Повторить: гл. 47 (вып. 4) «Звук, волновое уравнение»
§ 1. Закон Гука
Теория упругости занимается поведением таких тел, которые обладают свойством восстанавливать свой размер и форму после снятия деформирующих сил. В какой-то степени этими упругими свойствами обладают все твердые тела. Если бы у нас было время заниматься этим предметом подольше, то нам пришлось бы рассмотреть множество вопросов: поведение напряженных материалов, законы упругости и общая теория упругости, атомный механизм, определяющий упругие свойства, и, наконец, ограничения на законы упругости, когда силы становятся настолько велики, что возникает пластическое течение и разрушение. Детальное рассмотрение всех этих вопросов потребовало бы гораздо больше времени, чем мы располагаем, поэтому кое от чего нам придется отказаться. Например, мы не будем обсуждать вопросы пластичности и ограничений на законы упругости. (Этого мы коснемся только очень кратко, когда у нас речь пойдет о дислокациях в металлах.) Мы не сможем также обсудить механизм упругости, так что наше исследование не будет обладать той полнотой, к которой мы стремились в предыдущих главах. Основная цель лекции — познакомить вас с некоторыми способами обращения с такими практическими задачами, как, например, задача об изгибании бруска.
Если вы надавите на кусок материала, то материал «поддастся» — он деформируется. При достаточно малых силах относительное перемещение различных точек материала пропорционально силе. Такое поведение называется упругим. Мы будем говорить только о таком упругом поведении. Сначала мы выпишем фундаментальный закон упругости, а затем применим его к нескольким различным ситуациям.
Предположим, что мы взяли прямоугольный брусок длиной l, шириной w и высотой h (фиг. 38.1).
Фиг. 38.1. Растяжение бруска под действием однородной нагрузки.
Если мы потянем за его конец с силой F, то его длина увеличится на Δl. Во всех случаях мы будем предполагать, что изменение длины составляет малую долю от первоначальной. На самом деле материалы, подобные стали или дереву, разрушаются еще до того, как изменение длины достигнет нескольких процентов от первоначального значения. Опыты показывают, что для большого числа материалов при достаточно малых удлинениях сила пропорциональна удлинению
(38.1)
Это соотношение известно как закон Гука.
Удлинение бруска Δl зависит и от его длины. Это можно продемонстрировать следующими рассуждениями. Если мы скрепим вместе два одинаковых бруска конец к концу, то на каждый будет действовать одна и та же сила и каждый из них удлинится на Δl. Таким образом, удлинение бруска длиной 2l будет в два раза больше удлинения бруска того же поперечного сечения, но длиной l. Чтобы получить величину, полнее характеризующую сам материал и менее зависящую от формы образца, будем оперировать отношением Δl/l (удлинение к первоначальной длине). Это отношение пропорционально силе, но не зависит от l:
(38.2)
Сила F зависит также от площади сечения бруска. Предположим, что мы поставили два бруска бок о бок. Тогда для данного удлинения Δl мы должны приложить силу F к каждому бруску, или для комбинации двух брусков требуется вдвое большая сила. При данной величине растяжения сила должна быть пропорциональна площади поперечного сечения бруска А. Чтобы получить закон, в котором коэффициент пропорциональности не зависит от размеров тела, мы для прямоугольного бруска будем писать закон Гука в виде
(38.3)
Постоянная Y определяется только свойствами природы материала; ее называют модулем Юнга. (Обычно модуль Юнга обозначается буквой Е, но эту букву мы уже использовали для электрического поля, для энергии и для э. д. с., так что теперь лучше взять другую.)
Силу, действующую на единичной площади, называют напряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравнение (38.3) можно переписать следующим образом:
(38.4)
При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине w и еще отношению Δl/l. Относительное боковое сжатие одинаково как для ширины, так и для его высоты и обычно записывается в виде
(38.5)
где постоянная σ характеризует новое свойство материала и называется отношением Пуассона. Это число положительное до знаку, по величине меньше 1/2. (То, что постоянная σ в общем случае должна быть положительной, «разумно», но ниоткуда не следует, что она должна быть такой.)
Две константы Y и σ полностью определяют упругие свойства однородного изотропного (т. е. некристаллического) материала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упругих постоянных может быть гораздо больше. Временно мы ограничим наши обсуждения однородными изотропными материалами, свойства которых могут быть описаны постоянными σ и Y. Как обычно, существует множество способов описания свойств.
Некоторым, например, нравится описывать упругие свойства материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими σ и Y.
Последний общий закон, который нам нужен, — это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиции будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.
Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.
§ 2. Однородная деформация
В качестве первого примера посмотрим, что происходит с прямоугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом возникнет сила, действующая на каждую грань бруска и пропорциональная его площади (фиг. 38.2).
Фиг. 38.2. Брусок под действием равномерного гидростатического давления.
Поскольку гидростатическое давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматривать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.
Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.
Задача1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:
Задача2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в боковом направлении будет +σp/Y. Мы получаем
Задача3. Если мы приложим к сторонам бруска давление р, то деформация давления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформацию нужно умножить на -σ. Боковая деформация равна
так что
Комбинируя результаты этих трех задач, т. е. записывая Δl как Δl1+Δl2+Δl3, получаем
(38.6)
Задача, разумеется, симметрична во всех трех направлениях, поэтому
(38.7)
Интересно также найти изменение объема при гидростатическом давлении. Поскольку V=lwh, то для малых перемещений можно записать
Воспользовавшись (38.6) и (38.7), мы имеем
(38.8)
Имеются любители называть ΔV/V объемной деформацией и писать
Объемное напряжение р (гидростатическое давление) пропорционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением
(38.9)
Поскольку коэффициент К представляет некоторый практический интерес, то во многих справочниках вместо Y и σ приводятся Y и К. Но если вам нужно знать σ, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона σ должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы отрицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из любого кубика, т. е. это означало бы, что кубик находится в неустойчивом равновесии. Если бы он начал расширяться, то расширение продолжалось бы само по себе с высвобождением энергии.
Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряжением мы подразумеваем такое воздействие, как показано на фиг. 38.4.
Фиг. 38.4. Однородный сдвиг.
В качестве предварительной задачи посмотрим, какова будет деформация кубика под действием сил, показанных на фиг. 38.5.
Фиг. 38.5. Действие сжимающих сил, давящих на вершину и основание, и равных им растягивающих сил с двух сторон.
Снова можно разделить эту задачу на две: вертикальное давление и горизонтальное растяжение. Обозначая через А площадь грани кубика, мы получаем для изменения горизонтальной длины
(38.10)
Изменение же высоты по вертикали равно просто тому же выражению с обратным знаком.
Предположим теперь, что мы имеем тот же самый кубик, и подвергнем его действию сдвиговых сил, показанных на фиг. 38.6, а.
Фиг. 38.6. Две пары сил сдвига (а) создают то же самое напряжение, что и сжимающие=растягивающие силы (б).
Заметим теперь, что все силы должны быть равными, ибо на тело не должен действовать никакой момент сил и оно должно находиться в равновесии. (Подобные силы должны действовать также и в случае, изображенном на фиг. 38.4, поскольку кубик находится в равновесии. Они обеспечиваются тем, что кубик «приклеен» к столу.) При таких условиях говорят, что кубик находится в состоянии чистого сдвига. Но обратите внимание, что если мы разрежем кубик плоскостями под углом 45°, скажем, вдоль диагонали А на фиг. 38.6, а, то полная сила, действующая в этой плоскости, нормальна к ней и равна √2G. Площадь, на которой действует эта сила, равна √2A; следовательно, напряжение, нормальное к этой плоскости, будет просто G/A. Точно так же если взять плоскость, наклоненную под углом 45° в другую сторону, т. е. по диагонали В, то мы увидим, что на ней действует нормальное сдавливающее напряжение, равное -G/A. Из этого ясно, что напряжение при «чистом сжатии» эквивалентно комбинации растягивающего и сжимающего напряжений, направленных под прямым углом друг к другу и под углом 45° к первоначальным граням кубика. Внутренние напряжения и деформации будут такими же, как и в большом кубике материала под действием сил, показанных на фиг. 38.6, б. Но эту задачу мы уже решили. Изменение длины диагонали задается уравнением (38.10):
(38.11)
(Одна диагональ сокращается, а другая удлиняется.)
Часто деформацию сдвига удобно описывать с помощью угла «искажения» кубика θ, показанного на фиг. 38.7.
Фиг. 38.7. Напряжение сдвига θ равно 2ΔD/D.
Из геометрии фигуры вы видите, что горизонтальный сдвиг δ верхнего края равен √2ΔD, так что
(38.12)
Напряжение сдвига g определяется как отношение тангенциальной силы, действующей на грань, к площади грани g=G/A. Воспользовавшись уравнением (38.11), мы из (38.12) получаем
Или, если написать это в форме
(38.13)
Коэффициент пропорциональности μ называется модулем сдвига (или иногда коэффициентом жесткости). Вот как он выражается через Y и σ:
(38.14)
Кстати, модуль сдвига должен быть положительным, иначе мы бы могли получить энергию от самопроизвольного сдвига кубика. Из уравнения (38.14) очевидно, что постоянная σ должна быть больше -1. Теперь мы знаем, что σ заключена между -1 и 1/2, но на практике, однако, она всегда больше нуля. В качестве последнего примера состояний подобного типа, когда напряженность постоянна по всему материалу, давайте рассмотрим задачу о бруске, который растягивается и в то же время закреплен таким образом, что боковое сокращение невозможно. (Технически немного легче сжимать брусок и сдерживать бока его от «распирания», но в сущности — это та же самая задача.) Что при этом происходит? На брусок должны действовать боковые силы, которые препятствуют изменению его толщины, — силы, которых мы не знаем непосредственно, но которые следует вычислить. Эта задача того же самого сорта, что мы решали, но только с немного другой алгеброй. Представьте себе силы, действующие на все три стороны, как это показано на фиг. 38.8.
Фиг. 38.8. Растяжение без сокращения бокового размера.
Мы вычислим изменение размеров и подберем такие поперечные силы, чтобы ширина и высота оставались постоянными. Следуя обычным рассуждениям, мы получаем для трех напряжений
(38.15)
(38.16)
(38.17)
Но поскольку по условию Δlу и Δlz равны нулю, то уравнения (38.16) и (38.17) дают два соотношения, связывающие Fy и Fz с Fx. Совместно решая их, найдем
(38.18)
а подставляя (38.18) в (38.15), получаем
(38.19)
Это соотношение вы часто можете встретить «перевернутым» и с преобразованным квадратичным полиномом по σ, т. е.
(38.20)
Когда вы удерживаете бока, модуль Юнга умножается на некоторую сложную функцию σ. Из уравнения (38.19) можно сразу же увидеть, что множитель перед Y всегда больше единицы. Растянуть брусок, когда его бока удерживаются, гораздо труднее. Это означает также, что брусок становится жестче, когда его боковые стороны закреплены, нежели когда они свободны.
§ 3. Кручение стержня; волны сдвига
Обратимся теперь к более сложному примеру, когда различные части материала напряжены по-разному. Рассмотрим скрученный стержень — скажем, приводной вал какой-то машины или подвеску из кварцевой нити, применяемую в точных приборах. Из опытов с маятником кручения вы, по-видимому, знаете, что момент сил, действующий на закручиваемый стержень, пропорционален углу, причем константа пропорциональности, очевидно, зависит от длины стержня, его радиуса и свойств материала. Но каким образом — вот в чем вопрос? Теперь мы в состоянии ответить на него: просто нужно немного разобраться в геометрии.
На фиг. 38.9, а показан цилиндрический стержень, обладающий длиной L и радиусом а, один из концов которого закручен на угол φ по отношению к другому.
Фиг. 38.9. Кручение цилиндрического стержня (а), кручение цилиндрического слоя (б) и сдвиг любого маленького кусочка в слое (в).
Если мы хотим связать деформацию с тем, что уже известно, то стержень можно представить состоящим из множества цилиндрических оболочек и выяснить, что происходит в каждой из этих оболочек. Начнем с рассмотрения тонкого короткого цилиндра радиусом r (меньшего, чем в) и толщиной Δr, как показано на фиг. 38.9, б. Если теперь посмотреть на кусочек внутри этого цилиндра, который первоначально был маленьким квадратом, то можно заметить, что он превратился в параллелограмм. Каждый элемент цилиндра сдвигается, а угол сдвига θ равен
Поэтому напряжение сдвига g в материале будет [из уравнения (38.13)]
(38.21)
Напряжение среза равно тангенциальной силе ΔF, действующей на конец квадратика, поделенной на его площадь ΔlΔr (см. фиг. 38.9, в):
Сила ΔF, действующая на конец такого квадратика, создает относительно оси стержня момент сил Δτ, равный
(38.22)
Полный момент τ равен сумме таких моментов по всему периметру цилиндра. Складывая достаточное число таких кусков так, чтобы все Δl составляли 2πr, находим, что полный момент сил для пустотелой трубы равен
(38.23)
Или, используя уравнение (38.21),
(38.24)
Мы получили, что жесткость τ/φ пустотелой трубы по отношению к кручению пропорциональна кубу радиуса r и толщине Δr и обратно пропорциональна его длине L.
Теперь представьте себе, что стержень сделан из целой серии таких концентрических труб, каждая из которых закручена на угол φ (хотя внутренние напряжения в каждой трубе различны). Полный момент равен сумме моментов, требуемых для скручивания каждой оболочки, так что для твердого стержня
где интеграл берется от 0 до а — радиуса стержня. После интегрирования получаем
(38.25)
Если закручивать стержень, то его момент оказывается пропорциональным углу и четвертой степени диаметра: стержень вдвое большего радиуса в шестнадцать раз жестче относительно кручения.
Прежде чем расстаться с кручением, рассмотрим применение теории к одной интересной задаче — волнам кручения. Возьмем длинный стержень и неожиданно закрутим один его конец; вдоль стержня, как показано на фиг. 38.10, а, пойдет волна кручения.
Фиг. 38.10. Волна кручения в стержне (а) и элемент объема стержня (б).
Это явление более интересно, нежели простое статическое скручивание. Посмотрим, можем ли мы понять, как это происходит.
Пусть z — расстояние от некоторой точки до основания стержня. Для статического закручивания момент сил на всем протяжении стержня один и тот же и пропорционален φ/L — полному углу вращения на полную длину. Но в нашей задаче важна местная деформация кручения, которая, как вы сразу поймете, равна ∂φ/∂z. Если кручение вдоль стержня неравномерное, то уравнение (38.25) следует заменить таким:
(38.26)
Посмотрим теперь, что же происходит с элементом длины Δz, который показан в увеличенном масштабе на фиг. 38.10, б. На конце 1 маленького отрезка стержня действует момент τ(z), а на конце 2— другой момент сил τ(z+Δz). Если величина Δz достаточно мала, то можно воспользоваться разложением в ряд Тэйлора и, сохранив только два члена, написать
(38.27)
Полный момент сил Δτ, действующий на маленький отрезок стержня между z и Δz, равен разности τ(z) и τ(z+Δz), или Δτ=(∂τ/∂z)Δz. Дифференцируя уравнение (38.26), получаем
(38.28)
Действие этого полного момента должно вызвать угловое ускорение отрезка стержня. Масса его равна
где ρ — плотность материала. В гл. 19 (вып. 2) мы нашли, что момент инерции кругового цилиндра равен mr2/2; обозначая момент инерции нашего отрезка через Δl, получаем
(38.29)
Закон Ньютона говорит нам, что момент силы равен произведению момента инерции на угловое ускорение, или
(38.30)
Собирая теперь все воедино, находим
или
(38.31)
Вы, должно быть, уже узнали, что это такое: это одномерное волновое уравнение. Мы получили, что волны кручения распространяются по стержню со скоростью
(38.32)
Чем плотнее стержень при одной и той же жесткости, тем медленнее движется волна, а чем он жестче, тем волна бежит быстрее. Скорость ее не зависит от диаметра стержня.
Волны кручения представляют частный случай волн сдвига. Волны сдвига в общем случае — это такие волны, при которых деформация не изменяет объема любой части материала. В волнах кручения мы сталкиваемся с особым распределением напряжений сдвига — они распределены по кругу. Но волны при любом распределении напряжений сдвига будут распространяться с одной и той же скоростью, которая определяется формулой (38.32). Сейсмологи, например, обнаружили, что такие волны сдвига распространяются и внутри Земли.
В мире упругих явлений возможен и другой сорт волн внутри твердого материала. Если вы толкнете что-нибудь, то можете возбудить «продольные» волны, так называемые волны «сжатия». Они подобны звуковым волнам в воздухе или в воде, т. е. перемещение вещества в них происходит в ту же сторону, что и распространение волны. (На поверхности упругого тела могут распространяться и другие типы волн, называемые «волнами Рэлея». Деформация в них ни продольная, ни поперечная. Однако у нас нет времени говорить о них подробно.)
Раз уж мы коснулись вопроса о волнах, то какова скорость волн чистого сжатия в большом твердом теле, подобном Земле? Я сказал в «большом», ибо скорость звука в массивном теле отлична от скорости, свойственной, скажем, тонкому стержню. Под массивным телом я подразумеваю тело, поперечные размеры которого много больше длины волны звука. Поэтому, нажимая на такой объект, можно обнаружить, что он не «раздается» в стороны — он может сжиматься только в одном направлении. К счастью, однако, мы уже разобрали специальный случай сжатия «сдавленного» упругого материала, а в гл. 47 (вып. 4) мы познакомились еще со скоростью звука в газе. Рассуждая так же, как и выше, вы можете убедиться, что скорость звука в твердом теле равна √(Y'/ρ), где Y' — «продольный модуль», т. е. давление, деленное на относительное изменение длины (для случая «сдавленного» стержня). Равно это просто отношению Δl/l к F/A, полученному нами в уравнении (38.20). Таким образом, скорость продольных волн определяется выражением
(38.33)
Поскольку значение σ заключено между 0 и 1/2, то модуль сдвига μ меньше модуля Юнга Y, а Y', кроме того, больше Y, так что
Это означает, что продольные волны распространяются быстрее, чем волны сдвига. Один из наиболее точных способов определения упругих постоянных вещества дает измерение плотности материала и скоростей двух сортов волн. Из этой информации можно получить как Y, так и σ. Кстати, именно измеряя разность во времени прихода двух сортов волн от землетрясения, сейсмологи только по сигналам, принятым одной станцией, способны установить расстояние до эпицентра.
§ 4. Изгибание балки
Разберем теперь другой практический вопрос — изгибание балки, стержня или бруска. Чему равны силы, необходимые для изгибания балки произвольного поперечного сечения? Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгибания много больше толщины балки.
Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.
Фиг. 38.11. Изогнутая балка.
Что же происходит внутри балки? Раз она искривлена, значит, материал на внутренней стороне сгиба сжат, а на внешней стороне растянут. Но имеется какая-то поверхность, более или менее параллельная оси балки, которая и не сжата, и не растянута. Называется она нейтральной поверхностью. По-видимому, эта поверхность проходит где-то «посредине» поперечного сечения. Можно показать (но я не буду этого здесь делать), что для небольшого изгиба простой балки нейтральная поверхность проходит через «центр тяжести» поперечного сечения. Но это справедливо только для «чистого» сгиба, т. е. когда балка не растягивается и не сжимается как целое.
При чистом сгибе тонкий поперечный отрезок балки возмущен (фиг. 38.12, а).
Фиг. 38.12. Маленький отрезок изогнутой балки (а) и поперечное сечение балки (б).
Материал под нейтральной поверхностью испытывает деформацию сжатия, которая пропорциональна расстоянию от нейтральной поверхности, а материал над ней растянут тоже пропорционально расстоянию от нейтральной поверхности. Таким образом, продольное удлинение Δl пропорционально высоте у. Константа пропорциональности равна просто длине l, деленной на радиус кривизны балки (см. фиг. 38.12):
Так что напряжение, т. е. сила, действующая на единичную площадь в некоторой маленькой полоске вблизи у, тоже пропорциональна расстоянию от нейтральной поверхности
(38.34)
Теперь рассмотрим те силы, которые привели бы к подобной деформации. Силы, действующие на маленький отрезок, изображенный на фиг. 38.12, показаны на том же рисунке. Если мы возьмем любое поперечное сечение, то действующие на нем силы направлены в одну сторону выше нейтральной поверхности и в другую — ниже ее. Получается пара сил, которая создает «изгибающий момент» M, под которым мы понимаем момент силы относительно нейтральной линии. Интегрируя произведение силы на расстояние от нейтральной поверхности, можно вычислить полный момент на одной из граней отрезка фиг. 38.12:
(38.35)
Согласно (38.34), dF=Y(y/R)dA, так что
Но интеграл от y2dA можно назвать «моментом инерции» геометрического поперечного сечения относительно горизонтальной оси, проходящей через его «центр масс»[53]; мы будем обозначать его через I, т. е.
(38.36)
(38.37)
Уравнение (38.36) дает нам соотношение между изгибающим моментом M и кривизной балки 1/R. «Жесткость» балки пропорциональна Y и моменту инерции I. Другими словами, если вы хотите какую-то балку, скажем из алюминия, сделать как можно жестче, то вы должны как можно больше вещества поместить как можно дальше от оси, относительно которой берется момент инерции. Но этого нельзя доводить до предела, ибо тогда балка не будет искривляться так, как мы предположили: она согнется или скрутится и снова станет слабее. Вот почему каркасные балки делают в форме буквы I или Н (фиг. 38.13).
Фиг. 38.13. Двутавровая балка.
В качестве примера применения нашего уравнения (38.36) для балки вычислим отклонение консольной балки под действием сосредоточенной силы W, действующей на ее свободный конец (фиг. 38.14).
Фиг. 38.14. Консольная балка с нагрузкой на конце.
(Консольная балка закреплена одним концом, который вмурован в стенку.) Какая же тогда будет форма балки? Обозначим отклонение на расстоянии х от закрепленного конца через z; мы хотим найти z(x). Будем вычислять только малые отклонения. Как вы знаете из курса математики, кривизна 1/R любой кривой z(x) задается выражением
(38.38)
Нас интересуют только малые изгибы (обычная вещь в инженерных конструкциях), поэтому квадратом производной (dz/dx)2 можно пренебречь по сравнению с единицей и считать
(38.39)
Нам нужно еще знать изгибающий момент M. Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен
ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем
или
(38.40)
Это уравнение можно проинтегрировать без всяких фокусов и получить
(38.41)
воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет
(38.42)
т. е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резинку и вы сами убедитесь в этом. Если первоначально поперечное сечение было прямоугольным, то, согнув резинку, вы увидите, как она выпирает у основания (фиг. 38.15).
Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).
Это получается потому, что, согласно отношению Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки же оно близко к этому числу.
§ 5. Продольный изгиб
Теперь воспользуемся нашей теорией, чтобы понять, что происходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.
Фиг. 38.16. Продольно изогнутая балка.
Здесь стержень, обычно прямой, удерживается в согнутом виде двумя противоположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.
Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент M в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:
(38.43)
Воспользовавшись выражением для момента (38.36), имеем
(38.44)
При малых отклонениях можно считать 1/R=-d2y/dx2 (отрицательный знак выбран потому, что кривизна направлена вниз). Отсюда
(38.45)
т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого продольно изогнутого стержня представляет синусоиду. «Длина волны» λ. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна удвоенной длине неизогнутого стержня. Таким образом, получается кривая
Беря вторую производную, находим
Сравнивая это с (38.45), видим, что сила равна
(38.46)
Для малого продольного изгиба сила не зависит от перемещения у!
Физически же получается вот что. Если сила F меньше определяемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину π2YI/L2 (часто называемую «силой Эйлера»), балка будет «гнуться». Если на втором этаже здания разместить такой груз, что нагрузка на поддерживающие колонны превысит силу Эйлера, то здание рухнет. Другая область, где очень важны продольно изгибающие силы, — это космические ракеты. С одной стороны, ракета должна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная нагрузка и полезная мощность двигателей были как можно больше.
Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение становится большим, сила благодаря члену (dz/dx)2 в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изгибании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y. Уравнение (38.44) имеет довольно простые геометрические свойства[54]. Решается оно немного сложнее, но зато гораздо интереснее. Вместо того чтобы описывать кривую через х и у, можно воспользоваться двумя новыми переменными: S — расстоянием вдоль кривой и θ— наклоном касательной к кривой (фиг. 38.17.)
Фиг. 38.17. Координаты кривой продольно изогнутой балки S и θ.
Тогда кривизна будет равна скорости изменения угла с расстоянием
Поэтому точное уравнение (38.44) можно записать в виде
После взятия производной этого уравнения по S и замены dy/dS на sinθ получим
(38.47)
[Если углы θ малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке].
Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как находить решение такого уравнения численным методом[55]. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.
Фиг. 38.18. Формы продольно изогнутого стержня.