии число покидающих пар молекул равно числу прибывающих молекул. Правда, пар откачивается и молекулы могут только покидать жидкость, но если оставить пар в покое, то установится равновесная плотность, при которой число прибывающих в жидкость молекул равно числу испаряющихся. Следовательно, легко видеть, что в этом случае число молекул, покидающих поверхность жидкости за 1 сек, равно произведению неизвестного коэффициента отражения R на число молекул, которые ежесекундно возвращались бы в жидкость, если бы пар не откачивался, потому что именно это число входит в уравнение баланса для испарения при равновесии:
(42.5)
Конечно, легче подсчитать число молекул, переходящих из пара в жидкость, потому что в этом случае не надо ничего предполагать о силах, как это приходилось делать при подсчете числа покидающих жидкость молекул. Проще изменить путь рассуждений.
§ 2. Термоиониая эмиссия
Можно привести еще один пример часто встречающегося процесса, столь похожего на испарение жидкости, что его даже не придется анализировать отдельно. В сущности, это та же самая задача. В любой радиолампе есть источник электронов — вольфрамовая нить накаливания и положительно заряженная пластинка, притягивающая электроны. Оторвавшийся с поверхности вольфрама электрон немедленно улетает к пластинке. Это — «идеальный» насос, который непрерывно «откачивает» электроны. Возникает вопрос: сколько электронов ежесекундно покидает вольфрамовую проволоку и как их число зависит от температуры? Решение задачи дается той же формулой (42.5), потому что электроны, находящиеся в куске металла, притягиваются ионами или атомами металла. Они, грубо говоря, притягиваются металлом. Чтобы оторвать электрон от металла, надо сообщить ему определенное количество энергии, т. е. затратить для этого работу. Эта работа для разных металлов различна. Фактически она изменяется даже в зависимости от вида поверхности у одного и того же металла, но в целом она составляет несколько электронвольт,—величину, вообще типичную для энергии химических реакций. При этом полезно вспомнить, что разность потенциалов химических элементов, например батареи для магниевой вспышки, которая порождается химическими реакциями, порядка 1 в.
Как определить число электронов, покидающих металл за 1 сек? Очень трудно перечислить все, что может повлиять на выход электрона: легче решить задачу по-другому. Представим, что мы не удаляем вылетевшие электроны, а электроны образуют нечто вроде газа и могут вернуться в металл. В этом случае существует вполне определенная равновесная плотность электронов, которая определяется такой же формулой, как (42.1), где Va, грубо говоря, — объем, отведенный в металле одному электрону, а W=qeφ (φ —так называемая работа выхода, или разность потенциалов, необходимая для того, чтобы вырвать электрон с поверхности металла). Эта формула подскажет нам, сколько электронов должно находиться в окружающем пространстве и проникать в металл, чтобы скомпенсировать потерю тех электронов, которые покинули металл. Теперь легко подсчитать, сколько электронов уйдет из металла, если мы будем непрерывно откачивать их, потому что число ушедших электронов в точности равно числу электронов, которые должны были бы вернуться в металл, если существовал электронный «пар», плотность которого определяется формулой (42.1). Иначе говоря, электрический ток через единичную площадку равен произведению заряда электрона на число электронов, проходящих за 1 сек через площадку единичной площади; последнее равно произведению числа электронов в единичном объеме на скорость: поэтому, как мы уже много раз видели,
(42.6)
Мы знаем, что 1 эв соответствует kT при температуре, достигающей 11 600 град. Нить накаливания радиолампы работает примерно при температуре 1100 град, поэтому экспоненциальный множитель равен примерно е-10; когда мы слегка изменяем температуру, экспоненциальный множитель изменяется очень сильно. Это опять основное свойство формул, содержащих ехр(-qeφ/kT). Предэкспоненциальный множитель на самом деле совершенно неверен; оказывается, что поведение электронов в металле правильно описывает квантовая, а не классическая механика, но правильный множитель лишь немного отличается от нашего. Фактически до сих пор никто еще не смог точно вычислить этот множитель, хотя многие при расчетах пользовались квантовыми формулами высшего класса. Основная задача состоит в том, чтобы выяснить, не меняется ли W хотя бы медленно с температурой? Если да, то медленно изменяющуюся с температурой величину W нельзя отделить от предэкспоненциальных коэффициентов. Если, например, W зависит от температуры линейно, так что W=W0+αkT, то
Такая линейная зависимость W от температуры эквивалентна измененной «постоянной». Попытка точного вычисления предэкспоненциального множителя очень трудна и обычно бесплодна.
§ 3. Тепловая ионизация
Перейдем теперь к еще одному применению все той же идеи. Теперь речь пойдет об ионизации. Предположим, что газ состоит из великого множества атомов, которые обычно нейтральны, но если газ нагреть, то атомы могут оказаться ионизованными. Нам нужно знать, сколько существует ионов при тех или иных обстоятельствах, т. е. при заданной плотности атомов в единичном объеме и при определенной температуре. Снова придется представить себе ящик, в котором находится N атомов, содержащих в себе электроны. (Если электрон покидает атом, то атому присваивается наименование ион, а если атом нейтрален, то говорят просто—атом.) Таким образом, предположим, что в заданный момент в единичном объеме число нейтральных атомов равно nа, число ионов равно ni, а число электронов равно nе. Нужно определить, как связаны эти три числа между собой?
Прежде всего эти числа подчиняются двум условиям или связям. Например, можно как угодно менять различные условия, температуру и т. д., но сумма na+ni всегда останется одной и той же, потому что это просто-напросто N — число атомных ядер в ящике. Если в единице объема число ядер сохраняется постоянным, а изменяется, скажем, температура, то, хотя в результате ионизации некоторые атомы превращаются в ионы, общее число атомов и ионов не изменяется. Значит, na+ni=N. Другое условие вытекает из того, что если газ в целом электрически нейтрален (и если мы пренебрегаем двойной или тройной ионизацией), то число ионов всегда равно числу электронов, или ne=ni. Эти дополнительные условия просто выражают сохранение заряда и сохранение атомов.
Эти равенства верны, и мы в конце концов всегда используем их при решении реальных задач. Но нам нужно получить другое соотношение между этими величинами. Сделать это можно так. Обратимся снова к идее о том, что для отрыва электрона от атома требуется какое-то количество энергии, которую мы будем называть энергией ионизации и обозначать буквой W (чтобы новые формулы выглядели так же, как и раньше). Итак, W равна энергии, потребной для того, чтобы оторвать электрон от атома и получить ион. Мы снова убеждаемся, что число свободных электронов в единичном объеме «пара» равно произведению числа электронов в единичном объеме, связанных в атомах, на е в степени минус разность энергий связанного и свободного электронов, деленная на kT. Опять основное уравнение. Но как это записать? Число свободных электронов в единичном объеме, конечно, ne, потому что это определение nе. Ну, а что можно сказать о числе связанных в атоме электронов в единичном объеме? Общее число мест, отданных электронам, равно nа+ni;, и мы предположим, что когда все электроны связаны, то каждому отводится некоторый объем Va. Таким образом, полный атомный объем, занимаемый связанными электронами, равен (na+ni)Va, и нашу формулу теперь можно записать в виде
Но формула эта неверна. Мы упустили из вида одно существенное обстоятельство: когда один электрон попал в атом, другой электрон уже не может проникнуть в этот же объем! Иначе говоря, не все объемы из числа возможных доступны электрону, который раздумывает, куда бы ему отправиться — в пар или в конденсированное состояние. Здесь возникают непредвиденные осложнения, в силу которых электрон не может подойти близко к тому месту, где уже находится другой электрон — они отталкиваются. По этой причине мы должны считать только ту часть объема, в которой электрон может разместиться. Ведь те объемы, которые уже заняты, нельзя причислять к числу возможных, и только те объемы, которые предоставлены ионам, можно рассматривать как места, вакантные для электронов. Тогда, учтя это обстоятельство, мы найдем, что более точная формула записывается в виде
(42.7)
Эту формулу называют уравнением ионизации, или уравнением Саха. Теперь посмотрим, можем ли мы качественно понять, почему получается формула, подобная этой, если следить за кинетикой процесса.
Прежде всего время от времени, когда электрон сталкивается с ионом, они объединяются в атом. Точно так же время от времени атом испытывает столкновение и разваливается на ион и электрон. Скорости обоих процессов должны быть равны. А долго ли электрону и иону искать друг друга? Встречи, конечно, учащаются, если возрастает число электронов в единичном объеме. К этому же приводит и увеличение числа ионов в единичном объеме. Следовательно, полная скорость рекомбинации пропорциональна произведению числа электронов на число ионов. Далее, полная скорость ионизации в результате столкновений должна линейно зависеть от числа способных к ионизации атомов. Таким образом, скорости обоих процессов сбалансируются тогда, когда установится определенное соотношение между произведением neni и числом атомов na. Тот факт, что это соотношение выражается особой формулой, куда входит энергия ионизации W, дает, конечно, несколько большую информацию, но мы можем легко сообразить, что такая формула обязательно должна содержать концентрации электронов, ионов и атомов в комбинации neni/na, которая приводит к постоянной, не зависящей больше от чисел n, а только от температуры, атомных размеров и других постоянных.
Заметим также, что поскольку уравнение содержит числа в единичном объеме и если мы поставим два опыта с одним и тем же полным числом N атомов и ионов, т. е. со строго определенным числом ядер, но заключим их в ящики разных объемов, то числа n будут меньше для больших ящиков. Однако отношение neni/na должно оставаться постоянным, поэтому полное число электронов и ионов должно быть больше в большем ящике. Чтобы убедиться в этом, предположим, что в ящик объема V помещено N ядер и их f-я часть ионизована. Тогда ne=fN/V=ni и na=(1-f)N/V. В этом случае наше уравнение принимает вид
(42.8)
Иначе говоря, если мы берем все меньшую и меньшую плотность атомов или непрерывно увеличиваем объем ящика, относительное число электронов и ионов должно возрасти. То, что ионизация может быть вызвана просто «расширением», при котором плотность уменьшается, объясняет нам, почему при очень малых плотностях (какие встречаются в холодном межзвездном пространстве) много ионов, хотя это трудно понять, учитывая имеющуюся в нашем распоряжении энергию. Энергия во много-много раз больше kT, но ионы все равно есть.
Почему же ионы могут существовать лишь при условии, что вокруг них имеется много места, тогда как при увеличении плотности они стремятся исчезнуть? Ответ: Все дело в атомах. Время от времени свет или другой атом, или ион, или еще что-то, что поддерживает тепловое равновесие, разрушает атомы. Очень редко, потому что для этого требуются огромные количества избыточной энергии, электрон отрывается и происходит превращение атома в ион. Если пространства огромны, то электрон слоняется очень долго, быть может много лет и ничего не встречает. Но однажды он находит ион, и тогда они объединяются в атом. Скорость, с которой электроны покидают атомы, очень мала. Но если объем огромен, то сбежавший электрон так долго ищет ион, с которым он мог бы рекомбинировать, что вероятность рекомбинации совсем ничтожна; поэтому, несмотря на то, что для ионизации нужны большие излишки энергии, число электронов может быть вполне ощутимым.
§ 4. Химическая кинетика.
При химических реакциях происходит нечто похожее на «ионизацию». Например, два вещества А и В комбинируют в основном веществе АВ; тогда, подумав немного, мы можем АВ назвать атомом (В — то, что мы называем электроном, а А — то, что мы называем ионом). После такой замены, как и раньше, можно написать уравнение равновесия
(42.9)
Эта формула, конечно, неточна, потому что «постоянная» с зависит от того, в каком объеме позволено объединяться А и В и т. п., но, обратясь к термодинамическим аргументам, можно придать смысл величине W в экспоненциальном множителе, и тогда окажется, что она тесно связана с энергией, необходимой для реакции.
Попробуем понять эту формулу как результат столкновений, приблизительно так же, как мы постигали формулу испарения, подсчитывая электроны, вырывающиеся в пространство, и те, которые возвращаются назад за единицу времени. Предположим, что при столкновениях А и В иногда образуют соединение АВ. И предположим еще, что АВ — это сложная молекула, которая участвует в общей пляске и по которой ударяют другие молекулы, причем время от времени она получает энергию, достаточную для того, чтобы взорваться и снова развалиться на части А и В.
Заметим, что в химических реакциях дело обстоит так, что если сближающиеся атомы имеют слишком малую энергию, то, хотя этой энергии и достаточно для реакции А+В→АВ, факт соударения атомов А и В еще не обязательно означает начало реакции. Обычно требуется, чтобы соударение было более «жестким», «мягкого» соударения между А и В может оказаться недостаточно для начала реакции, даже если в процессе освобождается достаточное для реакции количество энергии. Предположим, что общей чертой химических реакций является требование, по которому для объединения А и В в АВ недостаточно простого соударения, а нужно, чтобы они столкнулись, имея определенное количество энергии. Эта энергия называется энергией активации, т. е. энергия, нужная для «активации» реакции. Пусть А*— тот избыток энергии, который необходим, чтобы столкновения могли вызвать реакцию. Тогда скорость Rf, с которой А и В порождают АВ, должна содержать произведение числа атомов А и B, умноженное на скорость, с которой отдельный атом ударяется о некоторую площадку величиной σAB, и на величину ехр(-A*/kT) (вероятность того, что атомы обладают достаточной энергией):
(42.10)
Теперь надо найти скорость обратного процесса Rr. Есть некоторая вероятность, что А и В снова разойдутся. Чтобы разойтись, им недостаточно энергии W, которая обеспечит их раздельное существование. Но раз молекулам нелегко соединиться, должен существовать некий барьер, через который А и В должны перевалить, чтобы разлететься. Они должны запастись не только нужной для их существования энергией, но и взять кое-что про запас. Получается что-то вроде подъема на холм перед спуском в долину; сначала приходится вскарабкаться на высоту, потом спуститься, и только после этого разойтись (фиг. 42.1).
Фиг. 42.1. Соотношение энергий в реакции А+В→АВ.
Таким образом, скорость перехода АВ в А и В пропорциональна произведению nАВ — начальному числу молекул АВ на ехр[-(W+A*)/kT]:
(42.11)
Постоянная с' складывается из объема атомов и частоты столкновений; ее можно получить, как и в случае испарения, перемножая площадь и толщину слоя, но сейчас мы этого делать не будем. Сейчас нас больше интересует тот факт, что, когда эти скорости равны, их отношение равно единице. Это говорит о том, что, как и раньше, (nAnB/nAB)=cехр(-W/kT), где с содержит сечения, скорости и другие множители, не зависящие от чисел n. Интересно, что скорость реакции по-прежнему изменяется как ехр(-const/kT), хотя эта постоянная уже не имеет никакого отношения к той, с которой мы встречались в задаче о концентрациях; энергия активации А* сильно отличается от энергии W. Энергия W регулирует пропорции А, В и АВ, при которых устанавливается равновесие, но если нам захочется узнать, быстро ли А+В переходит в АВ, то это уже к равновесию отношения не имеет, и появляется уже другая энергия, энергия активации, которая с помощью экспоненты управляет скоростью реакции.
Кроме того, A* не является фундаментальной постоянной, как W. Предположим, что реакция происходит на поверхности стены, или на какой-нибудь другой поверхности, тогда А и В могут растечься по ней так, что объединение в АВ будет для них более легким делом. Иначе говоря, сквозь гору можно прорыть «туннель» или срыть вершину горы. В силу сохранения энергии, по какому бы пути мы ни шли, результат будет один: из А и В получится АВ, так что разность энергий W не зависит от пути, по которому идет реакция, однако энергия активации А*очень сильно зависит от этого пути. Вот почему скорости химических реакций столь чувствительны к внешним условиям. Можно изменить скорость реакции, изменив поверхность, с которой соприкасаются реактивы, можно изготовить «набор бочонков» и подбирать с его помощью любые скорости, если они зависят от свойств поверхности. Можно внести в среду, в которой происходит реакция, третий предмет; это также может сильно изменить скорость реакции, такие вещества при незначительном изменении А* иногда чрезвычайно влияют на скорость реакции; их называют катализаторами. Реакции может практически не быть совсем, потому что А* слишком велика для заданной температуры, но если добавить это специальное вещество — катализатор, то реакция протекает очень быстро, потому что А* уменьшается.
Между прочим, эта реакция А плюс В, дающая АВ, доставляет немало волнений. Ведь невозможно сохранить сразу и энергию, и импульс, пытаясь подогнать два предмета друг к другу, чтобы сделать из них один более устойчивый. Следовательно, необходим по крайней мере третий предмет С и реальная реакция выглядит гораздо сложнее. Скорость прямого процесса должна содержать произведение nAnBnC, и можно подумать, что наша формула становится неверной, но это не так! Если мы начнем искать скорость развала АВ, то выясним, что этой молекуле еще надо столкнуться с С, поэтому скорость обратной реакции пропорциональна nABnC и из формулы для равновесных концентраций nC выпадает. Правильность закона равновесия (42.9), который мы написали прежде всего, абсолютно гарантирована независимо от любого возможного механизма реакции!
§ 5. Законы излучения Эйнштейна
Обратимся теперь к интересной задаче, похожей на только что описанную и связанную с законом излучения черного тела. В предыдущей главе мы разбирали вывод закона распределения излучения в полости по способу Планка, рассматривая излучение осциллятора. Осциллятор обладает определенной средней энергией, а раз он осциллирует, то должен и излучать и накачивать излучение в полость, пока она не заполнится как раз таким количеством излучения, которое нужно для поддержания равновесия между излучением и поглощением. Рассуждая таким образом, мы нашли, что интенсивность излучения частоты ω задается формулой
(42.12)
Этот вывод содержит предположение, что генерирующий излучение осциллятор обладает определенными уровнями энергии, отстоящими друг от друга на равном расстоянии. Мы не говорили о том, что свет состоит из фотонов или чего-то вроде этого. Мы даже не задавали вопроса, каким способом при переходе атома с одного уровня энергии на другой переносится единичная энергия ℏω в виде света. Первоначальная идея Планка состояла в том, что вещество квантовано, а свет — нет: осциллятор не может получать любую энергию, а должен принимать ее порциями. Вызывает еще беспокойство то, что способ вывода — полуклассический. Мы вычислили скорость излучения осциллятора, исходя из законов классической физики, а потом забыли об этом и сказали: «Нет, этот осциллятор имеет много уровней энергии». Но для последовательно строгого вывода этой чисто квантовой формулы пришлось пройти длинный путь, завершившийся в 1927 г. созданием квантовой механики. А тем временем Эйнштейн попытался заменить точку зрения Планка, что квантованы только материальные осцилляторы, идеей о том, что свет в действительности состоит из фотонов и его следует в определенном смысле понимать как газ из частиц с энергией ℏω. Далее, Бор обратил внимание на то, что любая система атомов имеет уровни энергии, но расстояния между ними не обязательно постоянны, как у осцилляторов Планка. Поэтому возникла необходимость пересмотреть вывод или хотя бы более точно исследовать закон излучения, исходя из более последовательной квантовомеханической точки зрения.
Эйнштейн предположил, что окончательная формула Планка правильна и использовал ее для получения новой, ранее неизвестной информации о взаимодействии излучения с веществом. Он рассуждал так: надо рассмотреть любые два из возможных уровней энергии атома, скажем, m-й и n-й уровни (фиг. 42.2).
Фиг. 42.2. Переход между двумя уровнями энергии атома.
Затем Эйнштейн предположил, что, когда атом освещается светом подходящей частоты, он может поглотить фотон, перейдя из состояния n в состояние m, и вероятность такого перехода за 1 сек пропорциональна интенсивности освещающего атом света и еще зависит от того, какие уровни мы возьмем.
Назовем постоянную пропорциональности Bnm, чтобы помнить, что это не универсальная постоянная природы и зависит она от того, какую пару уровней мы выберем: некоторые уровни возбудить легко, а другие возбуждаются с большим трудом. Теперь надо найти формулу, описывающую скорость перехода из m в n. Эйнштейн предположил, что она складывается из двух частей. Даже если внешнего излучения нет, существует вероятность того, что атом, излучив фотон, перейдет из возбужденного состояния в состояние с меньшей энергией. Это так называемое спонтанное излучение.
Это предположение аналогично идее о том, что даже классический осциллятор, обладая определенной энергией, не может ее сохранить; излучение неизбежно вызывает потерю энергии. Таким образом, по аналогии со спонтанным излучением классических систем существует определенная вероятность Amn (она опять зависит от уровней), с которой атом переходит из состояния m в состояние n, и эта вероятность не зависит от того, освещается атом светом или нет. Но Эйнштейн пошел еще дальше и, сравнив с классической физикой и используя другие аргументы, пришел к заключению, что излучение зависит от наличия света вокруг. Когда атом освещается светом подходящей частоты, то вероятность излучения фотона возрастает пропорционально интенсивности света с постоянной пропорциональности Bmn. Если бы нам удалось выяснить, что этот коэффициент равен нулю, то мы уличили бы Эйнштейна в ошибке. Но, конечно, мы увидим, что он был прав.
Итак, Эйнштейн предположил, что существует три сорта процессов: поглощение, пропорциональное интенсивности света, излучение, пропорциональное интенсивности света (его называют индуцированным излучением, или вынужденным излучением), и спонтанное излучение, не зависящее от интенсивности света.
Предположим теперь, что при температуре Т установилось равновесие, и в состоянии n находится некоторое количество атомов Nn, а в состоянии m — некоторое количество атомов Nm. Тогда полное число атомов, переходящих из n в m, равно произведению числа атомов в состоянии n на скорость перехода одного атома из состояния n в состояние m. Таким образом, мы получили формулу для числа атомов, переходящих за 1 сек из n в m:
(42.13)
Число атомов, переходящих из m в n, получается точно таким же способом: надо умножить число атомов в состоянии m на скорость перехода одного атома. На этот раз получаемое выражение выглядит так:
(42.14)
Теперь предположим, что при тепловом равновесии число атомов, поднимающихся на верхний уровень, должно быть равно числу атомов, спускающихся вниз. Это по крайней мере один из способов удержать число атомов на каждом уровне постоянным[32]. Следовательно, при равновесии мы считаем обе скорости равными. Но у нас в запасе есть еще кое-какая информация: мы знаем, насколько велико Nm по сравнению с Nn; отношение этих чисел равно ехр[—(Em-En)/kT]. После этого Эйнштейн предположил, что частота света, который вовлекается в игру при переходах из m в n, соответствует разности энергий, так что во всех наших формулах Еm-Еn=ℏω. Итак,
(42.15)
Таким образом, если приравнять две скорости: NnBmnI(ω)=Nm[Amn+BmnI(ω)] и поделить на Nm, то мы получим
(42.16)
Из этого выражения можно найти I(ω). Это просто:
(42.17)
Но Планк уже сказал нам, что формула должна иметь вид (42.12). Следовательно, мы можем сделать кое-какие выводы: прежде всего Bmn должно быть равно Bnm, потому что иначе ехр(ℏω/kT)-1 не получить. Таким образом, Эйнштейн открыл некоторые соотношения, прямого вывода которых он не знал, например, что вероятности вынужденного излучения и поглощения должны быть равны. Это интересно. Кроме того, чтобы (42.17) и (42.12) согласовались,
(42.18)
Значит, если известна, скажем, скорость поглощения для заданного уровня, то можно получить скорость спонтанного излучения и скорость вынужденного излучения или какую-нибудь комбинацию этих величин.
Больше этого на основании столь общих предположений ни Эйнштейн, ни вообще кто-либо получить не сможет. Чтобы действительно вычислить абсолютную скорость спонтанного излучения или вообще любую скорость специфически атомного перехода, нужно знать все скрытые механизмы атома. Этому учит так называемая квантовая электродинамика, открытая лишь одиннадцать лет спустя. А Эйнштейн предсказал все это в 1916 г.
Возможность вынужденного излучения в наши дни нашла интересное применение. Если есть свет, то он стремится вызвать переход сверху вниз. Тогда этот переход может увеличить энергию света на ℏω, если найдутся такие атомы, у которых занят верхний уровень. Можно разработать нетепловой метод приготовления газа, в котором число состояний m гораздо больше числа состояний n. Газ будет очень далек от равновесия, и формулу ехр(-ℏω/kT), верную для равновесия, к нему применить нельзя. Можно добиться даже, чтобы число занятых верхних состояний было очень большим, тогда как число атомов в нижнем состоянии практически будет равно нулю. Тогда свет с частотой, соответствующей разности энергий Em-Еn, будет поглощаться очень слабо, потому что атомов, находящихся в состоянии n и способных поглотить его, очень мало. С другой стороны, когда газ из таких атомов освещен, то свет вызывает излучение из верхнего состояния! Таким образом, если в верхнем состоянии находится много атомов, то начинается что-то вроде цепной реакции, когда атомы вдруг начинают излучать; более того, они вынуждены излучать и все разом проваливаются в нижнее состояние. Так работает лазер, а если излучаются инфракрасные волны, то их источник называют мазером.
Чтобы загнать атомы в состояние m, прибегают к разным ухищрениям. Может существовать более высокий уровень, на который атомы можно поднять сильным пучком света высокой частоты. С этого высокого уровня атомы падают вниз, испуская самые различные фотоны, пока не соберутся на уровне m. Если атомы стремятся задержаться на уровне m, не излучая фотонов, то этот уровень называют метастабильным. А потом атомы разом спрыгивают с уровня m, сопровождая прыжок вынужденным излучением. Еще одна техническая деталь — если поместить нашу систему в обычный ящик, то она может спонтанно излучать во многих направлениях, что наносит ущерб вынужденному излучению. Но можно усилить эффект вынуждения и увеличить его значение, поставив у каждой стенки ящика почти полностью отражающие зеркала; тогда излученный свет получает шанс вызвать дополнительное излучение, следующее отражение добавит еще один такой шанс, а потом еще, еще и еще. Хотя зеркала отражают почти весь свет, существует небольшая вероятность прохождения части света сквозь зеркало и выхода наружу. В конце концов весь свет, подчиняясь закону сохранения энергии, выйдет наружу в виде тонкого, сильного пучка. Так и получают мощные пучки света в лазерах
Фиг. 42.3. При возбуждении голубым светом атом поднимается на высший уровень h и, быстро испустив фотон, сваливается с него на уровень m. Когда число атомов в состоянии m становится достаточно большим, возникает действие лазера.