§ 1. Гидростатика
Кого не пленяет течение жидкости, кто не любуется течением воды! Все мы в детстве любили плескаться в ванне или возиться в грязных лужах. Став постарше, мы восхищались плавным течением реки, водопадами и водоворотами; мы любуемся ими, рядом с твердыми телами они кажутся нам почти одушевленными.
Предметом этой и следующей глав будет поведение жидкости, столь неожиданное и столь интересное. Попытки ребенка преградить путь маленькому ручейку, текущему по улице, и его удивление перед тем, как вода умудряется все же пробить себе дорогу, напоминает наши многолетние попытки понять механизм течения жидкости. Мы пытались мысленно преградить путь воды дамбой, т. е. получить законы и уравнения, которые описывают поток. Рассказу об этих попытках и посвящена настоящая глава. А в следующей главе мы опишем тот уникальный способ, с помощью которого вода прорывает дамбу и ускользает от нас, не дав нам понять ее.
Я предполагаю, что элементарные свойства воды вам уже известны. Основное свойство, которое отличает жидкость от твердого тела, заключается в том, что жидкость не способна сдерживать ни мгновение напряжения сдвига. Если к жидкости приложить напряжение сдвига, то она начинает двигаться. Густые жидкости, подобные меду, движутся менее легко, чем жидкости типа воды или воздуха. Мерой легкости, с которой жидкость течет, является ее вязкость. В этой главе мы рассмотрим такие случаи, когда эффектом вязкости можно пренебречь. А эффекты вязкости отложим до следующей главы.
Начнем с рассмотрения гидростатики, т. е. теории неподвижной жидкости. Если жидкость находится в покое, то на нее не действуют никакие сдвиговые силы (даже в вязкой жидкости). Поэтому закон гидростатики заключается в том, что напряжения внутри жидкости всегда нормальны к любой ее поверхности. Нормальная сила на единичную площадь называется давлением. Из того факта, что в неподвижной жидкости нет сдвигов, следует, что напряжение давления во всех направлениях одинаково (фиг. 40.1).
Фиг. 40.1. В неподвижной жидкости сила, действующая на единичную площадь любой поверхности, перпендикулярна этой поверхности и при любых ориентациях поверхности одна и та же.
Займитесь самостоятельно доказательством того, что если на любой плоскости в жидкости сдвиг отсутствует, то давление во всех направлениях должно быть одинаковым.
Давление в жидкости может изменяться от точки к точке. Так, в неподвижной жидкости на поверхности Земли давление будет изменяться с высотой из-за веса жидкости. Если плотность жидкости ρ считается постоянной и давление на некотором нулевом уровне обозначено через р0 (фиг. 40.2), то давление на высоте h над этой точкой будет р=р0 -ρgh, где g — сила тяжести единицы массы.
Фиг. 40.2. Давление в неподвижной жидкости.
Комбинация р+ρgh в неподвижной жидкости остается постоянной. Вы знаете это соотношение, но теперь мы получим более общий результат, где наше соотношение будет лишь частным случаем. Возьмем маленький кубик воды. Какая сила действует на него в результате оказываемого давления? Поскольку давление в любом месте во всех направлениях одинаково, то полная сила, действующая на единицу объема, может быть обусловлена только изменением давления от точки к точке. Предположим, что давление изменяется в направлении оси х, и выберем направления других осей координат параллельно ребрам кубика. Давление на грань с координатой х дает силу pΔyΔz (фиг. 40.3), а давление на грань с координатой х+Δх дает силу—[р+(∂р/∂х) Δх] ΔyΔz, так что результирующая сила равна -(∂р/∂х)ΔxΔyΔz.
Фиг. 40.3. Полная сила давления, действующая на куб, составляет -∇p на единицу объема.
Если же мы учтем остальные пары граней куба, то нетрудно убедиться, что сила давления на единичный объем равна -∇p. Если вдобавок есть еще и другие силы, наподобие силы тяжести, то давление при равновесии должно компенсироваться ими.
Разберем случай, когда такие дополнительные силы можно описать потенциальной энергией, наподобие силы тяжести. Обозначим через φ потенциальную энергию единицы массы. (Для притяжения, например, φ просто равно gz.) Сила, действующая на единичную массу, задаётся через потенциал φ выражением -∇φ, а если плотность жидкости равна ρ, то на единицу объема будет действовать сила -ρ∇φ. В состоянии равновесия эта действующая на единичный объем сила в сумме с силой давления должна давать нуль:
(40.1)
Это и есть уравнение гидростатики. В общем случае оно не имеет решения. Если плотность изменяется в пространстве каким-то произвольным образом, то нет возможности уравновесить все силы и жидкость не может находиться в состоянии статического равновесия. В ней возникнут разные конвекционные потоки. Это видно прямо из уравнения, ибо член с давлением представляет чистый градиент, тогда как второй член из-за плотности ρ не может быть им. И только когда величина ρ постоянна, потенциальный член становится чистым градиентом.
Решение уравнения в этом случае имеет вид
Другая возможность, допускающая состояние равновесия, — это когда ρ зависит только от р. Однако на этом мы расстанемся с гидростатикой, ибо она не так интересна, как движущаяся жидкость.
§ 2. Уравнение движения
Сначала обсудим движение жидкости с чисто абстрактной теоретической стороны, а затем рассмотрим некоторые частные примеры. Чтобы описать движение жидкости, мы должны задать в каждой точке ее некие свойства. Например, вода (будем называть жидкость просто «водой») в разных местах движется с различными скоростями. Следовательно, чтобы определить характер потока, мы должны в каждой точке и в любой момент времени задать три компоненты скорости. Если нам удастся найти уравнения, определяющие скорость, то мы будем знать, как в любой момент движется жидкость. Но скорость — не единственная характеристика жидкости, которая меняется от точки к точке. Только что мы изучали изменение давления от точки к точке. А есть еще и другие переменные. От точки к точке может меняться также плотность. Вдобавок жидкость может быть проводником и переносить электрический ток, плотность которого j изменяется от точки к точке как по величине, так и по направлению. От точки к точке может меняться температура, магнитное поле и т. д. Так что число полей, необходимых для полного описания ситуации, зависит от сложности задачи. Очень интересные явления возникают, когда доминирующую роль в определении поведения жидкости играют токи и магнетизм. Эта наука носит название магнитогидродинамика. В настоящее время ей уделяется очень большое внимание. Но мы не собираемся рассматривать эти весьма сложные случаи, ибо имеется немало менее сложных, но столь же интересных явлений, и даже этот более элементарный уровень будет достаточно труден.
Возьмем случай, когда нет ни магнитного поля, ни проводимости и нам, кроме того, не следует беспокоиться о температурах, ибо мы предположим, что температура в любой точке единственным образом определяется плотностью и давлением. Фактически мы уменьшим сложность нашей работы, допустив, что плотность постоянна, т. е. что жидкость существенно несжижаема. Другими словами, мы предполагаем, что изменения давлений настолько малы, что производимыми ими изменениями плотности можно пренебречь. Если бы это было не так, то в дополнение к явлениям, рассмотренным здесь, необходимо было бы учитывать и другие явления, скажем распространение звуковых или ударных волн. Распространение звуковых и ударных волн мы уже в какой-то степени изучали, так что при нашем рассмотрении гидродинамики мы изолируемся от этих явлений, допустив, что приближенно плотность ρ постоянная. Легко определить, когда такое предположение о постоянстве ρ будет хорошим. Если скорость потока гораздо меньше скорости звуковой волны, то нам не нужно заботиться об изменениях плотности. Тот факт, что вода ускользает от нас при попытке понять ее, не связан с этим приближением постоянной плотности. Усложнения, которые все-таки позволили ей остаться непонятой, мы обсудим в следующей главе.
Общую теорию жидкостей мы должны начать с уравнения состояния жидкости, связывающего давление и плотность; в нашем приближении оно имеет очень простой вид:
Это и есть первое уравнение для наших переменных. Следующее соотношение выражает сохранение вещества. Когда вещество утекает из какой-то точки, то количество его в этой точке должно уменьшаться. Если скорость жидкости равна v, то масса, которая протекает за единичное время через единицу площади поверхности, равна нормальной к поверхности компоненте ρv. Подобное соотношение у нас получалось уже в теории упругости. Из знакомства с электричеством мы знаем также, что дивергенция такой величины определяется скоростью уменьшения плотности. Также и здесь уравнение
(40.2)
выражает сохранение массы жидкости: это гидродинамическое уравнение непрерывности. В нашем приближении, т. е. в приближении несжимаемой жидкости, плотность ρ постоянна и уравнение непрерывности превращается просто в
(40.3)
Дивергенция скорости жидкости v, как и магнитного поля В, равна нулю. (Гидродинамические уравнения очень часто оказываются аналогичными уравнениям электродинамики; вот почему мы сначала изучали электродинамику. Некоторые предпочитают другой путь, считая, что сначала следует изучать гидродинамику, чтобы потом было легче понять электричество. На самом же деле электродинамика гораздо проще, чем гидродинамика.)
Следующее уравнение мы получим из закона Ньютона; оно говорит нам, как происходит изменение скорости в результате действия сил. Произведение массы элемента объема жидкости на ускорение должно быть равно силам, действующим на этот элемент. Выбирая в качестве элемента объема единичный объем и обозначая силу, действующую на единичный объем, через f, получаем
Плотность сил можно записать в виде суммы трех слагаемых. Одно из них, силу давления на единицу объема — (∇p), мы уже рассматривали. Но есть еще действующие на расстоянии «внешние» силы, подобные тяжести или электричеству. Если эти силы консервативные с потенциалом, отнесенным к единице массы, равным φ, то они приводят к плотности сил —ρ(∇φ). (Если же внешние силы не консервативные, то мы вынуждены писать внешнюю силу, приходящуюся на единицу объема, как fвнешн.) Кроме нее, на единицу объема действует еще одна «внутренняя» сила, которая возникает из-за того, что в текущей жидкости могут действовать сдвиговые силы. Они называются силами вязкости, и мы будем обозначать их через fвязк. Тогда наше уравнение движения приобретает вид
(40.4)
В этой главе мы будем предполагать, что наша вода «жидкая» в том смысле, что ее вязкость несущественна, так что слагаемое fвязк будет опускаться. Выбрасывая слагаемое с вязкостью, мы делаем приближение, которое описывает некое идеальное вещество, а не реальную воду. Об огромной разнице, возникающей в зависимости от того, оставляем ли мы слагаемое с вязкостью или нет, в свое время хорошо знал Джон фон Нейманн. Известно ему было и то, что во времена наибольшего расцвета гидродинамики, т. е. примерно до 1900 г., основные усилия были направлены на решение красивых математических задач в рамках именно этого приближения, которое ничего не имеет общего с реальными жидкостями. Поэтому теоретиков, которые занимались подобными веществами, он называл людьми, изучающими «сухую воду». Они отбрасывали важнейшее свойство жидкости. Именно потому, что в этой главе мы при наших вычислениях тоже этим свойством будем пренебрегать, я озаглавил ее «Течение «сухой» воды». А обсуждение настоящей, «мокрой» воды мы отложим до следующей главы.
Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно ∂v/∂t. Но это совсем неверно, и по довольно хитрой причине. Производная ∂v/∂t выражает изменение скорости v(х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени Δt эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Δt она из точки Р1 переместится в точку Р2.
Фиг. 40.4. Ускорение частицы жидкости.
Фактически в направлении оси х она передвинется на расстояние vxΔt, в направлении оси у — на расстояние vуΔt, а в направлении оси z — на расстояние vzΔt. Мы видим, что если v(х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент t+Δt представляет величину v (х+Δx, у+Δy, z+Δz, t+Δt), причем
Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем
Ускорение же Δv/Δt будет равно
Считая ∇ вектором, это можно записать символически:
(40.5)
Обратите внимание, что, даже когда ∂v/∂t=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.
Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.
(40.6)
где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:
Если определить новое векторное полеΩ как ротор скорости v, т. е.
(40.7)
то векторное тождество можно записать так:
а наше уравнение движения (40.6) примет вид
(40.8)
Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, воспользовавшись при этом выражением (40.7).
Если Ω всюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в данный момент времени вокруг этой петли:
Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна ∇×v. Таким образом, Ω представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению Ω). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью Ω/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике Ω равна удвоенной локальной угловой скорости воды.
Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что ρ — величина постоянная, а ротор любого градиента равен нулю, а также использовав уравнение (40.3), находим
(40.9)
Это уравнение вместе с уравнениями
(40.10)
и
(40.11)
полностью описывают поле скоростей v. На языке математики — если в некоторый момент мы знаем Ω, то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивергенция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v повсюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где ∇·B=0 и ∇×B=j/ε0c2.) Таким образом, данная величина Ω определяет v точно так же, как j определяет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения Ω, откуда мы можем получить новую Ω в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только скорости, а всю информацию о давлении мы потеряли.
Отметим особое следствие нашего уравнения. Если в какой-то момент времени t повсеместно Ω=0, то ∂Ω/∂t тоже исчезает, так что Ω всюду останется равной нулю и в момент t +Δt. Отсюда следует, что поток все время остается безвихревым. Если вначале поток не вращался, то он так никогда и не начнет вращаться. При этом уравнения, которые мы должны решать, таковы:
Они в точности напоминают уравнения электростатики или магнитостатики в пустом пространстве. Позднее мы вернемся к ним и рассмотрим некоторые частные задачи.
§ 3. Стационарный поток; теорема Бернулли
Вернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Картина скоростей всегда выглядит одинаково, т. е. v представляет статическое векторное поле. Как в магнитостатике мы рисовали силовые линии, так и здесь можно начертить линии, которые всегда касательны к скорости жидкости (фиг. 40.5).
Фиг. 40.5. Линии тока стационарного потока.
Эти линии называются «линиями тока». Для стационарного потока они действительно представляют реальные пути частиц жидкости. (В нестационарном потоке картина линий тока меняется со временем, однако в любой момент времени она не представляет пути частиц жидкости.)
Стационарность потока вовсе не означает, что ничего не происходит — частички жидкости движутся и изменяют свои скорости. Это означает только то, что ∂v/∂t=0. Если теперь мы скалярно умножим уравнение движения на v, то слагаемое v·(Ω×v) выпадет и у нас останется только
(40.12)
Согласно этому уравнению, при малых перемещениях в направлении скорости жидкости величина внутри скобок не изменяется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока
(40.13)
Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него Ω=0, то уравнение движения (40.8) дает нам соотношение
так что
(40.14)
Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего большего, чем утверждение о сохранении энергии. Подобные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли настолько важна и настолько проста, что мне бы хотелось показать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что провели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6, а).
Фиг. 40.6. Движение жидкости в трубке.
Поскольку стенки трубки образуются линиями тока, то жидкость через них не протекает. Обозначим площадь на одном конце трубки через A1, скорость жидкости через v1, плотность через ρ1, а потенциальную энергию через φ1. Соответствующие величины на другом конце трубки мы обозначим через A2, v2, ρ2 и φ2. После короткого интервала времени Δt жидкость на одном конце передвинется на расстояние v1Δt, а жидкость на другом конце — на расстояние v2Δt (см. фиг. 40.6, б). Сохранение массы требует, чтобы масса, которая вошла через A1 была равна массе, которая вышла через А2. Изменение масс в этих двух концах должно быть одинаково:
Таким образом, мы получаем равенство
(40.15)
Оно говорит нам, что при постоянном ρ скорость изменяется обратно пропорционально площади трубки тока.
Вычислим теперь работу, произведенную давлением в жидкости. Работа, произведенная над жидкостью, входящей со стороны сечения А1, равна р1A1v1АΔt, а работа, произведенная в сечении А2, равна p2A2v2Δt. Следовательно, полная работа, произведенная над жидкостью, заключенной между A1 и А2, будет
что должно быть равно возрастанию энергии массы жидкости ΔM при прохождении от А1 до А2. Другими словами,
(40.16)
где Е1 — энергия единицы массы жидкости в сечении А1, а Е2 — энергия единицы массы в сечении А2. Энергию единицы массы жидкости можно записать в виде
где 1/2v2 — кинетическая энергия единицы массы, φ — потенциальная энергия, а U — дополнительный член, представляющий внутреннюю энергию единицы массы жидкости. Внутренняя энергия может соответствовать, например, тепловой энергии сжимаемой жидкости или химической энергии. Все эти величины могут изменяться от точки к точке. Воспользовавшись выражением для энергии в уравнении (40.16), получим
Но мы видели, что ΔМ=ρΔvΔt, и получили
(40.17)
а это как раз приводит нас к результату Бернулли, где имеется дополнительный член, представляющий внутреннюю энергию. Если жидкость несжимаемая, то внутренняя энергия с обеих сторон одна и та же и мы снова убеждаемся в справедливости уравнения (40.14) вдоль любой линии тока.
Рассмотрим теперь некоторые простые примеры, в которых интеграл Бернулли позволяет нам сразу описать поток. Предположим, что из отверстия вблизи дна резервуара вытекает вода (фиг. 40.7).
Фиг. 40.7. Вытекание жидкости из резервуара.
Рассмотрим случай, когда скорость потока vвых в отверстии гораздо больше скорости потока вблизи поверхности воды в резервуаре; другими словами, предположим, что диаметр резервуара настолько велик, что падением уровня жидкости можно пренебречь. (Мы могли бы при желании проделать и более аккуратные вычисления.) Давление на поверхность воды в резервуаре равно р0 (атмосферному давлению), т. е. такое же, как и давление на бока струи. Напишем теперь уравнение Бернулли для линии тока наподобие той, что показана на фиг. 40.7. В верхней части резервуара скорость v мы примем равной нулю; гравитационный потенциал φ здесь выберем тоже равным нулю. В отверстии же скорость равна vвых а φ=-gh, так что
или
(40.18)
Скорость получилась в точности равной скорости предмета, падающего с высоты h. В этом нет ничего удивительного —ведь в конечном счете вода на выходе получает свою кинетическую энергию из запаса потенциальной энергии воды, находящейся наверху резервуара. Однако не воображайте, что вы можете определить скорость убывания жидкости из резервуара, умножив эту скорость vвых на площадь отверстия. Скорости частиц жидкости в тот момент, когда струя вырывается из отверстия, не параллельны друг другу, а имеют компоненту, направленную к центру потока; струя сужается. Пройдя небольшое расстояние, струя перестает сжиматься, и скорости становятся параллельными. Таким образом, полный поток равен скорости, умноженной на площадь именно в том месте, где сжатие струи прекратилось. На самом деле, если у нас есть выходное отверстие просто в виде круглой дыры с острым краем, то сечение струи сокращается до 62% от площади отверстия. Уменьшение эффективной площади выходного отверстия для различных форм выходных труб разное, а его экспериментальное значение можно найти в таблице коэффициентов истечения.
Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффициент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство.
Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет половину площади отверстия.
Чтобы получить скорость, мы использовали закон сохранения энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходящей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое давление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно уравновешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отверстия, наподобие показанного на фиг. 40.7, ибо увеличение скорости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.
Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.
Фиг. 40.9. Там, где скорость повышается, давление понижается.
Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко продемонстрировать этот эффект, измеряя давление в разных местах с различным сечением с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действительно оказывается меньше, чем в широких. Если после сужения площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вызывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1, чтобы через сужение могло пройти то же количество воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ускорению, и есть перепад давления.
Этот результат можно проверить с помощью еще одного простого опыта. Представьте, что у нас есть резервуар с водой и выходной трубой, которая выбрасывает струю воды вверх (фиг. 40.10).
Фиг. 40.10. Доказательство того что v не равно √2gh,
Если бы скорость истечения была в точности равна √2gh, то выходящая вода должна была бы подняться вплоть до уровня воды в резервуаре. Однако на опыте она начинает падать несколько ниже его. Наше приближение оказывается очень грубым; вязкое трение, которое мы не учли в нашей формуле для сохранения энергии, приводит к потере энергии. Пытались ли вы когда-нибудь, дунув между двумя слипшимися листками бумаги, оторвать их друг от друга? Попытайтесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в разные стороны, соединятся.
§ 4. Циркуляция
В начале предыдущего параграфа мы видели, что если у нас есть безвихревая несжимаемая жидкость, то поток удовлетворяет следующим двум уравнениям:
(40.19)
Эти уравнения аналогичны уравнениям электростатики или магнитостатики в пустом пространстве. При отсутствии зарядов дивергенция электрического поля равна нулю, а ротор электростатического поля всегда равен нулю. Ротор магнитного поля равен нулю при отсутствии токов, а дивергенция магнитного поля всегда равна нулю. Следовательно, уравнения (40.19) имеют такие же решения, как и уравнения для Е в электростатике или уравнения для Вв магнитостатике. Фактически в гл. 12, § 5 (вып. 5), мы уже решили задачу об обтекании сферы потоком в качестве электростатического аналога. Электростатическим аналогом является однородное электрическое поле плюс поле диполя, причем поле диполя подбирается таким, чтобы скорость потока, нормальная к поверхности сферы, была равна нулю. Задачу об обтекании цилиндра можно решить таким же способом, выбрав подходящее направление диполя относительно однородного потока. Эти решения справедливы в тех случаях, когда скорость жидкости на больших расстояниях постоянна как по величине, так и по направлению. Они изображены на фиг. 40.11,а.
Фиг. 40.11. Обтекание цилиндра идеальной жидкостью (а), циркуляция вокруг цилиндра (б) и cyпepрозuция случаев а и б (в).
Задача об обтекании цилиндра имеет и другое решение, когда условия таковы, что поток на больших расстояниях движется по окружности вокруг цилиндра. Тогда поток будет круговым повсюду (фиг. 40.11,б). У такого потока есть циркуляция вокруг цилиндра, хотя ∇×vв жидкости остается нулем. Но как циркуляция может существовать без ротора? У нас есть циркуляция вокруг цилиндра, ибо криволинейный интеграл от v по замкнутой петле, охватывающей цилиндр, не равен нулю. В то же время криволинейный интеграл от v по любому замкнутому пути, который не охватывает цилиндра, будет нулем. Аналогичные вещи встречались нам и раньше, когда мы определяли магнитное поле вокруг проводника. Ротор В был нулем вне провода, хотя криволинейный интеграл от В по пути, охватывающему провод, не исчезает. Поле скоростей в безвихревой циркуляции вокруг цилиндра в точности такое же, как и магнитное поле вокруг провода. Для кругового пути с центром, совпадающим с центром цилиндра, криволинейный интеграл от скорости равен
Для безвихревого потока интеграл не должен зависеть от r. Обозначим его через постоянную С и получим
(40.20)
где v — тангенциальная скорость, а r — расстояние от оси.
Существует очень хороший способ демонстрации циркуляции жидкости в трубе. Вы берете прозрачный цилиндрический резервуар с трубкой в центре дна. Наполняете его водой, немного раскручиваете ее палочкой и вынимаете пробку из отводной трубы. И получаете тот красивый эффект, который показан на фиг. 40.12.
Фиг. 40.12. Вода с циркуляцией вытекает из резервуара.
(Подобное явление вы наверняка много раз видели в ванне!) Хотя вначале вы и создали некоторую угловую скорость ω, она из-за вязкости вскоре затухает и поток становится безвихревым. Однако какая-то циркуляция вокруг трубки все же остается.
Из теории можно вычислить форму поверхности воды в цилиндре. По мере того как частицы движутся внутрь, они набирают скорость. Согласно уравнению (40.20), тангенциальная скорость увеличивается как 1/r — просто благодаря закону сохранения момента количества движения, как у фигуриста, прижавшего руки к телу. Радиальная скорость тоже возрастает как 1/r. Если пренебречь тангенциальным движением, то получится, что вода идет внутрь по радиусу к отверстию, а из уравнения ∇·v=0 следует, что радиальная скорость пропорциональна 1/r. Таким образом, полная скорость тоже возрастает как 1/r и вода идет по спирали Архимеда. Поверхность вода — воздух целиком находится под атмосферным давлением, так что, согласно уравнению (40.14), она должна обладать свойством
Но здесь v пропорционально 1/r, поэтому форма поверхности будет такой:
Обратите внимание на одну интересную особенность, которая наблюдается в случае несжимаемого безвихревого потока (в общем случае ее нет): если у нас есть какое-то одно решение и какое-то второе решение, то сумма их тоже будет решением. Это справедливо потому, что уравнения (40.19) — линейные. Полный же набор гидродинамических уравнений, т. е. уравнений (40.8) — (40.10), не линеен, а это уже совсем другое дело. Однако для безвихревого потока вокруг цилиндра мы можем сложить один поток (фиг. 40.11,а) и другой поток (фиг. 40.11,б) и получить новый вид потока (фиг. 40.11,в). Этот новый поток особенно интересен. Скорость потока на верхней стороне цилиндра оказывается больше, чем на нижней, так что когда на циркуляцию вокруг цилиндра налагается чистый горизонтальный поток, то возникнет действующая на цилиндр вертикальная сила; она называется подъемной силой. Разумеется, если циркуляция отсутствует, то в соответствии с нашей теорией «сухой» воды для любого тела суммарная сила обращается в нуль.
§ 5. Вихревые линии
Мы уже выписывали общие уравнения потока несжимаемой жидкости при наличии завихренности:
Физическое содержание этих уравнений было на словах описано Гельмгольцем в трех теоремах. Прежде всего представьте себе, что мы вместо линий потока нарисовали вихревые линии. Под вихревыми линиями мы подразумеваем линии поля, которые имеют направление вектора Ω, а плотность их в любой области пропорциональна величине Ω. Из уравнения (II) дивергенция Ωвсегда равна нулю [вспомните гл.3,§ 7 (вып. 5): дивергенция ротора всегда нуль]. Таким образом, вихревые линии подобны линиям поля В: они нигде не кончаются и нигде не начинаются и всегда стремятся замкнуться. Формулу (III) Гельмгольц описал словами: вихревые линии движутся вместе с жидкостью. Это означает, что если бы вы пометили частички жидкости, расположенные на некоторой вихревой линии, например окрасив их чернилами, то в процессе движения жидкости и переноса этих частичек они всегда отмечали бы новое положение вихревой линии. Каким бы образом ни двигались атомы жидкости, вихревые линии движутся вместе с ними. Это один из способов описания законов. Он также содержит и метод решения любых задач. Задавшись первоначальным видом потока, скажем задав всюду v, вы можете вычислить Ω. Зная v, можно также сказать, где будут вихревые линии немного позднее: они движутся со скоростью v. А с новым значением Ω можно воспользоваться уравнениями (I) и (II) и найти новую величину v. (Точно как в задаче о нахождении поля В по данным токам.) Если нам задан вид потока в какой-то один момент, то в принципе мы можем вычислить его во все последующие моменты. Мы получаем общее решение невязкого потока.
Мне бы хотелось показать вам, как (по крайней мере частично) можно понять утверждение Гельмгольца, а следовательно, формулу (III). Фактически это просто закон сохранения момента импульса, примененный к жидкости. Представьте себе маленький жидкий цилиндр, ось которого параллельна вихревым линиям (фиг. 40.13,а).
Фиг. 40.13. Группа вихревых линий в момент t (а) и те же самые линии в более поздний момент t' (б).
Спустя некоторое время, тот же самый объем жидкости будет находиться где-то в другом месте. Вообще говоря, он будет иметь форму цилиндра с другим диаметром и находиться в другом месте. Он может еще иметь другую ориентацию (фиг. 40.13,б). Но если изменяется диаметр, то длина тоже должна измениться так, чтобы объем остался постоянным (поскольку мы считаем жидкость несжимаемой). Кроме того, поскольку вихревые линии связаны с веществом, их плотность увеличивается обратно пропорционально уменьшению площади поперечного сечения цилиндра. Произведение Ω на площадь цилиндра А будет оставаться постоянной, так что в соответствии с Гельмгольцем
(40.21)
Теперь обратите внимание, что при нулевой вязкости все силы на поверхности цилиндрического объема (или любого объема в этом веществе) перпендикулярны поверхности. Силы давления могут заставить его изменить форму, но без тангенциальных сил величина момента количества движения жидкости внутри измениться не может. Момент количества движения жидкости внутри маленького цилиндра равен произведению его момента инерции I на угловую скорость жидкости, которая пропорциональна завихренности Ω. Момент же инерции цилиндра пропорционален mr2. Поэтому из сохранения момента количества движения мы бы заключили, что
Но масса будет одной и той же (М1=М2), а площадь пропорциональна R2, так что мы снова получим просто уравнение (40.21). Утверждение Гельмгольца, которое эквивалентно формуле (III), есть просто следствие того факта, что в отсутствие вязкости момент количества движения элемента жидкости измениться не может.
Есть хороший способ продемонстрировать движущийся вихрь с помощью аппаратуры, показанной на фиг. 40.14.
Фиг. 40.14. Распространяющиеся вихревые кольца.
Это «барабан» диаметром и длиной около 60 см, состоящий из цилиндрической коробки с натянутым на ее открытое основание толстым резиновым листом. Барабан стоит на боку, а в центре его твердого дна вырезано отверстие диаметром около 8 см. Если резко ударить по резиновой диафрагме рукой, то из отверстия вылетает кольцевой вихрь. Хотя этот вихрь увидеть нельзя, можно смело утверждать, что он существует, так как он гасит пламя свечи, стоящей в 3—6 м от барабана. По запаздыванию этого эффекта вы можете сказать, что «нечто» распространяется с конечной скоростью. Лучше разглядеть то, что вылетает, можно, предварительно напустив в барабан дыму. Тогда вы увидите вихри в виде изумительно красивых колец «табачного дыма».
Кольца дыма (фиг. 40.15,а) — это просто баранка из вихревых линий.
Фиг. 40.15. Движущееся вихревое кольцо (а) и его поперечное сечение (б).
Поскольку Ω=∇×v, то эти вихревые линии описывают также циркуляцию v (фиг. 40.15,б). Для того чтобы объяснить, почему кольцо движется вперед (т. е. в направлении, составляющем с направлением Ω правый винт), можно рассуждать так: скорость циркуляции увеличивается к внутренней поверхности кольца, причем скорость внутри кольца направлена вперед. Поскольку линии Ω переносятся вместе с жидкостью, то и они движутся вперед со скоростью v. (Конечно, большая скорость на внутренней части кольца ответственна за движение вперед вихревых линий на его внешней части.)
Здесь необходимо указать на одну серьезную трудность. Как мы уже отмечали, уравнение (40.90) говорит, что если первоначально завихренность Ω была равна нулю, то она всегда останется равной нулю. Этот результат — крушение теории «сухой» воды, ибо он означает, что если в какой-то момент значение Ω равно нулю, то оно всегда будет равно нулю, и ни при каких обстоятельствах создать завихренность нельзя. Однако в нашем простом опыте с барабаном мы могли породить вихревые кольца в воздухе, который до того находился в покое. (Ясно, что пока мы не ударили по барабану, внутри него v=0 и Ω=0.) Все знают, что, загребая веслом, можно создать в воде вихри. Несомненно, для полного понимания поведения жидкости следует перейти к теории «мокрой» воды.
Другим неверным утверждением в теории «сухой» воды является предположение, которое мы делали при рассмотрении потока на границе между ним и поверхностью твердого предмета. Когда мы обсуждали обтекание потоком цилиндра (например, фиг. 40.11), то считали, что жидкость скользит по поверхности твердого тела. В нашей теории скорость на поверхности твердого тела могла иметь любое значение, зависящее от того, как началось движение, и мы не учитывали никакого «трения» между жидкостью и твердым телом. Однако то, что скорость реальной жидкости должна на поверхности твердого тела сходить на нуль, — экспериментальный факт. Следовательно, наши решения для цилиндра и с циркуляцией, и без нее неправильны, как и результат о создании вихря. О более правильных теориях я расскажу вам в следующей главе.