Том 2. Электромагнетизм и материя — страница 31 из 45

§ 1. Энергия поля точечного заряда

Синтез теории относительности и уравнений Максвелла в основном завершает наше изучение теории электромагнетизма. Разумеется, по дороге мы перескочили через некоторые детали и оставили незатронутой довольно большую область, к которой, однако, мы еще вернемся в будущем, когда займемся взаимодействием электромагнитного поля с веществом. И все же, если еще задержаться на минуту и посмотреть на фасад этого удивительного сооружения, имевшего столь громадный успех в объяснении столь многих явлений, то можно обнаружить, что оно вот-вот завалится и рассыплется на куски. Если вы поглубже вгрызетесь почти в любую из наших физических теорий, то обнаружите, что в конце концов попадаете в какую-нибудь неприятную историю. Сейчас нам предстоит обсудить серьезную трудность — несостоятельность классической электромагнитной теории. Может показаться, что это нарушение, естественно, связано с падением всей классической теории под ударами квантовомеханических эффектов. Возьмите классическую механику. Математически это вполне самосогласованная теория, хотя она и отвергается опытом. Однако самое интересное, что классическая теория электромагнетизма неудовлетворительна сама по себе. В ней до сих пор есть трудности, которые связаны с самими идеями теории Максвелла и которые не имеют непосредственного отношения к квантовой механике. Вы можете подумать: «А зачем нам заранее беспокоиться об этих трудностях. Ведь квантовая механика все равно изменит законы электродинамики. Не лучше ли подождать и посмотреть, во что превратятся эти трудности после изменений?» Однако трудности остаются и после соединения электродинамики с квантовой механикой, так что рассмотрение их сейчас не будет напрасной тратой времени; вдобавок они очень важны с исторической точки зрения. Кроме того, если вы в силах столь глубоко проникнуть в теорию, чтобы увидеть в ней все, не исключая и трудностей, то это дает вам известное чувство завершенности.

Трудность, о которой я собираюсь говорить, связана с приложением понятий электромагнитного импульса и энергии к электрону или другой заряженной частице. Понятия простых заряженных частиц и электромагнитного поля как-то не согласуются друг с другом. Описание этой трудности мы начнем с некоторых примеров вычисления энергии и импульса. Найдем сначала энергию заряженной частицы. Представьте, что мы взяли простейшую модель электрона, когда весь его заряд q равномерно распределен по поверхности сферы радиусом а. В специальном случае точечного заряда мы можем положить его равным нулю. Теперь вычислим энергию электромагнитного поля. Если заряд неподвижен, то никакого магнитного поля вокруг нет, и энергия в единице объема будет пропорциональна квадрату напряженности электрического поля. Величина же напряженности электрического поля равна q/4πε0r2, поэтому плотность энергии

Чтобы получить полную энергию, нужно эту плотность проинтегрировать по всему пространству. Используя элемент объема 4πr2dr, найдем полную энергию, которую мы обозначим через Uэл:

Это выражение интегрируется очень просто. Нижний предел интегрирования равен а, а верхний — бесконечности, поэтому

(28.1)

Если вместо q подставить заряд электрона qe и обозначить символом e2 комбинацию qe2/4πε0, то получим

(28.2)

Все идет хорошо до тех пор, пока мы не переходим к точечному заряду, т. е. пока мы не положим а=0. Но как только мы переходим к точечному заряду, начинаются все наши беды. И все потому, что энергия поля изменяется обратно пропорционально четвертой степени расстояния, интеграл по объему становится расходящимся, а количество энергии, окружающей точечный заряд, оказывается бесконечным.

Но чем, собственно, плоха бесконечная энергия? Есть ли какая-то реальная трудность в том, что энергия никуда не может уйти от заряда и обречена навсегда оставаться около него? Досадно, конечно, что величина оказалась бесконечной, но главный вопрос в том — есть ли здесь какой-нибудь наблюдаемый физический эффект? Чтобы ответить на него, нужно обратиться не к энергии, а к чему-то другому. Нас может, скажем, заинтересовать, как изменяется энергия, когда заряд движется. Если при этом окажется бесконечным изменение, то дело совсем плохо.

§ 2. Импульс поля движущегося заряда

Возьмем равномерно движущийся электрон и предположим на минуту, что скорость его мала по сравнению со скоростью света. С таким движущимся электроном всегда связан какой-то импульс — даже если у электрона до того, как он был заряжен, не было никакой массы — это импульс электромагнитного поля. Мы покажем, что для малых скоростей он пропорционален скорости v и совпадает с ней по направлению. В точке Р, находящейся на расстоянии r от центра заряда и под углом θ к линии его движения (фиг. 28.1), электрическое поле радиально, а магнитное, как мы видели, равно v×E/c2.

Фиг. 28.1. Поля Е и В и плотность импульса g для положительного электрона. Для отрицательного электрона поля Е и В повернуты в обратную сторону, но g остается тем же.


Плотность же импульса, в соответствии с формулой (27.21), будет

Она обязательно направлена по линии движения, как это видно из рисунка, и по величине равна

Поле симметрично относительно линии движения заряда, поэтому поперечные компоненты дадут в сумме нуль, и полученный в результате импульс будет параллелен скорости v. Величину составляющей вектора g в этом направлении, равную gsinθ, нужно проинтегрировать по всему пространству. В качестве элемента объема возьмем кольцо, плоскость которого перпендикулярна v (фиг. 28.2).

Фиг. 28.2. Элемент объема 2πr2sinθdθdr, используемый при вычислении импульса поля.


Объем его равен 2πr2sinθdθdr. Полный импульс будет при этом

Поскольку Е не зависит от угла θ (для vc), то по углу можно немедленно проинтегрировать:

Интегрирование по θ ведется в пределах от 0 до π, так что этот интеграл дает просто множитель 4/3, т. е.

А такой интеграл (для v≪с) мы только что вычисляли, чтобы найти энергию; он равен q2/16π2ε02a, так что

или

(28.3)

Импульс поля, т. е. электромагнитный импульс, оказался пропорциональным v. В частности, тоже самое выражение получилось бы для частицы с массой, равной коэффициенту пропорциональности при v. Вот почему этот коэффициент пропорциональности мы можем назвать электромагнитной массой mэм, т. е. положить

§ 3. Электромагнитная масса

Откуда же вообще возникло понятие массы? В наших законах механики мы предполагали, что любому предмету присуще некое свойство, называемое массой. Оно означает пропорциональность импульса предмета его скорости. Теперь же мы обнаружили, что это свойство вполне понятно — заряженная частица несет импульс, который пропорционален ее скорости. Дело можно представить так, как будто масса — это просто электродинамический эффект. Ведь до сих пор причина возникновения массы оставалась нераскрытой. И вот, наконец, в электродинамике нам представилась прекрасная возможность понять то, чего мы никогда не понимали раньше. Прямо как с неба (а точнее, от Максвелла и Пойнтинга) свалилось на нас объяснение пропорциональности импульса любой заряженной частицы ее скорости через электромагнитные свойства.

Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы mмех на скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Импульс равен произведению именно полной массы (mмех+mэм) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.

Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблюдаемой массе электрона, т. е. mе. Получаем

(28.5)

Величина

(28.6)

называется «классическим радиусом электрона» и равна она 2,82×10-13см, т. е. одной стотысячной диаметра атома.

Почему радиусом электрона названа величина r0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/3 заменяется коэффициентом 4/5. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» радиуса величину r0. А разные теории приписывают к ней свой коэффициент.

Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v≪с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом случае, то получите, что для произвольной скорости v импульс умножается еще на 1/√(1-v2/c2), т. е.

(28.7)

Другими словами, электромагнитная масса возрастает с увеличением скорости обратно пропорционально √(1-v2/c2). Это открытие было сделано еще до создания теории относительности.

Тогда предлагались даже эксперименты по определению зависимости наблюдаемой массы от скорости, чтобы установить, какая часть ее электрическая по своему происхождению, а какая — механическая. В те времена считали, что электромагнитная часть массы должна зависеть от скорости, а ее механическая часть — нет.

Но пока ставились эксперименты, теоретики тоже не дремали. И вскоре была развита теория относительности, которая доказала, что любая масса, независимо от своего происхождения, должна изменяться как m0/√(1-v2/c2). Таким образом, уравнение (28.7) было началом теории, согласно которой масса зависит от скорости.

А теперь вернемся к нашим вычислениям энергии поля, которые привели к выводу выражения (28.2). Энергия U в соответствии с теорией относительности эквивалентна массе U/с2, поэтому (28.2) говорит, что поле электрона должно обладать массой

(28.8)

которая не совпадает с электромагнитной массой mэм, определенной формулой (28.4). В самом деле, если бы мы просто скомбинировали выражения (28.2) и (28.4), то должны были бы написать

Эта формула была получена еще до теории относительности, и когда Эйнштейн и другие физики начали понимать, что U всегда должно быть равно mc2, то замешательство было очень велико.

§ 4. С какой силой электрон действует сам на себя?

Разница между двумя формулами электромагнитной массы особенно обидна, потому что совсем недавно мы доказали согласованность электродинамики с принципами относительности. Кроме того, теория относительности неявно и неизбежно предполагает, что импульс должен быть равен произведению энергии на v/c2. Неприятная история! По-видимому, мы где-то допустили ошибку. Конечно, не алгебраическую ошибку в наших расчетах, а где-то проглядели что-то существенное.

При выводе наших уравнений для энергии и импульса мы предполагали справедливость законов сохранения. Мы считали, что учтены все силы, учтена любая работа и любой импульс, порождаемый другими «неэлектрическими» механизмами. Но если мы имеем дело с заряженной сферой, то, поскольку все электрические силы — это силы отталкивающие, электрон стремится разорваться. А раз в системе не учтены уравновешивающие силы, то в законах, связывающих импульс и энергию, возможны любые ошибки. Чтобы картина была самосогласованной, нужно предположить, что нечто удерживает электрон от разрыва. Заряды должны удерживаться на сфере чем-то вроде «резинок», которые препятствуют их стремлению разлететься в стороны. Пуанкаре первый заметил, что подобные «резинки» или нечто в этом роде, связывающие электрон, необходимо учитывать при вычислении энергии и импульса. По этой причине дополнительные неэлектрические силы известны под именем «напряжений Пуанкаре». Если включить их в расчет, то это сразу изменит массы, полученные в обоих случаях (характер изменения зависит от детальных предположений), и результат будет согласовываться с теорией относительности, т. е. масса, полученная из вычислений импульса, становится той же самой, что и масса, полученная из энергии. Однако теперь массы будут состоять из двух частей: электромагнитной и происходящей от «напряжений Пуанкаре». И только когда обе части складываются вместе, мы получаем согласованную теорию.

Итак, наши надежды не оправдались, мы не можем всю массу сделать чисто электромагнитной. Теория, содержащая только электродинамику, незаконна. К ней необходимо прибавить что-то еще. Как бы мы ни назвали это «что-то» — «резинками» или «напряжениями Пуанкаре» или как-то по-другому,— оно все равно должно порождать новые силы, обеспечивающие согласованность теории такого рода.

Но совершенно ясно, что, как только мы вынуждены посадить внутрь электрона посторонние силы, красота всей картины тотчас исчезает. Все становится слишком сложным. Сразу же возникает вопрос: насколько сильны эти напряжения? Что происходит с электроном? Осциллирует ли он или нет? Каковы все его внутренние свойства? И т. д. и т. п. Возможно, что какие-то внутренние свойства электрона все-таки очень сложны. И если мы начнем строить электрон, следуя этому рецепту, то придем к каким-нибудь странным свойствам наподобие собственных гармоник, которые, по-видимому, еще не наблюдались. Я сказал «по-видимому», ибо в природе мы наблюдаем множество странных вещей, которым еще не можем придать никакого смысла. Возможно, что когда-нибудь в один прекрасный день окажется, что какое-то явление, из тех, что непонятны нам сегодня μ-мезон, например), можно на самом деле объяснить как осцилляции «напряжений Пуанкаре». Сейчас это не кажется правдоподобным, но кто может гарантировать? Ведь мы еще столького не понимаем в мире элементарных частиц! Во всяком случае, сложная структура, предполагаемая этой теорией, весьма нежелательна, и попытка объяснить все массы только через электромагнетизм, по крайней мере описанным нами способом, завела в тупик.

Мне еще хотелось бы порассуждать немного о том, почему при пропорциональности импульса поля скорости мы говорили о массе. Очень просто! Ведь масса — это и есть коэффициент между импульсом и скоростью. Однако возможна и другая точка зрения. Можно говорить, что частица имеет массу, если для ускорения ее мы вынуждены прилагать какую-то силу. Посмотрим повнимательней на то, откуда берутся силы; это может помочь нашему пониманию. Откуда мы узнаем, что здесь должно проявиться действие сил? Да просто потому, что мы доказали закон сохранения импульса для полей. Если у нас есть заряженная частица и мы некоторое время «нажимаем» на нее, то у электромагнитного поля появится импульс. Каким-то образом он был передан электромагнитному полю. Следовательно, чтобы разогнать электрон, к нему нужно приложить силу, дополнительную к той, которая требуется механической инерцией, связанную с его электромагнитным взаимодействием. При этом должна возникнуть соответствующая обратная реакция со стороны «толкаемого» нами электрона. Но откуда берется эта сила? Картина примерно такова. Можно считать электрон заряженной сферой. Когда он покоится, то каждый его заряженный участок отталкивает любой другой, но все силы уравновешены попарно, так что результирующая равна нулю (фиг. 28. 3, а).

Фиг 28.3. Сила действия ускоряющегося электрона благодаря запаздыванию не равна нулю. Под dF мы подразумеваем силу, действующую на элемент поверхности da, а под d2Fсилу, действующую на элемент поверхности daα со стороны заряда, расположенного на элементе поверхности daβ.


Однако при ускорении электрона силы больше не уравновешиваются, так как, чтобы электромагнитное влияние дошло от одного места до другого, нужно некоторое время. Например, сила, действующая на участок α (фиг. 28.3, б) со стороны участка β, расположенного на противоположной стороне, зависит от положения β в запаздывающий момент. И величина и направление силы определяются движением заряда. Если он ускоряется, то силы, действующие на разные части электрона, могут быть такими, как это показано на фиг. 28.3, в. Теперь при сложении всех этих сил они не сокращаются. Для постоянной скорости эти силы уравновешивались бы, хотя на первый взгляд кажется, что даже при равномерном движении запаздывание приведет к неуравновешенным силам. Тем не менее оказывается, что в тех случаях, когда электрон не ускоряется, равнодействующая сила равна нулю. Если же мы рассмотрим силы между различными частями ускоряющегося электрона, то действие и противодействие не компенсируют в точности друг друга и электрон действует сам на себя, стараясь уменьшить ускорение. Он тянет сам себя «за шиворот» назад.

Можно, хотя и не легко, вычислить эту силу самодействия, однако здесь мы не будем заниматься такими трудоемкими расчетами. Я просто скажу вам, что получается в специальном сравнительно простом случае движения в одном измерении, скажем вдоль оси х. Самодействие в этом случае можно записать в виде ряда. Первый член этого ряда зависит от ускорений ..х, следующий — пропорционален ...х и т. д.[36]

Так что в результате

(28.9)

где α и γ — числовые коэффициенты порядка единицы. Коэффициент α при слагаемом x зависит от предположенного распределения зарядов; если заряды равномерно распределены по сфере, то α=2/3. Таким образом, слагаемое, пропорциональное ускорению, изменяется обратно пропорционально радиусу электрона а, что в точности согласуется с величиной, полученной для mэм в (28.4). Если взять другое распределение, то а изменится, но в точности так же изменится и величина 2/3 в (28.4). Слагаемое с х не зависит ни от радиуса а, ни от предположенного распределения заряда; коэффициент при нем всегда равен 2/3. Следующее слагаемое пропорционально радиусу а и коэффициент γ при нем определяется распределением заряда. Обратите внимание, что если устремить радиус электрона к нулю, то последнее слагаемое (равно как и все высшие члены) обратится в нуль, второе остается постоянным, но первое — электромагнитная масса — становится бесконечным. Видно, что бесконечность возникает из-за действия одной части электрона на другую; по-видимому, мы допустили глупость — возможность «точечного» электрона действовать на самого себя.

§ 5. Попытки изменения теории Максвелла

Теперь мне бы хотелось обсудить, как можно изменить электродинамику Максвелла, но изменить так, чтобы сохранить понятие простого точечного заряда. В этом направлении было сделано немало попыток, а некоторые теории сумели даже так представить дело, что вся масса электрона оказалась полностью электромагнитной. Однако ни одной из этих теорий не суждено было выжить. И все же интересно обсудить некоторые из предложенных возможностей хотя бы для того, чтобы оценить борьбу человеческого разума.

Наша теория электромагнетизма началась с разговоров о взаимодействии одного заряда с другим. Затем мы построили теорию этих взаимодействующих зарядов и закончили наше изучение теорией поля. Мы настолько уверовали в нее, что пытались с ее помощью определить, как одна часть электрона действует на другую. Все трудности, возможно, происходят из-за того, что электрон не действует сам на себя; экстраполяция закона взаимодействия между отдельными электронами на взаимодействие электрона самого с собой, возможно, ничем не оправдана. Поэтому некоторые из предложенных теорий совсем исключают возможность самодействия электрона. Из-за этого в них уже не возникает бесконечностей. И никакой электромагнитной массы при этом у частиц нет, а ее масса снова полностью механическая. Однако в такой теории возникают новые трудности.

Нужно сразу же вам сказать, что такие теории требуют изменения и понятий электромагнитного поля. Как вы помните, мы говорили, что сила, действующая на частицу в любой точке, определяется просто двумя величинами: Е и В. Если мы отказываемся от идеи самодействия, то это утверждение становится уже несправедливым, ибо силы, действующие на электрон в некотором месте, больше не определяются полями Е и В, а только теми их частями, которые создаются другими зарядами. Так что мы всегда должны помнить о том, какие поля Е и В создает тот заряд, для которого вычисляется действующая сила, а какие — все остальные заряды. Это делает теорию гораздо более запутанной, хотя и позволяет избежать трудностей с бесконечностями.

Итак, если нам очень хочется, мы можем выбросить весь набор сил в уравнении (28.9), приговаривая при этом, что такое явление, как действие электрона на себя, отсутствует. Но вместе с водой мы выплескиваем и ребенка! Ведь второе-то слагаемое в (28.9), слагаемое с ...х, совершенно необходимо. Эта сила приводит к вполне определенному эффекту. Если вы ее выбросите — беды не миновать. Когда вы разгоняете заряд, он излучает электромагнитные волны, т. е. теряет энергию. Поэтому ускорение заряда требует большей силы, чем ускорение нейтрального объекта той же массы; в противном случае энергия не будет сохраняться. Скорость, с которой мы затрачиваем работу на ускорение заряда, должна быть равна скорости потери энергии на излучение. Мы уже говорили об этом эффекте; он был назван радиационным сопротивлением. Снова перед нами вопрос: откуда берутся те дополнительные силы, на преодоление которых затрачивается эта работа? Когда излучает большая антенна, то эти силы возникают под влиянием токов одной ее части на токи в другой. Но у отдельного ускоряющегося электрона, излучающего в пустое пространство, возможен только один источник таких сил — действие одной части электрона на другую.

В гл. 32 (вып. 3) мы обнаружили, что осциллирующий заряд излучает энергию со скоростью

(28.10)

Давайте посмотрим, какая мощность необходима для преодоления силы самодействия (28.9). Мощность, как известно, равна силе, умноженной на скорость, т. е. F.x:

(28.11)

Первый член пропорционален d.x2/dt и поэтому соответствует скорости изменения кинетической энергии 1/2mv2, связанной с электромагнитной массой. А второй соответствует излучению мощности (28.10). Однако он отличается от (28.10). Разница состоит в том, что (28.11) справедливо в общем случае, тогда как (28.10) верно только для осциллирующего заряда. Мы можем доказать, что эти два выражения для периодического движения заряда эквивалентны. Перепишем для этого второй член выражения (28.11) в виде

что будет просто алгебраическим преобразованием. Если движение электрона периодическое, то величина хх периодически возвращается к одному и тому же значению. Так что если мы возьмем среднее значение ее производной по времени, то получим нуль. Однако второй член всегда положителен (как квадрат величины), так что его производная тоже положительна. Соответствующая ему мощность как раз равна выражению (28.10).

Итак, слагаемое с ...x в выражении для силы самодействия необходимо для сохранения энергии излучающей системы и не может быть выброшено. Это было одним из триумфов теории Лоренца, доказавшего возникновение такого слагаемого в результате воздействия электрона самого на себя. Мы вынуждены поверить в идею самодействия и необходимость слагаемого с ...х. Проблема в том, как сохранить его, избавившись при этом от первого слагаемого в выражении (28.9), которое портит все дело. Этого мы не знаем. Как видите, классическая теория электрона сама себя завела в тупик.

Были предприняты и другие попытки выправить положение. Один путь был предложен Борном и Инфельдом. Состоит он в очень сложном изменении уравнений Максвелла, так что они перестают быть линейными. При этом можно сделать так, чтобы энергия и импульс оказались конечными. Но предложенные ими законы предсказывают явления, которые никогда не наблюдались. Их теория страдает еще и другим недостатком, к которому мы придем позднее и который присущ всем попыткам избежать описанную трудность.

Следующая интересная возможность была предложена Дираком. Он рассуждал так: давайте допустим, что действие электрона на себя описывается не первым слагаемым выражения (28.9), а вторым. И тогда ему пришла заманчивая идея избавиться от первого слагаемого, сохранив при этом второе. Смотрите — сказал он,— когда мы брали только запаздывающие решения уравнений Максвелла, это условие выступало как дополнительное предположение; если бы вместо запаздывающих мы взяли опережающие волны, то ответ получился бы несколько другим. Выражение для силы самодействия приобрело бы вид

(28.12)

Это выражение в точности такое же, как и (28.9), за исключением знака перед вторым и некоторыми высшими членами ряда. [Замена запаздывающих волн опережающими означает просто смену знака запаздывания, что, как нетрудно видеть, эквивалентно изменению знака t. В выражении (28.9) это приводит только к изменению знака всех нечетных производных.] Итак, Дирак предложил: давайте примем новое правило, что электрон действует на себя полуразностью создаваемых им запаздывающих и опережающих полей. Полуразность выражений (28.9) и (28.12) дает

Во всех высших членах радиус а входит в числитель в положительной степени. Поэтому, когда мы переходим к пределу точечного заряда, остается только один член — как раз тот, который нам нужен. Таким путем Дирак сохранил радиационное сопротивление и избавился от силы инерции. Электромагнитная масса исчезла, классическая теория спасена, но благополучие это достигнуто ценой насилия над самодействием электрона.

Произвол дополнительных предположений Дирака был устранен, по крайней мере до некоторой степени, Уилером и Фейнманом, которые предложили еще более странную теорию. Они предположили, что точечный заряд взаимодействует только с другими зарядами, но взаимодействие идет наполовину через запаздывающие, наполовину через опережающие волны. Самое удивительное, как оказалось, что в большинстве случаев вы не видите эффекта опережающих волн, но они дают как раз нужную силу радиационного сопротивления. Однако радиационное сопротивление возникает не как самодействие электрона, а в результате следующего интересного эффекта. Когда электрон ускоряется в момент t, то он влияет на все другие заряды в мире в поздний момент t'=t+r/c (где r — расстояние до других зарядов) из-за запаздывающих волн. Но затем эти другие заряды действуют снова на первоначальный электрон с помощью опережающих волн, которые приходят к нему в момент t", равный t' минус r/c, что как раз равно t. (Они, конечно, воздействуют и с помощью запаздывающих волн, но это просто соответствует обычным «отраженным» волнам.) Комбинация опережающих и запаздывающих волн означает, что в тот момент, когда электрон ускоряется, осциллирующий заряд испытывает воздействие силы со стороны всех зарядов, которые «приготовились» поглотить излученные им волны. Вот в какой петле запутались физики, пытаясь спасти теорию электрона!

Я расскажу вам еще об одной теории, чтобы показать, до каких вещей додумываются люди, когда они увлечены. Это несколько другая модификация законов электродинамики, которую предложил Бопп.

Вы понимаете, что, решившись изменить уравнения электромагнетизма, можно делать это в любом месте. Вы можете изменить закон сил, действующих на электрон, или можете изменить уравнения Максвелла (как это будет сделано в теории, которую я собираюсь описать) или еще что-нибудь. Одна из возможностей — изменить формулы, определяющие потенциал через заряды и токи. Возьмем формулу, которая выражает потенциалы в некоторой точке через плотности токов (или зарядов) в любой другой точке в ранний момент времени. С помощью четырехвекторных обозначений для потенциалов мы можем записать ее в виде

(28.13)

Удивительно простая идея Боппа заключается в следующем. Может быть, все зло происходит от множителя 1/r под интегралом. Предположим с самого начала, что потенциал в одной точке зависит от плотности зарядов в любой точке как некоторая функция расстояния между точками, скажем как f(r12). Тогда полный потенциал в точке 1 будет определяться интегралом по всему пространству от произведения jμ на эту функцию

Вот и все. Никаких дифференциальных уравнений, ничего больше. Есть только еще одно условие. Мы должны потребовать, чтобы результат был релятивистски инвариантным. Так что в качестве «расстояния» мы должны взять инвариантное «расстояние» между двумя точками в пространстве-времени. Квадрат этого расстояния (с точностью до знака, который несуществен) равен

(28.14)

Так что для релятивистской инвариантности теории функция должна зависеть от s12 или, что то же самое, от s122. Таким образом, в теории Боппа

(28.15)

(Интеграл, разумеется, должен браться по четырехмерному объему dt2dx2dy2dz2.)

Теперь остается только выбрать подходящую функцию F. Относительно нее мы предполагаем только одно, что она повсюду мала, за исключением области аргумента вблизи нуля, т. е. что график F ведет себя подобно кривой, изображенной на фиг. 28.4.

Фиг. 28,4. Функция F(s2), используемая в нелокальной теории Боппа.


Это узкий пик в окрестности s2=0, шириной которого грубо можно считать величину а2. Если вычисляется потенциал в точке 1, то приближенно можно утверждать, что заметный вклад дают только те точки 2, для которых s1222(t2-t1)2-r122 отличается от нуля на ±a2. Это можно выразить, сказав, что F важно только для

(28.16)

Если понадобится, можно проделать все математически более строго, но идея вам уже ясна.

Предположим теперь, что а очень мало по сравнению с размерами обычных объектов типа электромоторов, генераторов и тому подобное, поэтому для обычных задач г12≫а. Тогда выражение (28.16) говорит, что в интеграл (28.15) дают вклад только те токи, для которых t1-t2 очень мало:

Но поскольку а2/r122≪1, то квадратный корень приближенно равен 1 ±а2/2r122, так что

В чем здесь суть? Полученный результат говорит, что для Аμ в момент t1 важны только те времена t2, которые отличаются от него на запаздывание r12/c с пренебрежимо малой поправкой, ибо r12≫а. Другими словами, теория Боппа переходит в теорию Максвелла при удалении от зарядов в том смысле, что она приводит к эффекту запаздывания.

Мы можем приближенно увидеть, к чему нас приведет интеграл (28.15). Если, зафиксировав r12, провести интегрирование по t2 в пределах от -∞ до +∞,то s122 тоже будет изменяться от -∞ до +∞. Но основной вклад даст участок по t2 шириной Δt2=2·а2/2r12с с центром в момент t1-r12/c. Пусть функция F(s2) при s2=0 принимает значение К, тогда интегрирование по t2 дает приблизительно KjμΔt2, или

Разумеется, величину jμ следует взять в момент t2=t1-r12/c, так что (28.15) принимает вид

Если выбрать K=q2с/4πε0а2, то мы придем прямо к запаздывающему решению уравнений Максвелла для потенциалов, причем автоматически возникает зависимость 1/r! И все это получилось из простого предположения, что потенциал в одной точке пространства-времени зависит от плотности токов во всех других точках пространства-времени с весовым множителем, в качестве которого взята некая функция четырехмерного расстояния между двумя точками. Эта теория тоже дает конечную электромагнитную массу электрона, а соотношение между энергией и массой как раз такое, какое требуется в теории относительности. Ничего другого не могло и быть, ибо теория релятивистски инвариантна с самого начала.

Однако и этой теории и всем другим описанным нами теориям можно предъявить тяжкое обвинение. Все известные нам частицы подчиняются законам квантовой механики, поэтому необходима квантовомеханическая форма электродинамики. Свет ведет себя подобно фотонам. Это уже не 100-процентная теория Максвелла. Следовательно, электродинамика должна быть изменена. Мы уже говорили, что упорное старание исправить классическую теорию может оказаться напрасной тратой времени, ибо в квантовой электродинамике трудности могут исчезнуть или будут разрешены другим образом. Однако и в квантовой электродинамике трудности не исчезают. В этом кроется одна из причин, почему люди потратили столько времени, пытаясь преодолеть классические трудности и надеясь, что если они смогут преодолеть их, то после квантового обобщения уравнений Максвелла все будет в порядке. Однако и после такого обобщения трудности не исчезают.

Квантовые эффекты, правда, приводят к некоторым изменениям. Изменяется формула для масс, появляется постоянная Планка ℏ, но ответ по-прежнему выходит бесконечным, если вы не обрезаете как-то интегрирование, подобно тому как мы обрезали интеграл при r=а в классической теории. Ответ при этом зависит от характера обрезания. К сожалению, я не могу вам показать, что трудности в основном те же самые, ибо вы еще слишком мало знаете о квантовой механике, а о квантовой электродинамике — и того меньше. Поэтому вам придется поверить мне на слово, что и квантовая электродинамика Максвелла приводит к бесконечной массе точечного электрона.

Оказывается, однако, что до сих пор никому не удалось даже приблизиться к самосогласованному квантовому обобщению на основе любой из модифицированных теорий. Идее Борна и Инфельда никогда не суждено было стать квантовой теорией. Не привели к удовлетворительной квантовой теории опережающие и запаздывающие волны Дирака и Уилера — Фейнмана. Не привела к удовлетворительной квантовой теории и идея Боппа. Так что и до сего дня нам не известно решение этой проблемы. Мы не знаем, как с учетом квантовой механики построить самосогласованную теорию, которая не давала бы бесконечной собственной энергии электрона или какого-то другого точечного заряда. И в то же время нет удовлетворительной теории, которая описывала бы неточечный заряд. Так эта проблема и осталась нерешенной.

Если вы вздумаете попытать счастья и построить теорию, полностью удалив действие электрона на себя, так чтобы электромагнитная масса не имела смысла, а затем будете делать из нее квантовую теорию, то могу вас заверить — трудностей вы не избежите. Экспериментально доказано существование электромагнитной инерции и тот факт, что часть массы заряженных частиц — электромагнитная по своему происхождению.

В старых книгах часто утверждалось, что поскольку природа не подарила нам двух одинаковых частиц, из которых одна нейтральная, а другая заряженная, то мы никогда не сможем сказать, какая доля массы является электромагнитной, а какая механической. Однако оказалось, что природа все же была достаточна щедра и подарила нам именно два таких объекта, так что, сравнивая наблюдаемую массу заряженной частицы с массой нейтральной, мы можем сказать, существует ли электромагнитная масса. Возьмем, например, нейтрон и протон. Они взаимодействуют с огромной силой — ядерной силой, детали происхождения которой нам неизвестны. Однако, как мы уже говорили, ядерные силы обладают одним замечательным свойством. По отношению к этим силам нейтрон и протон в точности одинаковы. Насколько мы сейчас можем судить, ядерные силы между двумя нейтронами, нейтроном и протоном и двумя протонами совершенно одинаковы. Отличаются эти частицы только сравнительно слабыми электромагнитными силами; по отношению к ним протон и нейтрон отличаются, как день и ночь. Вот это нам как раз и нужно. Итак, мы имеем две частицы, одинаковые с точки зрения сильных взаимодействий и различных с точки зрения электрических. И они имеют небольшую разницу в массах. Разница масс между протоном и нейтроном, выраженная в единицах энергии покоя mc2, составляет 1,3 Мэв, что соответствует 2,6 электронным массам. Классическая теория предсказывает для радиуса протона величину между 1/3 и 1/2 радиуса электрона, или около 10-13см. Конечно, на самом деле следует пользоваться квантовой теорией, но по какой-то странной случайности все константы, 2π, ℏ, и т. д., комбинируются так, что приблизительно дают тот же самый результат, что и классическая теория. Одна беда: знак оказывается неверным! Нейтрон на самом деле тяжелее протона.

Природа дала нам еще несколько других пар и троек частиц, которые, за исключением электрического заряда, во всех остальных отношениях оказываются в точности одинаковыми. Они взаимодействуют с протонами и нейтронами посредством так называемого «сильного» взаимодействия. В таких взаимодействиях все частицы данного сорта, скажем π-мезон, ведут себя во всех отношениях как одна и та же частица, за исключением их электрического заряда.

В табл. 28.1 мы приводим список таких частиц вместе с их массами. Заряженные π-мезоны имеют массу 139,6 Мэв, а нейтральный π0-мезон на 4,6 Мэв легче. Эту разность масс мы считаем электромагнитной. Она соответствовала бы частице с радиусом от 3 до 4·10-14см. Вы видите из таблицы, что разницы масс других частиц того же масштаба.


Таблица 28.1. МАССА ЧАСТИЦ

Однако размеры этих частиц можно определить и другими методами, например по кажущемуся диаметру при высокоэнергетических соударениях. Таким образом, электромагнитная масса, по-видимому, находится в согласии с электромагнитной теорией, если мы обрезаем интеграл от энергии поля на радиусе, полученном этими другими методами. Вот почему мы верим, что разница все же обусловлена электромагнитной массой.

Вас, конечно, беспокоят разные знаки разности масс в таблице. Нетрудно понять, почему заряженная частица должна быть тяжелее нейтральной. Но что можно сказать о таких парах, как нейтрон и протон, где наблюдаемая разность масс оказывается совсем другой? Эти частицы оказываются довольно сложными, и вычисление их электромагнитной массы более хитро. Например, хотя нейтрон в целом нейтрален, у него все же есть внутреннее распределение заряда и равен нулю только суммарный заряд. Мы думаем, что нейтрон, по крайней мере в некоторые моменты времени, выглядит как протон, окруженный «облаком» отрицательного π-мезона (фиг. 28.5).

Фиг. 28.5. В некоторые моменты нейтрон может представлять собой протон, окруженный облаком отрицательного π-мезона.


И несмотря на то, что нейтрон «нейтрален», т. е. полный его заряд равен нулю, у него все же есть какая-то электромагнитная энергия (например, у него есть магнитный момент), так что без детальной теории внутренней структуры судить о знаке электромагнитной разности масс нелегко.

Мне хотелось бы подчеркнуть лишь следующие особенности:

1. Электромагнитная теория предсказывает существование электромагнитной массы, но она тут же терпит фиаско, ибо оказывается несамосогласованной. Это в равной мере относится и к квантовым модификациям.

2. Существует экспериментальное подтверждение электромагнитной массы.

3. Все разности масс по порядку величины такие же, как и масса электрона.

Итак, мы снова возвращаемся к первоначальной идее Лоренца, что масса электрона вполне может быть целиком электромагнитной, т. е. все его 0,511 Мэв обусловлены электродинамикой. Так это или нет? У нас нет теории и по сей день, поэтому мы ничего не можем сказать с уверенностью.

Мне хочется упомянуть еще об одном досадном обстоятельстве. В природе существует еще одна частица, называемая μ-мезоном, или мюоном, которая, насколько нам известно сегодня, решительно ничем не отличается от электрона, за исключением своей массы (равной 206,77 электронных масс). Она во всем ведет себя так же, как электрон: взаимодействует с нейтрино и электромагнитным полем, но на нее не действуют ядерные силы. С ней не происходит ничего такого, чего не происходит с электронами, по крайней мере ничего такого, чего нельзя было бы объяснить, как простое следствие большей массы. Поэтому, если в конце концов кому-то и удается объяснить массу электрона, для него остается загадкой, откуда же берет свою массу μ-мезон. Почему? Да потому, что все, что делает электрон, может делать и μ-мезон, так что массы их должны получиться одинаковыми. Есть люди, которые непоколебимо верят, что μ-мезон и электрон — это одна и та же частица, что в окончательной будущей теории масс формула, из которой они должны определяться, будет представлять собой квадратное уравнение с двумя корнями, один из которых даст массу μ-мезона, а другой — электрона. Есть и такие, которые полагают, что это будет трансцендентное уравнение с бесконечным числом корней; они занимаются гаданием, какими должны быть массы других частиц этого ряда и почему они не открыты до сих пор.

§ 6. Поле ядерных сил

Мне бы хотелось сделать еще несколько замечаний о неэлектромагнитной части массы ядерных частиц. Откуда берется большая доля их массы? Кроме электродинамических сил, существуют еще силы другого рода — ядерные силы, у которых есть своя собственная теория поля, хотя никому неизвестно, правильна она или нет. Эта теория также предсказывает энергию поля, которая для ядерных частиц дает массу, аналогичную электромагнитной. Ее можно называть «π-мезополевой массой». Она, по-видимому, очень велика, так как ядерные силы чрезвычайно мощны, и возможно, что именно они являются причиной массы тяжелых частиц. Однако теории мезонных полей находятся в весьма зачаточном состоянии. Даже в сравнительно хорошо развитой теории электромагнетизма мы видели, что, кроме первоначальных намеков, невозможно получить объяснение массы электрона. В мезонных же теориях мы в этом месте тоже терпим неудачу.

Однако мезонная теория очень интересно связана с электродинамикой, и поэтому стоит все же уделить некоторое время изложению ее основ. Поле в электродинамике можно описать четырехвектором потенциала, удовлетворяющим уравнению

Мы видели, что поле может быть излучено, после чего оно существует независимо от источника. Это фотоны, и они описываются дифференциальным уравнением без источника:

Некоторые физики утверждают, что поле ядерных сил тоже должно иметь свои собственные «фотоны», роль которых, по-видимому, играют π-мезоны, и что они должны описываться аналогичным дифференциальным уравнением. (До чего же бессилен человеческий разум! Мы не можем придумать чего-то действительно нового и беремся рассуждать только по аналогии с тем, что знаем.) Таким образом, возможным уравнением для мезонов будет

где φ может быть каким-то другим четырехвектором или, возможно, скаляром. Далее выяснилось, что у π-мезона никакой поляризации нет, поэтому φ должно быть скаляром. Согласно этому простому уравнению, мезонное поле должно изменяться с расстоянием от источника как 1/r2, т. е. в точности как электрическое. Однако мы знаем, что радиус действия ядерных сил гораздо меньше, чего не может обеспечить нам это простое уравнение. Есть только один способ изменить положение вещей, не разрушая релятивистской инвариантности,— добавить или вычесть из даламбертиана произведение константы на поле φ. Итак, Юкава предположил, что свободные кванты ядерных сил могут подчиняться уравнению

(28.17)

где μ2 — некоторая постоянная, т. е. какой-то скаляр. (Поскольку ☐2 является скалярным дифференциальным оператором, то инвариантность не нарушится, если мы добавим к нему другой скаляр.)

Давайте посмотрим, что дает уравнение (28.17), когда ядерные силы не изменяются с течением времени. Мы хотим найти решение уравнения

которое было бы сферически симметрично относительно некоторой точки, скажем относительно начала координат. Если φ зависит только от r, то мы знаем, что

Таким образом, получается уравнение

или

Рассматривая теперь произведение (rφ) как новую функцию, мы имеем для нее уравнение, которое встречалось нам уже много раз. Решение ее имеет вид

Ясно, что при больших r поле φ не может быть бесконечным, поэтому нужно отбросить знак плюс в показателе экспоненты, после чего решение примет вид

(28.18)

Эта функция называется потенциалом Юкавы. Для сил притяжения К должно быть отрицательным числом, величина которого подбирается так, чтобы удовлетворить экспериментально наблюдаемой величине ядерных сил.

Потенциал Юкавы благодаря экспоненциальному множителю угасает быстрее, чем 1/r. Как это видно из фиг. 28.6, для расстояний, превышающих 1/μ, потенциал, а следовательно, и ядерные силы приближаются к нулю гораздо быстрее, чем 1/r.

Фиг. 28.6. Сравнение потенциала Юкавы. е-μr/rс кулоновым потенциалом 1/r.


Поэтому «радиус действия» ядерных сил гораздо меньше «радиуса действия» электростатических. Экспериментально доказано, что ядерные силы не простираются на расстояния свыше 10-13см, поэтому μ≈1015м-1.

И, наконец, давайте рассмотрим волновое решение уравнения (28.17). Если мы подставим в него

то получим

Связывая теперь частоту с энергией, а волновое число с импульсом, как это делалось в конце гл. 34 (вып. 3), мы найдем соотношение

которое говорит, что масса «фотона» Юкавы равна μℏ/с. Если в качестве μ взять величину ~1015м-1, которую дает наблюдаемый радиус действия ядерных сил, то масса оказывается равной 3·10-25 г, или 170 Мэв, что приблизительно равно наблюдаемой массе π-мезона. Таким образом, по аналогии с электродинамикой мы бы сказали, что π-мезон — это «фотон» поля ядерных сил. Однако теперь мы распространили идеи электродинамики в такую область, где они на самом деле могут оказаться и неверными. Мы вышли далеко за рамки электродинамики и очутились перед проблемой ядерных сил.

Глава 29 ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ