Повторить: гл. 20 «Решение уравнений Максвелла в пустом пространстве»
§ 1. Четырехмерный потенциал движущегося заряда
В предыдущей главе мы видели, что потенциал Aμ=(φ, А) является четырехвектором. Его временной компонентой служит скалярный потенциал φ, а тремя пространственными компонентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в момент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид
(26.1)
Уравнения (26.1) дают потенциалы в точке х, у, z в момент t, возникающие от движущегося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются координатами относительно переменного положения Р движущегося заряда (фиг. 26.1).
Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P' (т. е. положение в момент t'=t-r'/c).
Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время»[34].) Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потенциалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым образом. Вот как все это работает. Пусть у вас имеется заряд, движущийся каким-то произвольным образом, скажем, по траектории, изображенной на фиг. 26.2, и вы пытаетесь найти потенциал в точке (х, у, z).
Фиг. 26.2. Движение заряда по произвольной траектории. Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v' в запаздывающий момент t'=t-r'/с. Их удобно выражать через координаты относительно «проекционного» положения Pпр(истинным положением в момент t является точка Р).
Прежде всего вы находите запаздывающее положение Р' и скорость v' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображаемом положении Рпр, которое мы будем называть «проекционным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент t он находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, которые дали бы уравнения (26.1) для воображаемого заряда в проекционном положении Рпр. Мы хотим здесь сказать, что, поскольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоростью или изменяет его после момента t', т. е. после того, как потенциалы, которые возникнут в момент t в точке (х, у, z), уже определены.
Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпозиции мы можем получить потенциалы для любого распределения зарядов. Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очутитесь на необитаемом острове. Исходя из них, можно восстановить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)
Во-первых, Аμ — четырехвектор. Во-вторых, кулонов потенциал любого покоящегося заряда равен q/4πε0r. В-третьих, потенциал, созданный зарядом, движущимся произвольным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что Аμ — четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал заряда, движущегося с постоянной скоростью. Затем из последнего утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положение, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.
Иногда кое-кто безответственно заявляет, что вся электродинамика может быть получена только из преобразований Лоренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скалярный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потенциалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, почему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поляЕ и Взависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они зависят только от положения и скорости в запаздывающий момент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траектории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, если посмотреть внимательнее.)
§ 2. Поля точечного заряда, движущегося с постоянной скоростью
Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются буквально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.
Поля мы будем находить по обычным правилам, исходя из потенциалов
Возьмем сначала Ez:
Но компонента Az равна нулю, а дифференцирование выражения (26.1) для φ дает
(26.2)
Аналогичная процедура для Еу приводит к
(26.3)
Немного больше работы с x-компонентой. Производная от φ более сложна, да и Ах не равна нулю. Давайте сначала вычислим —∂φ/∂x:
(26.4)
А затем продифференцируем Ах по t:
(26.5)
И, наконец, складывая их, получаем
(26.6)
Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем
Но, поскольку Аy равна нулю, у нас остается только одна производная. Заметьте, однако, что Ах просто равна vφ, а производная (d/dy)vφ равна —vEy. Так что
( 26.7)
Аналогично,
или
(26.8)
Наконец, компонента Вх равна нулю, поскольку равны нулю и Ау и Аz. Таким образом, магнитное поле можно записать в виде
(26.9)
Теперь посмотрим, как выглядят наши поля. Мы попытаемся нарисовать картину поля вокруг положения заряда в настоящий момент. Конечно, влияние заряда в каком-то смысле происходит из запаздывающего положения, но, поскольку мы имеем дело со строго заданным движением, запаздывающее положение однозначно определяется положением в настоящий момент. При постоянной скорости заряда поля лучше связывать с текущими координатами, ибо компоненты поля в точке х, у, z зависят только от (х-vt), у и z, которые являются компонентами вектора перемещения rp из постоянного положения заряда в точку (х, у, z) (фиг. 26.3).
Фиг. 26.3. Электрическое поле заряда, движущегося с постоянной скоростью, направлено по радиусу от истинного положения заряда.
Рассмотрим сначала точки, для которых z=0. Поле Е в этих точках имеет только х- и y-компоненты. Из уравнений (26.3) и (26.6) видно, что отношение этих компонент как раз равно отношению х- и y-компонент вектора перемещения. Это означает, что направление Е совпадает с направлением rp, как это показано на фиг. 26.3. Тот же результат остается справедливым и для трех измерений, поскольку Ez пропорционально z. Короче говоря, электрическое поле заряда радиально и силовые линии расходятся от заряда так же, как и в стационарном случае. Конечно, вследствие наличия дополнительного фактора (1-v2) поле не будет тем же самым, что в стационарном случае. Но здесь мы можем увидеть нечто очень интересное. Дело обстоит так, как будто вы пишете закон Кулона в особой системе координат, «сжатой» вдоль оси x множителем √(1-v2). Если вы сделаете это, то силовые линии впереди и позади заряда разойдутся, а по бокам сгустятся (фиг. 26.4).
Фиг. 26.4. Электрическое поле заряда. а — неподвижного, б — летящего с постоянной скоростью v=0,9 с.
Если мы связываем обычным образом напряженность поля Е с плотностью силовых линий, то видим, что поле впереди и позади заряда ослабевает, но зато по бокам становится сильнее, т. е. как раз то, о чем говорит нам уравнение. Когда вы измеряете напряженность поля под прямыми углами к линии движения, т. е. при (x-vt)=0, расстояние от заряда будет равно y2+z2, а полная напряженность √(Ez2+Ey2) в этих точках равна
(26.10)
Она, как и в случае кулонова поля, пропорциональна квадрату расстояния, но еще усиливается постоянным множителем 1/√(1-v2), который всегда больше единицы. Таким образом, по бокам движущегося заряда электрическое поле сильнее, чем это следует из закона Кулона. Фактически увеличение по сравнению с кулоновым потенциалом равно отношению энергии частицы к ее массе покоя.
Впереди заряда (или позади него) у и z равны нулю, а поэтому
(26.11)
Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1-v2), что согласуется с картиной силовых линий. Если v/c мало, то v2/c2 еще меньше, и действие (1-v2) почти незаметно, поэтому мы снова возвращаемся к закону Кулона. Но если частица движется со скоростью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.
Наш результат, относящийся к электрическому полю заряда, можно представить и так. Предположим, что вы на клочке бумаги нарисовали силовые линии покоящегося заряда, а затем эту картину запустили со скоростью v2. Тогда благодаря лоренцеву сокращению рисунок сожмется, т. е. частички графита на бумаге будут казаться нам расположенными в других местах. Но чудо состоит в том, что в результате на пролетающем мимо листочке вы увидите точную картину силовых линий точечного движущегося заряда. Лоренцево сокращение сблизит их по бокам, раздвинет перед зарядом и позади него как раз настолько, чтобы получить нужную плотность. Мы уже отмечали, что силовые линии — это не реальность, а лишь способ представить себе электрическое поле. Однако здесь они ведут себя как самые настоящие реальные линии. В этом частном случае, если вы и сделали ошибку, рассматривая силовые линии как нечто реальное и преобразуя их как реальные линии в пространстве, поле в результате все равно получилось бы правильным. Однако от этого силовые линии не станут более реальными. Вспомните об электрическом поле, создаваемом зарядом вместе с магнитом; когда магнит движется, он создает новое электрическое поле и разрушает всю нашу прекрасную картину. Так что простая идея сокращающейся картинки, вообще говоря, не годится. Но все же это очень удобный способ запомнить, как выглядит поле быстро движущегося заряда.
Магнитное поле [из уравнения (26.9)] равно v×E. Когда вы векторно помножите скорость на радиальное поле Е, то получите поле В, силовые линии которого представляют окружности вокруг линии движения (фиг. 26.5).
Фиг. 26.5. Магнитное поле вблизи движущегося заряда равно v×E (ср. с фиг. 26.4).
Если же теперь мы подставим обратно все с, то вы убедитесь, что результат получился тот же, что и для медленно движущихся зарядов. Хороший способ установить, куда должны войти с, — это вспомнить формулу для силы:
Вы видите, что произведение скорости на магнитное поле имеет ту же размерность, что и электрическое поле, так что в правой части (26.9) должен стоять множитель 1/с2, т. е.
(26.12)
Для медленно движущегося заряда (v≪с) поле можно считать кулоновым, и тогда
(26.13)
Эта формула в точности соответствует магнитному полю тока, которое было найдено в гл. 14 (вып. 5).
Попутно мне хотелось бы отметить кое-что весьма интересное просто для того, чтобы вы об этом подумали. (К обсуждению этого мы еще вернемся, но несколько позже.) Представьте себе два электрона, скорости которых перпендикулярны, так что пути их пересекаются, однако электроны не сталкиваются; один из них успевает проскочить перед другим. В какой-то момент их относительное положение будет таким, как изображено на фиг. 26.6, а.
Фиг. 26.6. Силы между двумя движущимися зарядами не всегда равны и противоположны. «Действие», оказывается, не равно «противодействию».
Рассмотрим теперь силы, с которыми q2 действует на q1, и наоборот. На q2 со стороны q1 действует только электрическая сила, ибо q1 на линии своего движения не создает магнитного поля. Однако на q1, кроме электрического поля, действует еще и магнитное, так что он движется и в магнитном поле, создаваемом зарядом q2. Все эти силы показаны на фиг. 26.6, б. Электрические силы, действующие на q1 и q2, равны по величине и противоположны по направлению. Однако на q1 еще действует и боковая (магнитная) сила, которой и в помине нет у q2. Равно ли здесь действие противодействию? Поломайте голову над этим вопросом.
§ 3. Релятивистское преобразование полей
В предыдущем параграфе мы вычисляли электрическое и магнитное поля, исходя из трансформационных свойств потенциалов. Но, несмотря на приведенные ранее аргументы в пользу физического смысла и реальности потенциалов, поля все же важнее. Они тоже реальны, и для многих задач было бы удобно иметь способ вычисления полей в движущейся системе, если поля в некоторой «покоящейся» системе уже известны. Мы имеем законы преобразования для φ и А, поскольку Аμ представляет собой четырехвектор. Теперь нам хотелось бы найти законы преобразования Е и В. Пусть мы знаем векторы Е и В в одной системе отсчета. Как же они выглядят в другой системе, движущейся относительно первой? Здесь-то нам и понадобятся преобразования. Конечно, мы всегда можем сделать это через потенциал, но иногда удобно уметь преобразовывать поля непосредственно. Сейчас мы увидим, как это делается.
Как можно найти закон преобразования полей? Нам известны законы преобразования φ и А, и мы знаем, как выражаются поля через φ и А, так что отсюда нетрудно найти преобразования для Е и В. (Вы можете подумать, что у каждого вектора есть нечто, дополняющее его до четырехвектора, так что, например, с вектором Е можно связать некую величину, которая сделает его четырехвектором. То же самое относится и к В. Увы, это не так. Все оказывается совершенно непохожим на то, что можно было бы ожидать.) Для начала возьмем магнитное поле В, которое, конечно, равно ∇×A. Теперь мы знаем, что х-, у- и z-компоненты векторного потенциала — это только одна часть, помимо них есть еще и t-компонента. Кроме того, мы знаем, что у аналога оператора ∇ наряду с производными по х, у и z есть также производная по t. Давайте же попытаемся найти, что получится, если мы произведем замену у на t, или z на t, или еще что-нибудь в этом духе.
Прежде всего обратите внимание на форму слагаемых, образующих компоненты В:
(26.14)
В слагаемые, образующие x-компоненту В, входят только z- и y-компоненты А. Предположим, мы назвали эту комбинацию производных и компонент «zy-штукой», или сокращенно Fzy. Мы просто имеем в виду, что
(26.15)
Подобной же «штуке» равна и компонента В, но на сей раз это будет «xz-штука», а Вz, разумеется, равна «yx-штуке». Таким образом,
(26.16)
Посмотрим теперь, что получится, если мы попытаемся смастерить «штуки» типа «t», т. е. Fxt или Ftz (ведь природа должна быть красива и симметрична по х, у, z и t). Что такое, например, Ftz? Разумеется, она равна
Но вспомните, ведь At=φ, поэтому предыдущее выражение равно
Такое выражение нам уже встречалось раньше. Это почти z-компонента поля Е. Почти, за исключением неверного знака. Впрочем, мы забыли, что в четырехмерном градиенте производная по t идет со знаком, противоположным производным по х, у и z. Так что на самом деле нам следует взять более умное обобщение, т. е. считать
(26.17)
Теперь она в точности равна — Еz. Так же можно построить Ftx и Fty и получить три выражения:
(26.18)
А что, если оба индекса внизу будут t? Или оба будут х? Тогда мы получим выражения типа
т. е. просто нуль.
Итак, у нас есть шесть таких «F-штук». Кроме них, есть еще шесть полученных перестановкой индексов, но они не дают ничего нового, ибо
и т. п. Таким образом, из шести возможных попарных комбинаций четырех значений индексов мы получили шесть различных физических объектов, которые представляют компонентыВ и Е.
Чтобы записать члены F в общем виде, мы воспользуемся обобщенными индексами μ и v, каждый из которых может быть 0, 1, 2 или 3, обозначающих соответственно (как и в обычных четырехвекторах) t, x, у или z. Кроме того, все будет прекрасно согласовываться с нашими четырехмерными обозначениями, если Fμv определить как
(26.19)
помня при этом, что
а
То, что мы нашли, можно сформулировать так: в природе существуют шесть величин, которые представляют различные стороны чего-то одного. Электрическое и магнитное поля, которые в нашем обычном медленно движущемся мире (где нас не беспокоит конечность скорости света) рассматривались как совершенно отдельные векторы, в четырехмерном пространстве уже не будут ими. Они — часть некоторой новой «штуки».
Наше физическое «поле» на самом деле шестикомпонентный объект Fμv. Вот как обстоит дело в теории относительности. Полученные результаты для Fμv собраны в табл. 26.1.
Таблица 26.1. КОМПОНЕНТЫ Fμv
Вы видите, что мы сделали фактически обобщение векторного произведения. Мы начали с ротора и с того факта, что его свойства преобразования в точности такие же, как свойства преобразования двух векторов — обычного трехмерного вектора А и оператора градиента, который, как нам известно, ведет себя подобно вектору. Возвратимся на минуту к обычному векторному произведению в трехмерном пространстве, например к моменту количества движения частицы. При движении частицы в плоскости важной характеристикой оказывается комбинация (xvy—yvx), а при движении в трехмерном пространстве появляются три подобные величины, которые мы назвали моментом количества движения:
Затем (хотя сейчас вы, может быть, об этом и забыли) мы сотворили в гл. 20 (вып. 2) чудо: эти три величины превратились в компоненты вектора. Чтобы сделать это, мы приняли искусственное соглашение: правило правой руки. Нам просто повезло. И повезло потому, что момент Lij (i и j равны х, у или z) оказался антисимметричным объектом, т. е.
Из девяти возможных его величин независимы лишь три. И вот оказалось, что при изменении системы координат эти три оператора преобразуются в точности, как компоненты вектора.
То же свойство позволяет записать в виде вектора и элемент поверхности. Элемент поверхности имеет две части, скажем dx и dy, которые можно представить вектором da, ортогональным к поверхности. Но мы не можем сделать этого же для четырех измерений. Что будет нормалью к элементу dxdy? Куда она направлена — по оси z или по t?
Короче говоря, для трех измерений оказывается, что комбинацию двух векторов типа Lij, к счастью, снова можно представить в виде вектора, поскольку возникают как раз три члена, которые, выходит, преобразуются подобно компонентам вектора. Для четырех измерений это, очевидно, невозможно, поскольку независимых членов шесть, а шесть величин вы никак не представите в виде четырех.
Однако даже в трехмерном пространстве можно составить такую комбинацию векторов, которую невозможно представить в виде вектора. Предположим, мы взяли какие-то два вектора a=(ах, ay, az) и b=(bx, by, bz) и составили всевозможные различные комбинации компонент типа axbx, axby и т. д. Всего получается девять возможных величин:
Эти величины можно назвать Тij.
Если теперь перейти в повернутую систему координат (скажем, относительно оси z), то при этом компоненты а и b изменяются. В новой системе ах должно быть заменено на
а by — на
Аналогичные вещи происходят и с другими компонентами. Девять компонент изобретенной нами величины Tij., разумеется, тоже изменяются. Например, Txy=ахbу переходит в
или
Каждая компонента T'ij — это линейная комбинация компонент Tij.
Итак, мы обнаружили, что из векторов можно сделать не только векторное произведение a×b, три компоненты которого преобразуют подобно вектору. Искусственно мы из двух векторов Tij можем сделать «произведение» другого сорта. Девять его компонент преобразуются при вращении по сложным правилам, которые можно выписать. Подобный объект, требующий для своего описания вместо одного индекса два, называется тензором. Мы построили тензор «второго ранга», но так же можно поступить и с тремя векторами и получить тензор третьего ранга, а из четырех векторов — тензор четвертого ранга и т. д. Тензором первого ранга является вектор.
Суть всего этого разговора в том, что наше электромагнитное поле Fμv — тоже тензор второго ранга, так как у него два индекса. Однако это уже тензор в четырехмерном пространстве. Он преобразуется специальным образом, и через минуту мы найдем его. Это просто произведение векторных преобразований. Если у тензора Fμv вы переставите индексы, то он изменит свой знак. Это особый вид тензора, и называется он антисимметричным. Иначе говоря, электрическое и магнитное поля являются частью антисимметричного тензора второго ранга в четырехмерном пространстве.
Вот какой мы прошли длинный путь. Помните, мы начали с определения, что такое скорость? А теперь мы уже рассуждаем о «тензоре второго ранга в четырехмерном пространстве».
Теперь нам нужно найти закон преобразования Fμv. Сделать это нетрудно — мороки только много,— шевелить мозгами особенно не нужно, а вот потрудиться все же придется. Единственное, что мы должны найти,— это преобразование Лоренца величины ∇μAv— ∇vAμ. Так как ∇μ — просто специальный случай вектора, то мы будем работать с общей антисимметричной комбинацией векторов, которую можно назвать Gμv:
(26.20)
(Для наших целей ам следует, в конце концов, заменить на ∇μ, а bμ —на потенциал Аμ.) Компоненты аμ и bμ преобразуются по формулам Лоренца:
(26.21)
Теперь преобразуем компоненты Gμv. Начнем с Gtx:
Но ведь это просто Gtx. Таким образом, мы получили простой результат
Возьмем еще одну компоненту:
Итак, получается
И, конечно, точно таким же образом
А теперь ясно, как ведут себя все остальные компоненты. Давайте составим таблицу преобразований всех шести членов; только теперь мы будем все писать для величин Fμv:
(26.22)
Разумеется, по-прежнему у нас F'μv=—F'μv, а F'μμ=0.
Итак, мы имеем преобразования электрических и магнитных полей. Единственное, что нам нужно сделать,— это заглянуть в табл. 26.1 и узнать, что означает для векторов Е и В преобразование, записанное для Fμv. Речь идет о простой подстановке. Чтобы можно было видеть, как это все выглядит в обычных символах, перепишем наши преобразования компонент поля в виде табл. 26.2.
Таблица 26.2. ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ПОЛЕЙ
Уравнения в этой таблице говорят нам, как изменяются Е и В при переходе от одной инерциальной системы к другой. Если известны Е и В в одной системе, то мы можем найти, чему они равны в другой, движущейся относительно нее со скоростью v.
Можно переписать эти уравнения в форме, более легкой для запоминания. Для этого заметьте, что поскольку скорость v направлена по оси х, то все компоненты с v представляют собой векторные произведения v×E и v×B. Так что преобразования можно записать в виде табл. 26.3.
Таблица 26.3. ДРУГАЯ ФОРМА ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
Теперь легко запомнить, какая компонента куда идет. Фактически эти преобразования можно записать даже еще проще, если ввести компоненты поля, направленные по оси х, т. е. «параллельные» компоненты E║ и В║ (которые параллельны относительной скорости систем S и S') и полные поперечные или «перпендикулярные» компоненты Е┴и В┴, т. е. векторную сумму у- и z-компонент. В результате мы получим уравнения, сведенные в табл. 26.4. (Для полноты мы восстановили все с.)
Таблица 26.4. ЕЩЕ ОДНА ФОРМА ЛОРЕНЦЕВЫХ ПРЕОБРАЗОВАНИЙ ПОЛЕЙ Е И В
Преобразования поля позволяют по-другому решить задачи, которыми мы занимались прежде, например найти поле движущегося точечного заряда. Раньше мы вычисляли поля, дифференцируя потенциалы. Но теперь то же самое можно сделать, преобразуя кулоново поле. Если у нас в системе S находится покоящийся заряд, то он создает только простое радиальное поле Е. В системе S', движущейся относительно системы S со скоростью v=-u, точечный заряд будет казаться нам летящим со скоростью и. Покажите сами, что преобразования табл. 26.3 и 26.4 дают те же самые электрические и магнитные поля, которые мы получили в § 2.
Преобразования табл. 26.2 дают нам очень интересный и простой ответ на вопрос: что мы видим, если движемся мимо любой системы фиксированных зарядов? Пусть нам хочется узнать поля в нашей системе S', если мы движемся между пластинами конденсатора вдоль него, как показано на фиг. 26.7. (Но, разумеется, все равно, если бы заряженный конденсатор двигался мимо нас.)
Фиг. 26.7. Система координат S' движется в статическом электрическом поле.
Что же мы увидим? Преобразования в этом случае облегчаются тем, что в первоначальной системе поле В отсутствует. Предположим сначала, что наше движение перпендикулярно к направлению Е, при этом мы увидим поле Е'=Е/√(1-v2/с2), которое остается полностью поперечным. Но мы еще увидим и магнитное поле В'=-v×E'/c2. (He удивляйтесь, что в этой формуле нет √(1-v2); ведь мы записали ее через Е', а не через Е; так тоже можно делать.) Итак, когда мы движемся в направлении, перпендикулярном к статическому полю, то видим измененное Е и вдобавок еще поперечное поле В. Если наше движение не перпендикулярно вектору Е, то мы разбиваем Е на Е║ и Е┴. Параллельная часть остается неизменной, E'║=E║, а что происходит с перпендикулярной компонентой, мы уже описали.
Давайте разберем противоположный случай и вообразим, что мы движемся через чисто статическое магнитное поле. На этот раз мы бы увидели электрическое поле Е', равное v×B', и магнитное поле, усиленное множителем 1/√(1-v2/с2) (предполагая, что оно поперечное). До тех пор, пока v много меньше с, изменением магнитного поля можно пренебречь, и основным эффектом будет появление электрического поля. В качестве примера этого эффекта рассмотрим некогда знаменитую проблему определения скорости самолета. Сейчас она уже больше не знаменита, поскольку для определения скорости можно использовать отражение от Земли сигналов радиолокатора. Но раньше в плохую погоду скорость самолета было очень трудно определить. Ведь вы не видите Землю и не можете сказать куда вы летите. А знать, насколько быстро вы движетесь относительно Земли, было важно. Как же это можно сделать, не видя ее? Те, кому были знакомы уравнения преобразования, считали, что нужно использовать тот факт, что самолет движется в магнитном поле Земли. Предположим, что самолет летит там, где магнитное поле нам более или менее известно. Возьмем простейший случай, когда магнитное поле вертикально. Если мы летим через него с горизонтальной скоростью v, то в соответствии с нашей формулой должны наблюдать электрическое поле v×B, т. е. перпендикулярное к направлению движения. Если поперек самолета подвесить изолированный провод, то электрическое поле на его концах будет индуцировать заряды. Ну в этом ничего нового нет. С точки зрения наблюдателя на Земле, мы просто передвигаем провод в магнитном поле, а сила q(v×B) заставляет заряд двигаться к концу провода. Уравнения преобразования говорят то же самое, но другими словами. (То, что одну и ту же вещь можно получить не одним, а несколькими способами, вовсе не означает, что один способ лучше другого. Мы овладели столькими методами и приемами, что один и тот же результат можем получать какими хотите способами!)
Итак, единственное, что мы должны сделать для определения скорости v,— это измерить напряжение между концами провода. Хотя для этой цели мы не можем воспользоваться вольтметром, ибо то же самое поле будет действовать и на провода внутри вольтметра, способы измерения таких полей все же существуют. О некоторых из них мы уже говорили в гл. 9 (вып. 5), когда рассказывали об атмосферном электричестве. Так что измерить скорость самолета, казалось бы, можно.
Однако эта важная проблема не была решена таким методом. Дело в том, что величина электрического поля, которое при этом развивается,— порядка нескольких милливольт на метр. Измерить такие поля, конечно, можно, но вся беда в том, что они ничем не отличаются от любых других электрических полей. Поля, создаваемые движением через магнитное поле, нельзя отличить от электрических полей, возникающих в воздухе по каким-то другим причинам (скажем, от электростатических зарядов в воздухе или на облаках). В гл. 9 мы говорили, что обычно над поверхностью Земли существуют электрические поля с напряженностью около 100 в/м, но они совершенно нерегулярные. Так что самолет во время полета будет наблюдать флуктуации атмосферных электрических полей, которые огромны по сравнению со слабенькими полями, возникающими из-за множителя v×B. Ввиду этих чисто практических причин измерить скорость самолета, используя его движение в магнитном поле Земли, невозможно.
§ 4. Уравнения движения в релятивистских обозначениях[35]
Полученные из уравнений Максвелла электрические и магнитные поля сами по себе не представляют особой ценности, если мы не знаем, что эти поля могут делать, на что они способны. Вы, вероятно, помните, что поля нужны для нахождения действующих на заряды сил и что именно эти силы определяют их движение. Так что связь движения зарядов с силами, разумеется, тоже есть часть электродинамики.
На отдельный заряд, находящийся в полях Е и В, действует сила
(26.23)
При небольших скоростях эта сила равна произведению массы на ускорение, но истинный закон, справедливый при любых скоростях, гласит: сила равна dp/dt. Подставляя p=m0v/√(1-v2/c2), находим релятивистское уравнение движения заряда:
(26.24)
Теперь мы хотим обсудить это уравнение с точки зрения теории относительности. Поскольку уравнения Максвелла записаны у нас в релятивистской форме, интересно посмотреть, как в релятивистской же форме выглядят уравнения движения. Посмотрим, можно ли переписать уравнения движения в четырехмерных обозначениях.
Мы знаем, что импульс есть часть четырехмерного вектора pμ с энергией m0/√(1-v2/с2) в качестве временной компоненты, так что мы надеемся заменить левую часть уравнения (26.24) на dpμ/dt. Теперь нам нужно найти только четвертую компоненту силы F. Эта компонента должна быть равна скорости изменения энергии или скорости совершения работы, т. е. F·v. Так что правую часть уравнения (26.24) желательно было бы записать в виде четырехвектора типа (F·v, Fx, Fy, Fz). Однако эти величины не составляют четырехвектора.
Производная четырехвектора по времени не будет больше четырехвектором, так как d/dt требует для измерения t некоторой специальной системы отсчета. С этой трудностью мы уже сталкивались раньше, когда пытались сделать четырехвектор из скорости v. Тогда мы попытались считать, что роль временной компоненты скорости играет cdt/dt=c. Но на самом деле величины
(26.25)
не образуют четырехвектора. После этого мы обнаружили, что их можно превратить в компоненты четырехвектора, если помножить каждую на 1/√(1-v2/с2). «Четырехмерной скоростью» uμ оказался вектор
(26.26)
Вот в чем фокус! Нужно умножать производную d/dt на 1/√(1-v2/с2), если мы хотим превратить ее компоненту в четырехвектор.
Итак, вторая гипотеза: четырехвектором должна быть величина
(26.27)
Но что такое v? Это уже скорость частицы, а не скорость системы координат! Таким образом, обобщением силы на четырехмерное пространство будет величина fμ:
(26.28)
которую мы назовем «4-силой». Она уже четырехвектор, и ее пространственными компонентами будут уже не F, а F/√(1-v2/c2).
Почему же fμ четырехвектор? Неплохо бы понять, что это за таинственный множитель 1/√(1-v2/с2). Так как мы встречаемся с ним уже второй раз, то самое время посмотреть, почему производная d/dt всегда должна входить с одним и тем же множителем. Ответ заключается вот в чем. Когда мы берем производную по времени некоторой функции х, то подсчитываем приращение Δх за малый интервал Δt переменной t. Но в другой системе отсчета интервал Δt может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Δх, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Δt, так и Δх, Δy, Δz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора хμ=(сt, х, у, z), так что, если определить величину Δs через
(26.29)
что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из величины Δs или ее предела ds, мы можем определить параметр s=∫ds. Хорошим четырехмерным оператором будет и производная по s, т. е. d/ds, так как она инвариантна относительно преобразований Лоренца.
Для движущейся частицы ds легко связывается с dt. Для точечной частицы
(26.30)
а
(26.31)
Таким образом, оператор
есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости
Теперь мы видим, почему √(1-v2/c2) поправляет дело.
Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траектории частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Δx=Δy=Δz=0, а Δs=Δt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.
Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:
(26.32)
где fμ определяется формулой (26.28). Импульс же рμ может быть записан в виде
(26.33)
где координаты xμ=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:
(26.34)
напоминающей уравнения F=ma. Важно отметить, что уравнения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую механику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в релятивистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.
Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть. Три компоненты F, поделенные на √(1-v2/c2), составляют пространственные компоненты fμ, так что
(26.35)
Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/√(1-v2/c2), vy/√(1-v2/c2) и vz/√(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости uμ. Компоненты же Е и В входят в электромагнитный тензор второго ранга Fμv. Отыскав в табл. 26.1 компоненты Fμv, соответствующие Ех, Вz и Вy, получим
здесь уже начинает вырисовываться что-то интересное. В каждом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz — все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем
(26.36)
Этим мы ничего не изменили, так как благодаря антисимметрии Fμv слагаемое Fxx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):
(26.37)
Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.
Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для μ=y, и для μ=z. Но как обстоит дело с μ=t? Посмотрим для забавы, что дает формула
Теперь мы снова должны перейти к Е и В. После этого получается
(26.38)
или
Но в (26.28) ft бралось равным
А это одно и то же, что (26.38), ибо v·(v×B) равно нулю. Так что все идет как нельзя лучше.
В результате наше уравнение движения записывается в элегантном виде:
(26.39)
Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным уравнением (26.24), что мы и будем делать в дальнейшем.