Глава 30 ВНУТРЕННЯЯ ГЕОМЕТРИЯ КРИСТАЛЛОВ[37]
§ 1. Внутренняя геометрия кристаллов
Мы закончили изучение основных законов электричества и магнетизма и теперь можем заняться электромагнитными свойствами вещества. Начнем с изучения твердых тел, точнее кристаллов. Если атомы в веществе движутся не слишком активно, они сцепляются и располагаются в конфигурации с наименьшей возможной энергией. Если атомы где-то разместились так, что их расположения отвечают самой низкой энергии, то в другом месте атомы создадут такое же расположение. Поэтому в твердом веществе расположение атомов повторяется.
Иными словами, условия в кристалле таковы, что каждый атом окружен определенно расположенными другими атомами, и если посмотреть на атом такого же сорта в другом месте, где-нибудь подальше, то обнаружится, что окружение его и в новом месте точно такое же. Если вы выберете атом еще дальше, то еще раз найдете точно такие же условия. Порядок повторяется снова и снова и, конечно, во всех трех измерениях.
Представьте, что вам нужно создать рисунок на обоях или ткани или некий геометрический чертеж для плоской поверхности, в котором (как вы предполагаете) имеется элемент, повторяющийся непрерывно снова и снова, так что можно сделать эту поверхность настолько большой, насколько вам захочется. Это двумерный аналог задачи, которая решается в кристалле в трех измерениях. На фиг. 30.1,а показан общий характер рисунка обоев. Один элемент повторяется регулярно, и это может продолжаться бесконечно.
Фиг. 30.1. Повторяющийся рисунок обоев в двух намерениях.
Геометрические характеристики этого рисунка обоев, учитывающие только его свойства повторяемости и не касающиеся геометрии самого цветка или его художественных достоинств, показаны на фиг. 30.1,б. Если вы возьмете за отправную какую-то точку, то сможете найти соответствующую точку, сдвигаясь на расстояние а в направлении, указанном стрелкой 1. Вы можете попасть в соответствующую точку, также сдвинувшись на расстояние b в направлении, указанном другой стрелкой. Конечно, имеется еще много других направлений. Так, вы можете из точки α отправиться в точку β и достигнуть соответствующего положения, но такой шаг можно рассматривать как комбинацию шага в направлении 1 вслед за шагом в направлении 2. Одно из основных свойств ячейки состоит в том, что ее можно описывать двумя кратчайшими шагами к соседним эквивалентным расположениям. Под «эквивалентными» расположениями мы подразумеваем такие, что в каком бы из них вы ни находились, поглядев вокруг себя, вы увидите точно то же самое, что и в любом другом положении. Это фундаментальное свойство кристаллов. Единственное различие в том, что кристалл имеет трехмерное, а не двумерное расположение и, естественно, каждый элемент решетки представляет не цветы, а какие-то образования из атомов, например шести атомов водорода и двух атомов углерода, регулярно повторяющихся. Порядок расположения атомов в кристалле можно исследовать экспериментально с помощью дифракции рентгеновских лучей. Мы кратко упоминали об этом методе раньше и не будем добавлять здесь к сказанному чего-либо, а отметим лишь, что точное расположение атомов в пространстве установлено для большинства простых кристаллов, а также для многих довольно сложных кристаллов.
Внутреннее устройство кристалла проявляется по-разному. Во-первых, связующая сила атомов в определенных направлениях сильнее, чем в других направлениях. Это означает, что имеются определенные плоскости, по которым кристалл разбить легче, чем в других направлениях. Они называются плоскостями спайности. Если кристалл расколоть лезвием ножа, то скорее всего он расщепится именно вдоль такой плоскости. Во-вторых, внутренняя структура часто проявляется в форме кристалла.
Представьте себе, что кристалл образуется из раствора. В растворе плавают атомы, которые в конце концов пристраиваются, когда находят положение, отвечающее наименьшей энергии. (Все происходит так, как если бы обои были созданы из цветов, плавающих в разных направлениях до тех пор, пока случайно один из цветков не зацепился бы накрепко за определенную точку, за ним другой и т. д., пока постепенно не образовался узор.) Вы, вероятно, догадываетесь, что в одних направлениях кристалл будет расти быстрее, чем в других, создавая по мере роста некоторую геометрическую форму. Именно поэтому внешняя поверхность многих кристаллов носит на себе отпечаток внутреннего расположения атомов.
В качестве примера на фиг. 30.2,a показана типичная форма кристалла кварца, ячейка которого гексагональна. Если вы внимательно посмотрите на этот кристалл, то обнаружите, что его внешние грани образуют не слишком хороший шестиугольник, потому что не все стороны имеют одинаковую длину, а часто бывают даже совсем разными.
Фиг. 30.2. Природный кристалл кварца (а), крупинки соли (б) и слюды (в).
Но в одном отношении этот шестиугольник вполне правильный: углы между гранями составляют в точности 120°. Ясное дело, размер той или иной грани случайно складывается в процессе роста, но в углах проявляется геометрия внутреннего устройства. Поэтому все кристаллы кварца имеют разную форму, но в то же время углы между соответствующими гранями всегда одни и те же.
Внутреннее геометрическое устройство кристалла хлористого натрия также легко понять из его внешней формы.
На фиг. 30.2, б показана типичная форма крупинки соли. Это опять не совершенный куб, но грани действительно перпендикулярны друг другу. Более сложный кристалл — это слюда, он имеет форму, изображенную на фиг 30.2, в. Этот кристалл в высшей степени анизотропен — он очень прочен в одном направлении (на рисунке — горизонтальном) и его трудно расколоть, а в другом направлении он легко расщепляется (в вертикальном). Обычно он используется для получения очень прочных, тонких листов. Слюда и кварц — примеры природных минералов, содержащих кремний. Третий минерал, содержащий кремний, — это асбест, обладающий тем интересным свойством, что его легко растянуть в двух направлениях, а в третьем он не поддается растягиванию. Создается впечатление, что он сделан из очень прочных нитей.
§ 2. Химические связи в кристаллах
Механические свойства кристаллов несомненно зависят от рода химических связей между атомами. Поражающая неодинаковая прочность слюды по разным направлениям зависит от характера межатомной связи в этих направлениях. Вам наверняка уже рассказывали на лекциях по химии о разных типах химических связей. Прежде всего бывают ионные связи, мы уже говорили о них, когда толковали о хлористом натрии. Грубо говоря, атомы натрия теряют по одному электрону и становятся положительными ионами; атомы хлора приобретают электрон и становятся отрицательными ионами. Положительные и отрицательные ионы располагаются в трехмерном шахматном порядке и удерживаются вместе электрическими силами.
Ковалентная связь (когда электроны принадлежат одновременно двум атомам) встречается чаще и обычно более прочна. Так, в алмазе атомы углерода связаны ковалентными связями с ближайшими соседями в четырех направлениях, поэтому-то кристалл такой твердый. Ковалентная связь имеется и в кристалле кварца между кремнием и кислородом, но там связь на самом деле только частично ковалентная. Поскольку там электроны распределяются неравномерно между двумя атомами, атомы частично заряжены и кристалл до некоторой степени ионный. Природа не так проста, как мы пытаемся ее представить: существуют всевозможные градации между ковалентной и ионной связями.
Кристалл сахара обладает другим типом связи. Он состоит из больших молекул, атомы которых сильно связаны ковалентной связью, так что молекула образует прочную структуру. Но так как сильные связи вполне насыщены, то между отдельными молекулами имеется относительно слабое притяжение. В таких молекулярных кристаллах молекулы сохраняют, так сказать, свою индивидуальность, и внутреннее устройство можно изобразить так, как на фиг. 30.3.
Фиг. 30.3. Решетка молекулярного кристалла.
Поскольку молекулы не очень крепко держатся друг за друга, то кристалл легко можно расколоть. Такого рода кристаллы резко отличаются от кристаллов типа алмаза, который есть не что иное, как одна гигантская молекула, не поддающаяся разлому без того, чтобы не нарушить сильные ковалентные связи.
Другим примером молекулярного кристалла может служить парафин.
Предельным случаем молекулярного кристалла являются вещества типа твердого аргона. Там притяжение между атомами незначительно — каждый атом представляет собой вполне насыщенную одноатомную «молекулу». Но при очень низких температурах тепловое движение настолько слабо, что крошечные межатомные силы могут заставить атомы расположиться в правильном порядке, подобно картофелинам, тесно набитым в кастрюле.
Металлы образуют совсем особый класс веществ. Там связь имеет совершенно другой характер. В металле связь возникает не между соседними атомами, а является свойством всего кристалла. Валентные электроны принадлежат не одному-двум атомам, а всему кристаллу в целом. Каждый атом вкладывает свой электрон в общий запас электронов, и положительные атомные ионы как бы плавают в океане отрицательных электронов. Электронный океан, подобно клею, удерживает ионы вместе.
Поскольку в металлах нет особых связей в каком-то определенном направлении, то там связь слабо зависит от направления. Однако металлы — это еще кристаллические тела, потому что полная энергия принимает наименьшее значение, когда ионы образуют упорядоченную систему, хотя энергия наиболее выгодного расположения обычно ненамного ниже других возможных расположений. В первом приближении атомы многих металлов подобны маленьким шарикам, упакованным с максимальной плотностью.
§ 3. Рост кристаллов
Попробуйте представить себе образование кристаллов на Земле в естественных условиях. В поверхностном слое Земли все сорта атомов перемешаны между собой. Вулканическая деятельность, ветер и вода постоянно их смешивают, и они то и дело взбалтываются и перемешиваются. Но, несмотря на это, каким-то чудом атомы кремния постепенно начинают отыскивать друг друга, а потом и атомы кислорода, чтобы образовать вместе кремнезем. К одним атомам поодиночке пристраиваются другие, образуя кристалл, и смесь разделяется. А где-нибудь по соседству атомы хлора и натрия находят друг друга и строят кристалл соли.
Как же получается, что кристалл, начав строиться, позволяет присоединяться к себе только определенному сорту атомов? Так происходит потому, что вся система в целом стремится к наименьшему возможному значению энергии. Растущий кристалл примет новый атом, если благодаря ему энергия станет наименьшей. Но откуда кристалл знает, что атом кремния (или кислорода), будучи поставлен в данное место, приведет к наименьшему значению энергии? Узнаёт он это методом проб и ошибок. В жидкости все атомы находятся в непрестанном движении. Каждый атом ударяется о соседние примерно 1013 раз в секунду. Если он ударяется о подходящее место в растущем кристалле, вероятность того, что он улетит обратно, будет несколько меньше там, где меньше энергия. Продолжая так пробовать миллионы лет, с частотой 1013 проб в секунду, атомы постепенно оседают на тех местах, где находят для себя положение с наименьшей энергией. В конце концов из них вырастают большие кристаллы.
§ 4. Кристаллические решетки
Расположение атомов в кристалле — кристаллическая решетка — может принимать множество геометрических форм. Мы опишем сначала простейшие решетки, характерные для большинства металлов и инертных газов в твердом состоянии. Это кубические решетки, которые могут быть двух видов: объемноцентрированная кубическая (фиг. 30.4, а) и гранецентрированная кубическая (фиг. 30.4, б).
Фиг. 30.4. Элементарная ячейка кубического кристалла, а — объемноцентрированная; б — гранецентрированная.
Конечно, на рисунках показан только один «куб» решетки; вы должны мысленно представить, что все это повторяется в трех измерениях до бесконечности. Для простоты на рисунке показаны только «центры» атомов. В настоящих кристаллах атомы скорее похожи на соприкасающиеся друг с другом шарики. Темные и светлые шарики на приведенных рисунках могут, вообще говоря, означать либо разные, либо одинаковые сорта атомов. Так, железо имеет объемноцентрированную кубическую решетку при низких температурах и гранецентрированную кубическую решетку при более высоких температурах. Физические свойства этих двух кристаллических форм совершенно различны.
Но как возникают такие формы? Представьте, что вы должны как можно плотнее упаковать атомы — шарики. Можно было бы начать со слоя, где шарики уложены в «гексагональной плотной упаковке», как показано на фиг. 30.5, а.
Фиг. 30.5. Устройство гексагональной решетки с плотной упаковкой.
Затем можно построить второй слой наподобие первого, но сместив его в горизонтальном направлении, как показано на фиг. 30.5, б. А потом можно наложить и третий слой. Вот тут — внимание! Третий слой можно наложить двумя разными способами. Если вы начнете класть третий слой, помещая атом в точку А на фиг. 30.5, б, то каждый атом в третьем слое окажется прямо над атомом первого нижнего слоя. Если же начать класть третий слой, помещая атом в точку В, то атомы третьего слоя будут расположены как раз над центрами треугольников, образованных тремя атомами нижнего слоя. Любая другая начальная точка эквивалентна А или В, так что существует только два способа размещения третьего слоя.
Если третий слой имеет атом в точке В, кристаллическая решетка будет гранецентрированной кубической, но видно это под некоторым углом. Забавно, что, начав с шестиугольников, можно прийти к кубической структуре. Но обратите внимание, что куб, рассматриваемый под определенным углом, имеет очертания шестиугольника. Например, фиг. 30.6 может изображать либо плоский шестиугольник, либо и куб в перспективе!
Если к фиг. 30.5, б добавляется третий слой, начиная с атома в точке А, то кубической структуры не возникает и у решетки будет только гексагональная симметрия. Ясно, что обе описанные нами возможности дают одинаковую плотную упаковку.
Некоторые металлы (например, серебро и медь) выбирают первую альтернативу — решетка у них гранецентрированная кубическая. Другие же (например, бериллий и магний) предпочитают вторую возможность и образуют гексагональные кристаллы. Очевидно, появление той или иной решетки не может зависеть только от способа упаковки маленьких шариков, но должно еще определяться и другими факторами. В частности, оказывается существенной небольшая угловая зависимость межатомных сил (или в случае металлов от энергии электронного океана).
Фиг. 30.6. Что это — шестиугольник или куб?
Все эти вещи вы несомненно узнаете из курса химии.
§ 5. Симметрии в двух измерениях
Теперь мне хотелось бы обсудить некоторые свойства кристаллов с точки зрения их внутренних симметрий. Основное свойство кристалла состоит в том, что если вы сдвинетесь от одного атома на один период решетки к соответствующему атому, то попадете в точно такое же окружение. Это фундаментальное утверждение. Но если бы вы сами были атомом, то могли бы заметить другое передвижение, которое привело бы вас в точно такое же окружение, т. е. в другую возможную «симметрию». На фиг. 30.7, а показан еще один возможный узор обоев (хотя вы, наверно, такого никогда не видали).
Фиг. 30.7. Узор обоев с высокой симметрией.
Предположим, что мы сравниваем окружения в точках А и В. Вы могли бы сперва подумать, что они одинаковы. Не совсем. Точки С и D эквивалентны А, но окружение В подобно А, только если все рядом обращать как будто в зеркале.
В этом узоре имеются еще и другие виды «эквивалентных» точек. Так, точки Е и F обладают «одинаковыми» окружениями, за тем исключением, что одно повернуто на 90° по отношению к другому. Узор особенный. Вращение на 90°, проделанное сколько угодно раз вокруг такой вершины, как A, снова дает тот же узор. Кристалл с такой структурой имел бы на поверхности прямые углы, но внутри он устроен сложнее, чем простой куб.
Теперь, когда мы описали ряд частных случаев, попытаемся вывести все возможные типы симметрии, какие может иметь кристалл. Прежде всего посмотрим, что получается в плоскости. Плоская решетка может быть определена с помощью двух так называемых основных векторов, которые идут от одной точки решетки к двум ближайшим эквивалентным точкам. Два вектора 1 и 2 суть основные векторы решетки на фиг. 30.1. Два вектора а и b на фиг. 30.7, а — основные векторы для изображенного там узора. Мы могли бы, конечно, с тем же успехом заменить а на -а или b на -b. Раз а и b одинаковы по величине и перпендикулярны друг другу, то вращение на 90° переводит а в b и b в а и снова дает ту же решетку.
Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5, а на угол 60° вокруг центра любого шарика переводит рисунок сам в себя.
Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозможна. Попытаемся вообразить решетку с двумя равными основными векторами, образующими угол менее 60° (фиг. 30.8, а).
Фиг. 30.8. Симметрия вращения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).
Мы должны предположить, что точки В и С эквивалентны А и что а и b — наиболее короткие векторы, проведенные из А до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между В и С короче, чем от любого из них до А. Должна существовать соседняя точка D, эквивалентная А, которая ближе к А, чем к В или С. Мы должны были бы выбрать b' в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.
А как быть с пятикратной симметрией? Если мы предположим, что основные векторы а и b имеют одинаковую длину и образуют угол 2π/5=72° (фиг. 30.8, б), то должна существовать эквивалентная точка решетки в D под 72° к линии АС. Но вектор b' от Е к D тогда короче b, и b уже не основной вектор. Пятикратной симметрии быть не может. Единственные возможности, не приводящие к подобным трудностям, это θ=60, 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изменяется), полоборота, одну треть, одну четверть или одну шестую оборота. И этим исчерпываются все возможные вращательные симметрии на плоскости — всего их пять. Если 8=2π/n, то мы говорим об «n-кратной» симметрии, или симметрии n-го порядка. Мы говорим, что узор, для которого n равно 4 или 6, обладает более «высокой симметрией», чем узор с n, равным 1 или 2.
Вернемся к фиг. 30.7, а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7, б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7, а. Маленькие фигурки, похожие на запятые, — это асимметричные объекты, которые служат для определения симметрии изображения внутри каждого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка больше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но элементарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунктирной линии R—R воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии y—y, а затем сдвинуть на один квадратик вправо (или влево), то снова получится первоначальный рисунок. Линия у—у называется линией скольжения.
Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция симметрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вращению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда любая точка, отвечающая вектору смещения из начала координат R (например, точка А на фиг. 30.9, б), переносится в точку -R.
Фиг. 30.9. Операция симметрии, называемая инверсией. а — рисунок меняется; б — рисунок не меняется при преобразовании R → -R; в — в трех измерениях рисунок не симметричен после операции инверсии; г — рисунок симметричен в трех измерениях.
Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На двумерном узоре (вы можете это видеть) инверсия рисунка б в точке А эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9, б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате инверсии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9, в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9, г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.
Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае существуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наивысших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.
Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убога фантазия художников или, может быть, многие из возможных типов рисунков не будут радовать глаз?
§ 6. Симметрии в трех измерениях
До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересуемся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.
Фиг. 30.10. Семь классов кристаллической решетки.
Решетка с наименьшей симметрией называется триклинной. Ее элементарная ячейка представляет собой параллелепипед. Основные векторы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при инверсии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подразумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все векторы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.
Если один из основных векторов, скажем с, направлен под прямым углом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональная решетка — это частный случай, когда векторы а и b равны и угол между ними составляет 60°, так что вращение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).
Если все три основных вектора перпендикулярны друг другу, но не равны по длине, получается ромбическая ячейка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого порядка возникают у тетрагональной ячейки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.
Основной смысл всего этого разговора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физических свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще говоря, представляет собой тензор. Если описывать тензор в терминах эллипсоида поляризуемости, то мы должны доказать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаимно перпендикулярных направлений. Единственный эллипсоид с таким свойством, — очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.
С другой стороны, тетрагональный кристалл обладает вращательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть параллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ничего сказать не можем. Триклинный кристалл не обладает вращательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.
Как видите, мы можем с пользой провести время, придумывая всевозможные типы симметрии и связывая их со всевозможными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тензоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.
§ 7. Прочность металлов
Мы говорили, что металлы обычно имеют простую кубическую кристаллическую структуру; сейчас мы обсудим их механические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристалла легко заставить скользить над другим. Вы, наверное, подумаете: «Ну, это дико — металлы ведь твердые». Нет, монокристалл металла легко деформируется.
Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).
Фиг. 30.11. Сдвиг плоскостей кристалла.
Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет достаточно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вычислениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше походит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как показано на фиг. 30.11, б. В результате пустое место между двумя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на поднятие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.
Оказывается, что в реальном кристалле скольжение возникает поочередно: сначала в одной плоскости, затем заканчивается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения часто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, который был растянут.
Фиг. 30.12. Маленький кристалл меди после растяжения.
Вы можете заметить разные плоскости, в которых возникало скольжение.
Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие кристаллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плоскости защелкиваются в новых положениях, одна за другой.
Проблема «нехватки» атома в одном из рядов сложнее, чем может показаться при рассматривании фиг. 30.11.
Когда слоев больше, ситуация скорее походит на то, что изображено на фиг. 30.13.
Фиг. 30.13. Дислокация в кристалле.
Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кристалла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие нарушения возникают из-за движения множества таких дислокаций.
Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным кристаллам металла. Кристаллы чистого железа совсем мягкие, но небольшая концентрация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы углерод выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.
Чистая медь очень мягкая, но ее можно «закалить» наклепом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дислокаций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью отжига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные большие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.
Фиг. 30.14. Винтовая дислокация.
Такие дислокации часто играют важную роль в росте кристаллов.
§ 8. Дислокации и рост кристаллов
Одну из величайших загадок природы долгое время представлял процесс роста кристаллов. Мы уже описывали, как атом, многократно примериваясь, может определить, где ему лучше — в кристалле или снаружи. Но отсюда следует, что каждый атом должен найти положение с наименьшей энергией. Однако атом, попавший на новую поверхность, связан только одной-двумя связями с нижними атомами, и его энергия при этом не равна энергии того атома, который попал в угол, где он окружен атомами с трех сторон. Вообразим растущий кристалл как набор из кубиков (фиг. 30.15).
Фиг. 30.15. Схематическое представление роста кристалла.
Если мы поставим новый кубик, скажем, в положение А, он будет иметь только одного из тех шести соседей, какими он в конце концов будет окружен. А раз не хватает стольких связей, то и энергия его не будет очень низкой. Более выгодно положение В, где кристалл уже имеет половину своей доли связей. И действительно, кристаллы растут, присоединяя новые атомы к участкам типа В.
Но что произойдет, когда данный ряд завершится? Чтобы начать новый ряд, атом должен осесть, имея связь с двух сторон, а это опять же маловероятно. Даже если он осядет, что произойдет, когда весь слой будет завершен? Как мог бы начаться новый слой? Один из возможных ответов — кристалл предпочитает расти по дислокации, например по винтовой дислокации, вроде той, что показана на фиг. 30.14. По мере прибавления кубиков к этому кристаллу всегда остается место, где можно получить три связи. Следовательно, кристалл предпочитает расти с встроенной внутрь дислокацией. Иллюстрацию такого спирального роста представляет собой фотография монокристалла парафина (фиг. 30.16).
Фиг. 30.16. Кристалл парафина, выросший вокруг винтовой дислокации.
§ 9. Модель кристалла по Брэггу и Наю
Мы, разумеется, не можем увидеть, что происходит с отдельными атомами в кристалле. Как вы теперь понимаете, существует еще множество сложных явлений, которые трудно описать количественно. Лоуренс Брэгг и Дж. Най придумали модель металлического кристалла, которая удивительным образом моделирует множество явлений, возникающих, по-видимому, в реальном металле. Лучше всего прочесть эту работу самим; в ней описан и сам метод, и полученные с его помощью результаты [статья была напечатана в Proceedings of the Royal Society of London, 190, 474 (1947)][38].