Повторить: гл. 11 (вып. 1) «Векторы»; гл. 20 (вып. 2) «Вращение в пространстве»
§ 1. Тензор поляризуемости
У физиков есть привычка брать простейший пример какого-то явления и называть его «физикой», а примеры посложнее отдавать на растерзание других наук, скажем прикладной математики, электротехники, химии или кристаллографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то причине мы в наших лекциях откажемся от множества интересных вещей. Например, одно из важнейших свойств кристаллов и вообще большинства веществ — это то, что их электрическая поляризуемость различна в разных направлениях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зависит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы облегчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. Поэтому для наших дальнейших рассмотрений нам совсем не понадобится то, о чем мы собираемся говорить в этой главе.
Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из примеров ее использования. Поскольку большинство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится использовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагранжианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магнетизм, у нас закончены многие разделы. Но вот квантовую механику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.
В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного момента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности прикладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α[39]. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.
Предположим, мы обнаружили, что для некоторого выбранного кристалла электрическое поле Е1, направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одинаковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже направленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это показано на фиг. 31.1, а.
Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.
Поляризация уже не параллельна направлению электрического поля. Нетрудно понять, отчего так происходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заряды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы.
Разумеется, угол 45° ничем не выделен. То, что индуцированная поляризация не направлена по электрическому полю, справедливо и в общем случае. Перед этим нам просто «посчастливилось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызванная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,б. Но несмотря на все это усложнение, величина поляризации Р для любого поля Е по-прежнему пропорциональна его величине.
Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать
(31.1)
Этим я хочу сказать лишь, что электрическое поле, направленное по оси х, создает поляризацию не только в этом направлении, оно приводит к трем компонентам поляризации Рх, Рy и Pz, каждая из которых пропорциональна Ех. Коэффициенты пропорциональности мы назвали αхх, αух и αzx (первый значок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).
Аналогично, для поля, направленного по оси у, мы можем написать
(31.2)
а для поля в z-направлении
(31.3)
Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то составляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
(31.4)
Диэлектрические свойства кристалла, таким образом, полностью описываются девятью величинами (αxx,αxy,αxz,αyz,...), которые можно записать в виде символа αij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электрическое поле Е можно разложить на составляющие Еx, Еy и Еz. Зная их, можно воспользоваться коэффициентами αij и найти Рх, Рyи Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aij называется тензором — в данном примере тензором поляризуемости[40]. Точно так же как три величины (Ех, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (αхх, αху,...) «образуют тензор αij».
§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Еz' тоже оказываются другими. То же самое происходит и с компонентамиР, так что для разных систем координат коэффициенты αij оказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в новой системе координат, мы должны получить ту же самую поляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy', и Рz':
и аналогично для других компонент. Если вместо Рх, Рy и Рz подставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еy и Ez через Еx', Еy' и Еz', например,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх' через компоненты Ех',Еy' и Ez', т. е. получились новые αij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то α не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости αij. в любой произвольно выбранной системе координат. Точно так же как вектор скорости v=(vx, vy, vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменяться некоторым определенным образом, тензор поляризуемости αij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, можно связать с кристаллом.
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
(31.5)
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (∑) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна ε0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через uP, можно написать[41]
(31.6)
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
(31.7)
Плотность энергии ир — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
Тензор αij на самом деле нужно называть «тензором второго ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов, — «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии up — тензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.
Индексы нашего тензора поляризуемости могут принимать три различных значения, т. е. это трехмерный тензор. Математики рассматривают также тензоры размерности четыре, пять и больше. Кстати, четырехмерный тензор нам уже встречался при релятивистском описании электромагнитного поля (см. гл. 26, вып. 6) — это Fμv.
Тензор поляризуемости αij обладает одним интересным свойством: он симметричен, т. е. αxy=αyx и т. п. для любой пары индексов. (Это свойство отражает физические качества реального кристалла, и вовсе не обязательно у любого тензора.) Вы можете самостоятельно доказать это, подсчитав изменения энергии кристалла по следующей схеме:
1) включите электрическое поле в направления оси х;
2) включите поле в направлении оси у;
3) выключите x-поле;
4) выключите y-поле.
Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, αxy должно быть равно αyx. Однако те же рассуждения можно провести и для αxz и т. д. Таким образом, тензор поляризуемости симметричен.
Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сначала взяли электрическое поле Е с компонентами х и у; тогда, согласно уравнению (31.7),
(31.8)
Если бы у нас была только одна компонента Ех, мы могли бы определить αхх, а с одной компонентой Еy можно определить αyy. Включив обе компоненты Ех и Еy, мы из-за присутствия члена (αху+αух) получим добавочную энергию, ну а поскольку αxy и αyx равны, то этот член превращается в 2αxy и может быть вычислен из добавочной энергии.
Выражение для энергии (31.8) имеет очень красивую геометрическую интерпретацию. Предположим, что нас интересует, какие поля Ех и Еy отвечают данной плотности энергии, скажем u0. Возникает чисто математическая задача решения уравнения
Это уравнение второй степени, так что, если мы отложим по осям величины Ех и Еy, решением этого уравнения будут все точки эллипса (фиг. 31.2).
Фиг. 31.2 Конец любого вектора E=(Ex, Ev), лежащего на этой кривой, дает одну и ту же анергию поляризации.
(Это должен быть именно эллипс, а не парабола и не гипербола — ведь энергия поля всегда положительна и конечна.) А само Е с компонентами Ех и Еy представляет вектор, идущий из начала координат до точки на эллипсе. Такой «энергетический эллипс» — хороший способ «увидеть» тензор поляризуемости.
Если теперь пустить в дело все три компоненты, то любой вектор Е, необходимый для создания единичной плотности энергии, задается точками, расположенными на эллипсоиде, подобно изображенному на фиг. 31.3. Форма этого эллипсоида постоянной энергии однозначно характеризует тензор поляризуемости.
Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами а, b и с.
Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.
По отношению к этим осям уравнение эллипсоида имеет особенно простую форму:
Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты αаа, αbb и αсс. Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей становится особенно простым:
(31.9)
Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.
Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:
(31.10)
Для главных же осей а, b и с в таблице остаются только диагональные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.
(31.11)
Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).
Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если
(31.12)
то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях
(31.13)
где δij—единичный тензор:
(31.14)
что, разумеется, означает
(31.15)
Тензор δij часто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает
т. е. получается наш старый результат для изотропного диэлектрика:
Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.
Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.
Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
§ 4. Другие тензоры; тензор инерции
В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью σ:
Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем
Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости ω, и коэффициент пропорциональности I мы назвали моментом инерции:
Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость ω и момент количества движения L — оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления ω и L, вообще говоря, не совпадают (фиг. 31.4).
Фиг. 31.4. Момент количества движения L твердого предмета, вообще говоря, не параллелен вектору угловой скорости ω.
Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:
(31.16)
Девять коэффициентов Iij называют тензором инерции. По аналогии с поляризацией кинетическая энергия для любого момента количества движения должна быть некоторой квадратичной формой компонент ωx, ωy и ωz:
(31.17)
Мы можем снова воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.
Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетическая энергия равна просто сумме
по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью ωтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r — положение частицы относительно центра масс, то ее скорость v задается выражением ω×r. Поэтому полная кинетическая энергия равна
(31.18)
Единственное, что нужно теперь сделать, — это переписать ω×r через компоненты ωх, ωy, ωz и координаты х, у, z, а затем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем Iij. Проделывая всю эту алгебру, мы пишем:
Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что Ixx, например, равно
Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2). Ну а поскольку r2=x2+y2+z2, то эту же формулу можно написать в виде
Выписав остальные члены тензора инерции, получим
(31.19)
Если хотите, его можно записать в «тензорных обозначениях»:
(31.20)
где через ri обозначены компоненты (х, у, z) вектора положения частицы, а ∑ означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой скоростью ω:
(31.21)
Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
§ 5. Векторное произведение
Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы определили там «момент силы, действующий в плоскости», например τxy, следующим образом:
Обобщая это определение на три измерения, можно написать
(31.22)
Как видите, величина τij — это тензор второго ранга. Один из способов убедиться в этом — свернуть τij с каким-то вектором, скажем с единичным вектором е, т. е. составить
Если эта величина окажется вектором, то τij должен преобразовываться как тензор — это просто наше определение тензора. Подставляя выражение для τij, получаем
Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что τij — действительно тензор.
Однако τij принадлежит к особому сорту тензоров, он антисимметричен, т. е.
Поэтому у такого тензора есть только три разные и неравные нулю компоненты: τxy, τyz и τzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор
Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить вектором, у которого компонент только четыре.
Точно так же как аксиальный вектор τ=r×F является тензором, по тем же соображениям тензором будет и любое векторное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
Вообще говоря, для любых двух векторов а и b девять величин aibj образуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора положения r величины rirj являются тензором, а поскольку δij. тоже тензор, то мы видим, что правая часть (31.20) действительно является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.
§ 6. Тензор напряжений
Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сейчас я познакомлю вас с тензором, имеющим совершенно другой физический смысл, — это тензор напряжений. Предположим, что на твердое тело действуют различные внешние силы. Мы говорим, что внутри тела возникают различные «напряжения», имея при этом в виду внутренние силы между смежными частями материала. Мы уже говорили немного о подобных напряжениях в двумерном случае, когда рассматривали поверхностное натяжение напряженной диафрагмы (см. гл. 12, § 3, вып. 5). А теперь вы увидите, что внутренние силы в материале трехмерного тела записываются в виде тензора.
Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендикулярную оси х, подобную плоскости σ на фиг. 31.5, и интересуемся силами, действующими на маленькой площадке ΔyΔz, расположенной в этой плоскости.
Фиг. 31.5. Материал, находящийся слева от плоскости σ на площади ΔyΔz, действует на материал, находящийся справа, с силой ΔF1.
Материал, находящийся слева от площадки, действует на материал с правой стороны с силой ΔF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —ΔF1. Если площадка достаточно мала, то мы ожидаем, что сила ΔF1 пропорциональна площади ΔyΔz.
Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если разрез мы сделаем по плоскости с какой-то другой ориентацией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.
Определим тензор напряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси х, и разложите силу ΔF1, действующую на разрезе, на ее компоненты: ΔFx1, ΔFy1, ΔFz1 (фиг. 31.6).
Фиг. 31.6. Сила ΔF1, действующая на элементе площади ΔyΔz, перпендикулярной оси х, разлагается на три компоненты: ΔFx1, ΔFу1и Δfz1.
Отношение этих сил к площади ΔyΔz мы назовем Sxx, Syx и Szx. Например,
Первый индекс у относится к направлению компоненты силы, а второй х — к направлению нормали к плоскости. Если угодно, площадь ΔyΔz можно записать как Δах, имея в виду элемент площади, перпендикулярный оси х, т. е.
А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку ΔxΔz действует сила ΔF2. Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы определяем три компоненты напряжения Sxy, Syy, Szy как силы, действующие на единичную площадь в этих трех направлениях.
Фиг. 31.7. Сила, действующая на элемент площади, перпендикулярной оси у, разлагается на три взаимно перпендикулярные компоненты.
Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты Sxz, Syz и Szz. Таким образом, получается девять чисел:
(31.23)
Я хочу теперь показать, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что Sij —действительно тензор. Предположим, что мы хотим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, исходя из Sij? Можно, и это делается следующим образом. Вообразите маленькую призму, одна грань N которой наклонна, а другие — параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изображенная на фиг. 31.8.
Фиг. 31.8. Разложение на компоненты силы Fn, действующей на грани N (с единичной нормалью n).
(Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через Sij.
Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Δx,Δy, Δz, тогда как поверхностные силы пропорциональны ΔxΔy, ΔyΔz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Δz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
а x-компонента силы, действующей на вертикальную прямоугольную грань, равна
Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единичный вектор нормали к грани N, а через ΔFn — действующую на нее силу, тогда получим
Составляющая напряжения по оси х (Sxn), действующего в этой плоскости, равна силе ΔFxn, деленной на площадь, т. е. Δz√(Δx2+Δy2), или
Но, как видно из фиг. 31.8, отношение Δх/√(Δx2+Δy2) — это косинус угла θ между n и осью у и может быть записан как nу, т. е. y-компонента вектора n. Аналогично, Δy/√(Δx2+Δy2) равно sinθ=nх. Поэтому мы можем написать
Если теперь обобщить это на произвольный элемент поверхности, то мы получим
или в еще более общей форме:
(31.24)
Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sij и полностью описать внутреннее напряжение.
Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как αij связывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sij при изменении осей координат должны преобразовываться как тензор. Так что Sij действительно тензор.
Можно также доказать, что Sijсимметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик в материале. Возьмем кубик, грани которого параллельны осям координат, и посмотрим на его разрез (фиг. 31.9).
Фиг. 31.9. х- и у-компоненты сил, действующих на четыре грани маленького единичного кубика.
Если допустить что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметьте теперь, что на кубик не должен действовать никакой момент сил, иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению (Syx-Sxy) на единичную длину ребра куба, а поскольку полный момент равен нулю, то S должно быть равно Sxy, и тензор напряжений, таким образом, оказывается симметричным.
Благодаря этой симметрии тензора Sij его можно тоже описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никаких сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательному). Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
(31.25)
Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту Sij как функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора Sij реально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.
§ 7. Тензоры высших рангов
Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформации удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подобного бруску из металла, изменение длины ΔL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука
Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений
(31.26)
Вы знаете также, что потенциальная энергия пружины (или бруска) равна
а обобщением плотности упругой энергии для твердого тела будет выражение
(31.27)
Полное описание упругих свойств кристалла должно задаваться коэффициентами γijkl. Это знакомит нас с новым зверем — тензором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего оказывается 34=81 коэффициент. Но различны из них на самом деле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициентов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что γijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей возможной симметрии, требуется 21 упругая постоянная! Разумеется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кристалл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.
В справедливости последнего утверждения можно убедиться следующим образом. В случае изотропного материала компоненты γijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры δij. Но существует лишь два возможных выражения, имеющих требуемую симметрию, — это δijδkl и δikδjl+δil+δjk, так что γijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала
следовательно, чтобы описать упругие свойства материала, требуются две постоянные: а и b. Я предоставляю вам самим доказать, что для кубического кристалла требуются три такие постоянные.
И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При напряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид
где Ei — электрическое поле, а Pijk — пьезоэлектрические коэффициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z→-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.
§ 8. Четырехмерный тензор электромагнитного импульса
Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном пространстве-времени: это был тензор электромагнитного поля Fμv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, правда, не делали, но могли бы рассматривать преобразования Лоренца как своего рода «вращение» в четырехмерном «пространстве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)
В качестве последнего примера мы хотим рассмотреть другой тензор в четырех измерениях (t, x, y, z) теории относительности. Когда мы говорили о тензоре напряжений, то определяли Sij как компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, перпендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через единичную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Sμv в четырехмерном пространстве (μ и v=t, x, у, z), содержащего еще дополнительные компоненты Stx, Syt, Stt и т. п. Попытаемся теперь выяснить физический смысл этих дополнительных компонент.
Нам известно, что пространственные компоненты представляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «потоку» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространственным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность текущего вещества. Например, j можно скомбинировать с плотностью заряда jt=ρ и получить четырехвектор jμ=(ρ, j), т. е. значок μ у вектора jμ принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.
Теперь по аналогии с нашим утверждением о временной компоненте потока скалярной величины можно ожидать, что вместе с Sxx,Sxy и Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt, которая по идее должна бы описывать плотность того, что течет, т. е. Sxt должна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:
Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx, Syy и Syz, к которым нужно добавить четвертый член:
а к трем компонентам Szx, Szy и Szz мы добавляем
В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энергия. Так что тензор Sij следует продолжить по вертикали с включением в него Stx, Sty и Stz, причем
(31.28)
т. е. Stx— это поток энергии в единицу времени через поверхность единичной площади, перпендикулярную оси х, и т. д. Наконец, чтобы пополнить наш тензор, нужна еще величина Stt, которая должна быть плотностью энергии. Итак, мы расширили наш трехмерный тензор напряжений до четырехмерного тензора энергии-импульса Sμv. Индекс μ может принимать четыре значения: t, х, у и z, которые означают «плотность», «поток через единичную площадь в направлении оси х», «поток через единичную площадь в направлении оси y» и «поток через единичную площадь в направлении оси z». Значок v тоже принимает четыре значения: t, х, у, z, которые говорят нам, что же именно течет: «энергия», x-компонента импульса», «y-компонента импульса» или же «z-компонента импульса».
В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается вектором Пойнтинга S=ε0c2E×В. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Stx, Sty и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четырехмерный тензор Sμv тоже симметричен:
(31.29)
Другими словами, компоненты Sxt, Syt, Szt, которые представляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы видели раньше из других соображений, вектора потока энергии.
Оставшиеся компоненты тензора электромагнитного напряжения Sμv тоже можно выразить через электрическое и магнитное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, потока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.
Тем из вас, кто хочет испытать свою удаль на четырехмерных тензорах, может понравиться выражение для тензора Sμv через поля:
где суммирование по α и β проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы ∑ и символа δ принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а δtt=+1, тогда как δxx.=δуу=δzz=-1 и δμv=0 для всех μ≠v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(ε0/2)(E2+B2) и вектору Пойнтинга[42] ε0Е×В? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электрическому полю и вдоль направления поля возникает натяжение (ε0/2)E2 и равное ему давление в направлении, перпендикулярном направлению поля?