Том 2. Электромагнетизм и материя — страница 14 из 45

§ 1. Векторный потенциал

В этой главе мы продолжим разговор о магнитостатике, т. е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:

(14.1)

и

(14.2)

На этот раз нам нужно решить эти уравнения математически самым общим образом, а не ссылаться на какую-нибудь особую симметрию или на интуицию. В электростатике мы нашли прямой способ вычисления поля, когда известны положения всех электрических зарядов: скалярный потенциал φ дается просто интегралом по зарядам, как в уравнении (4.25) на стр. 77. Если затем нужно знать электрическое поле, то его получают дифференцированием φ. Мы покажем сейчас, что для нахождения поля В существует аналогичная процедура, если известна плотность тока j всех движущихся зарядов.

В электростатике, как мы видели (из-за того, что rot от Е везде равен нулю), всегда можно представить Е в виде градиента от скалярного поля φ. А вот rot от Вне везде равен нулю, поэтому представить его в виде градиента, вообще говоря, невозможно. Однако дивергенцияВ везде равна нулю, а это значит, что мы можем представить В в виде ротора от другого векторного поля. Ибо, как мы видели в гл. 2, § 8, дивергенция ротора всегда равна нулю. Следовательно, мы всегда можем выразить В через поле, которое мы обозначим А:

(14.3)

Или, расписывая компоненты:

(14.4)

Запись B=∇×A гарантирует выполнение (14.1), потому что обязательно

Поле А называется векторным потенциалом.

Вспомним, что скалярный потенциал φ оказывается не полностью определенным. Если мы нашли для некоторой задачи потенциал φ, то всегда можно найти столь же хороший другой потенциал φ', добавив постоянную:

Новый потенциал φ' дает те же электрические поля, потому что градиент ∇С есть нуль; φ' и φ отвечают одной и той же картине.

Точно так же у нас может быть несколько векторных потенциалов А, приводящих к одним и тем же магнитным полям. Опять-таки, поскольку В получается из А дифференцированием, то прибавление к А константы не меняет физики дела. Но для А свобода больше. Мы можем добавить к А любое поле, которое есть градиент от некоторого скалярного поля, не меняя при этом физики. Это можно показать следующим образом. Пусть у нас есть А, которое в какой-то реальной задаче дает правильное поле В. Спрашивается, при каких условиях другой векторный потенциал А', будучи подставлен в (14.3), дает то же самое поле В. Значит, А и А' имеют одинаковый ротор

Поэтому

Но если ротор вектора есть нуль, то вектор должен быть градиентом некоторого скалярного поля, скажем ψ, так что А'-A=∇ψ. Это означает, что если А есть векторный потенциал, отвечающий данной задаче, то при любом ψ

(14.5)

также будет векторным потенциалом, в одинаковой степени удовлетворяющим данной задаче и приводящим к тому же полю В.

Обычно бывает удобно уменьшить «свободу» А, накладывая на него произвольно некоторое другое условие (почти таким же образом мы считали удобным — довольно часто — выбирать потенциал φ равным нулю на больших расстояниях). Мы можем, например, ограничить А, наложив на него такое условие, чтобы дивергенция А чему-нибудь равнялась. Мы всегда можем это сделать, не задевая В. Так получается потому, что, хотя А' и А имеют одинаковый ротор и дают одно и то же В, они вовсе не обязаны иметь одинаковую дивергенцию. В самом деле, ∇·A'=∇·A+∇2ψ, и, подбирая соответствующее ψ, можно придать ∇·A' любое значение.

Чему следует приравнять ∇·А? Выбор должен обеспечить наибольшее математическое удобство и зависит от нашей задачи. Для магнитостатики мы сделаем простой выбор

(14.6)

(Потом, когда мы перейдем к электродинамике, мы изменим наш выбор.) Итак, наше полное определение[17] А в данный момент есть ∇×A=B и ∇·А=0.

Чтобы привыкнуть к векторному потенциалу, посмотрим сначала, чему он равен для однородного магнитного поля В0. Выбирая ось z в направлении В0, мы должны иметь

(14.7)

Рассматривая эти уравнения, мы видим, что одно из возможных решений есть

Или с тем же успехом можно взять

Еще одно решение есть комбинация первых двух

(14.8)

Ясно, что для каждого поля В векторный потенциал А не единственный; существует много возможностей.

Третье решение [уравнение (14.8)] обладает рядом интересных свойств. Поскольку x-компонента пропорциональна -y, а y-компонента пропорциональна +x, то вектор A должен быть перпендикулярен вектору, проведенному от оси z, который мы обозначим r' (штрих означает, что это не вектор расстояния от начала). Кроме того, величина А пропорциональна √(x2+y2) и, следовательно, пропорциональна r'. Поэтому А (для однородного поля) может быть записано просто

(14.9)

Векторный потенциал А равен по величине Br'/2, и вращается вокруг оси z, как показано на фиг. 14.1.

Фиг. 14.1. Однородное магнитное поле В, направленное по оси z, соответствует векторному потенциалу А (А=Вr'/2), который вращается вокруг оси z. т' — расстояние до оси z.


Если, например, поле В есть поле внутри соленоида вдоль его оси, то векторный потенциал циркулирует точно таким же образом, как и токи в соленоиде.

Векторный потенциал однородного поля может быть получен и другим способом. Циркуляция А вдоль любой замкнутой петли Γ может быть выражена через поверхностный интеграл от ∇×A с помощью теоремы Стокса [уравнение (3.38), стр. 63]

(14.10)

Но интеграл справа равен потоку В сквозь петлю, поэтому

(14.11)

Итак, циркуляция А вдоль всякой петли равна потоку В сквозь петлю. Если мы возьмем круглую петлю радиуса r' в плоскости, перпендикулярной однородному полю В, то поток будет в точности равен

Если выбрать начало отсчета в центре петли, так что А можно считать направленным по касательной и функцией только от r', то циркуляция будет равна

Как и раньше, получаем

В только что разобранном примере мы вычисляем векторный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.

§ 2. Векторный потенциал заданных токов

Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):

откуда, конечно, следует

Это уравнение для магнитостатики; оно похоже на уравнение

(14.13)

для электростатики.

Наше уравнение (14.12) для векторного потенциала станет еще более похожим на уравнение для φ, если переписать ∇×(∇×А), используя векторное тождество [см. уравнение (2.58) стр. 44]

(14.14)

Поскольку мы выбрали ∇·А=0 (и теперь вы видите, почему), уравнение (14.12) приобретает вид

(14.15)

Это векторное уравнение, конечно, распадается на три уравнения

и каждое из этих уравнений математически идентично уравнению

(14.17)

Все, что мы узнали о нахождении потенциала для известного ρ, можно использовать для нахождения каждой компоненты А, когда известно j!

В гл. 4 мы видели, что общее решение уравнения электростатики (14.17) имеет вид

Тогда мы немедленно получаем общее решение для Аx:

(14.18)

и аналогично для Ау и Az. (Фиг. 14.2 напоминает вам о принятых нами обозначениях для r12 и dV2.)

Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.


Мы можем объединить все три решения в векторной форме:

(14.19)

(Вы можете при желании проверить прямым дифференцированием компонент, что этот интеграл удовлетворяет ∇·А=0, поскольку ∇·j=0, а последнее, как мы видели, должно выполняться для постоянных токов.)

Мы имеем, таким образом, общий метод вычисления магнитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал φ, который был бы создан плотностью зарядов ρ, равной jx/c2, и аналогично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компонента А не связана таким же образом с «радиальной» компонентой j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую компоненту А, решая три воображаемые электростатические задачи для распределений заряда ρ1=jx2, ρ2=jу2 и ρ3=jz2. Затем мы находим В, вычислив разные производные от А, входящие в ∇×А. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.

§ 3. Прямой провод

В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, пользуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоянный ток I. В отличие от заряда в проводнике в случае электростатики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту.

Фиг. 14.3. Длинный цилиндрический провод с однородной плотностью тока j, направленный вдоль оси z.


По величине она равна

(14.20)

внутри провода и нулю вне его.

Поскольку jх и jy оба равны нулю, то сразу же получим

Чтобы получить Аz, можно использовать наше решение для электростатического потенциала φ от провода с однородной плотностью заряда ρ=jz2. Для точек вне бесконечного заряженного цилиндра электростатический потенциал равен

где r'=√(x2+y2), а λ — заряд на единицу длины πа2ρ. Следовательно, Аz должно быть равно

для точек вне длинного провода с равномерно распределенным током. Поскольку πа2jz=I, то можно также написать

(14.21)

Теперь можно найти В, пользуясь (14.4). Из шести производных от нуля отличны только две. Получаем

(14.22)

(14.23)

Мы получаем тот же результат, что и раньше: В обходит провод по окружности и по величине равен

(14.24).

§ 4. Длинный соленоид

Еще пример. Рассмотрим опять бесконечно длинный соленоид с током по окружности, равным nI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу длины, несущих каждый ток I, и пренебрегаем небольшими зазорами между витками.)

Точно так же, как мы выводили «поверхностную плотность заряда» σ, определим здесь «поверхностную плотность тока» J, равную току на единице длины по поверхности соленоида (что, конечно, есть просто среднее j, умноженное на толщину тонкой намотки). Величина J здесь равна nI.

Фиг. 14.4. Длинный соленоид с поверхностной плотностью тока J.


Этот поверхностный ток (фиг. 14.4) имеет компоненты

Мы должны теперь найти А для такого распределения токов.

Прежде всего найдем Ахв точках вне соленоида. Результат такой же, как электростатический потенциал вне цилиндра с поверхностным зарядом:

где σ0=-J/c2. Мы не решали случай такого распределения заряда, но делали нечто похожее. Это распределение заряда эквивалентно двум жестким цилиндрам, состоящим из зарядов, один из положительных, другой из отрицательных, с малым относительным смещением их осей в направлении у. Потенциал такой пары цилиндров пропорционален производной по у от потенциала одного однородно заряженного цилиндра. Мы, конечно, можем вычислить константу пропорциональности, но пока не будем возиться с этим.

Потенциал заряженного цилиндра пропорционален lnr'; потенциал пары тогда равен

Итак, мы знаем, что

(14.25)

где К — некоторая константа. Рассуждая точно так же, найдем

(14.26)

Хотя мы раньше говорили, что вне соленоида магнитного поля нет, теперь мы находим, что поле А существует и циркулирует вокруг оси z (см. фиг. 14.4). Возникает вопрос: равен ли нулю его ротор?

Очевидно, Вх и Вy равны нулю, а

Итак, магнитное поле вне очень длинного соленоида действительно равно нулю, хотя векторный потенциал нулю не равен.

Мы можем проверить наш результат, прибегнув к другим соображениям. Циркуляция векторного потенциала вокруг соленоида должна равняться потоку В внутри катушки [уравнение (14.11)]. Циркуляция равна А·2πr' или, поскольку А=К/r', она равна 2πК. Заметьте, что циркуляция не зависит от r'. Так и должно быть, если В вне соленоида отсутствует, потому что поток есть просто величина Ввнутри соленоида, умноженная на πа2. Он один и тот же для всех окружностей с радиусом r'>а. Раньше мы нашли, что поле внутри равно nI0c2, поэтому мы можем определить константу К:

или

Итак, векторный потенциал снаружи имеет величину

(14.27)

и всегда перпендикулярен вектору r'.

Мы говорили о соленоидальной катушке из проволоки, но такое же поле мы могли бы создать, вращая длинный цилиндр с электростатическим зарядом на поверхности. Если у нас есть тонкий цилиндрический слой радиуса а с поверхностным зарядом σ, то вращение цилиндра образует поверхностный ток Jv, где v=aω — скорость поверхностного заряда. Внутри цилиндра тогда будет магнитное поле Baω/ε0с2.

Теперь можно поставить интересный вопрос. Предположим, что перпендикулярно к оси цилиндра мы поместили короткий отрезок проволоки W от оси до поверхности и прикрепили ее к цилиндру так, что проволока вращается вместе с ним (фиг. 14.5).

Фиг. 14.5. Вращающийся заряженный цилиндр создает внутри себя магнитное поле. Короткая проволока, закрепленная вдоль радиуса, вращаясь вместе с цилиндром, приобретает на своих концах индуцированные заряды.


Эта проволока движется в магнитном поле, так что сила v×B приведет к тому, что концы проволоки зарядятся (они будут заряжаться до тех пор, пока поле Е зарядов не уравновесит силы v×B). Если цилиндр заряжен положительно, то конец проволоки вблизи оси будет иметь отрицательный заряд. Измеряя заряд на конце проволоки, мы могли бы определить скорость вращения системы. Мы получили бы «угловой скоростемер» (или «угловой ситометр»)!

Но вы, наверно, засомневаетесь: «А что, если я сам перейду,— скажете вы,— в систему координат вращающегося цилиндра? Там заряженный цилиндр покоится, а я знаю из электростатических уравнений, что внутри цилиндра никакого поля не будет, не будет и силы, толкающей заряды к центру. Поэтому здесь что-то не так?» Нет. Все правильно. «Относительности вращения» не существует. Вращающаяся система — не инерциальная система, и законы физики в ней другие. Мы должны пользоваться уравнениями электромагнетизма только в инерциальных системах координат.

Было бы здорово, если бы смогли измерить абсолютное вращение Земли с помощью такого заряженного цилиндра, но эффект, к несчастью, настолько мал, что его невозможно наблюдать даже с помощью самых тонких современных приборов.

§ 5. Поле маленькой петли; магнитный диполь

Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интересуют поля только на больших расстояниях по сравнению с размером петли. Как мы увидим, любая петелька представляет собой «магнитный диполь». Это значит, что она создает магнитное поле, подобное электрическому полю от электрического диполя.

Возьмем сначала прямоугольную петлю и выберем оси координат, как показано на фиг. 14.6.

Фиг. 14.6. Прямоугольная проволочная петля с током I. Чему равно магнитное поле в точке P? (R≫a и b).


Токов в направлении z нет, поэтому Az равно нулю. Есть токи в направлении х по обеим сторонам прямоугольника, длина которых а. В каждой стороне плотность тока и ток однородны. Поэтому решение для Ах в точности подобно электростатическому потенциалу от двух заряженных палочек (фиг. 14.7).

Фиг. 14.7. Распределение jxв проволочной петле о током, изображенной на фиг. 14.6.


Поскольку палочки имеют противоположные заряды, их электрический потенциал на больших расстояниях есть как раз дипольный потенциал (см. гл. 6, § 5). В точке Р на фиг. 14.6 потенциал равен

(14.28)

где р — дипольный момент распределения зарядов. В данном случае дипольный момент равен полному заряду на одной палочке, умноженному на расстояние между ними:

(14.29)

Дипольный момент смотрит в отрицательном направлении y, поэтому косинус угла между R и р равен —y/R (где у — координата Р). Итак, мы имеем

Заменяя λ на I/с2, сразу же получаем Ах:

(14.30)

С помощью тех же рассуждений:

(14.31)

Снова Ау пропорционально х, а Ах пропорционально —y, так что векторный потенциал (на больших расстояниях) идет по кругу вокруг оси z, циркулируя таким же образом, как ток I в петле (фиг. 14.8).

Фиг. 14.8. Векторный потенциал маленькой петли с током, расположенной в начале координат (в плоскости ху). Поле магнитного диполя.


Величина А пропорциональна Iab, т. е. току, умноженному на площадь петли. Это произведение называется магнитным дипольным моментом (или часто просто «магнитным моментом») петли. Мы обозначим его через μ:

(14.32)

Векторный потенциал маленькой плоской петельки любой формы (круг, треугольник и т. п.) также дается уравнениями (14.30) и (14.31), если заменить Iab на

(14.33)

Мы предоставляем вам право это доказать.

Нашему уравнению можно придать векторную форму, если определить вектор μ как нормаль к плоскости петли с положительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать

(14.34)

Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4), получаем

(14.35)

(под многоточием мы подразумеваем μ/4πε0с2),

Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравнения (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в применении к магнитному полю немного запутывает, потому что нет отдельных магнитных «полюсов», соответствующих электрическим зарядам. Магнитное «дипольное поле» создается не двумя «зарядами», а элементарной петлей с током.

В общем-то довольно любопытно, что, начав с совсем разных законов, ·Е=ρ/ε0 и ×В=j/ε0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако источники, конфигурацию которых мы описываем с помощью дипольных моментов, физически совершенно различны. В одном случае это циркулирующий ток, а в другом — пара зарядов, один над, а другой под плоскостью петли для соответствующего поля.

§ 6. Векторный потенциал цепи

Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упростить уравнения для магнитного поля.

Для тонкого провода элемент объема можно записать в виде

где S — площадь поперечного сечения провода, а ds — элемент расстояния вдоль проволоки. В самом деле, поскольку вектор ds имеет то же направление, что и j (фиг. 14.9), и мы можем предположить, что j постоянно по любому данному сечению, то можно записать векторное уравнение

(14.37)


Фиг. 14.9. Для тонкой проволоки jdV то же самое, что и Ids.


Ho jS — как раз то, что мы называем током I во всем проводе, так что наш интеграл для векторного потенциала (14.19) становится равным

(14.38)

(фиг. 14.10).

Фиг. 14.10. Магнитное поле провода может быть получено интегрированием по всей цепи.


(Мы предполагаем, что I одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)

Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую электростатическую задачу.

§ 7. Закон Био-Савара

В ходе изучения электростатики мы нашли, что электрическое поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]

Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него градиент.

Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:

А теперь мы должны быть осторожны. Оператор ротора означает взятие производных от А(1), т. е. он действует только на координаты (x1, y1, z1). Можно внести оператор × под интеграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только в

Мы получаем для x-компоненты В:

(14.41)

Величина в скобках есть просто x-компонента от

Такие же результаты получаются и для других компонент, и мы имеем

(14.42)

Интеграл дает В сразу через известные токи. Геометрия здесь точно такая же, какая изображена на фиг. 14.2.

Если токи текут только по тонким проводам, мы можем, как в предыдущем параграфе, немедленно взять интеграл поперек провода, заменив jdV на Ids, где ds — элемент длины провода. Тогда, пользуясь обозначениями фиг. 14.10, имеем

(14.43)

(Знак минус появляется потому, что мы изменили порядок векторного произведения.) Это уравнение для В называется законом БиоСавара в честь открывших его ученых. Он дает формулу для прямого вычисления магнитного поля, создаваемого проводами с током.

Вероятно, вы удивились: «Какой же прок от векторного потенциала, если мы можем сразу найти В в виде векторного интеграла? В конце концов А тоже определяется тремя интегралами!» Из-за векторного произведения интегралы для В обычно сложнее устроены, как это видно из уравнения (14.41). Кроме того, поскольку интегралы для А похожи на электростатические, то нам не надо их вычислять заново. Наконец, мы увидим, что в более трудных теоретических вопросах, таких, как теория относительности, в современном изложении законов механики, вроде принципа наименьшего действия, о котором будет рассказано позже, в квантовой механике, векторный потенциал играет важную роль.

Выпуск 6. Электродинамика