Том 26. Мечта об идеальной карте. Картография и математика — страница 15 из 28

Если точкой касания шара и плоскости выбрать любую произвольную точку сферы, то меридианы будут изображаться в виде радиальных неравномерно распределенных прямых, указывающих на полюс. Экватор будет изображен в виде прямой, перпендикулярной только меридиану, проходящему через точку касания. Другие параллели, близкие к полюсу, примут форму эллипсов, параллель, проходящая через точку касания, будет изображена в виде параболы, остальные параллели — в виде гипербол.



Карта, выполненная в косой гномонической проекции с центром в Японии.


Вот некоторые свойства карты в гномонической проекции.

1. Как правило, круглая форма (возможно, обрезанная тем или иным способом), карта охватывает лишь часть одного из полушарий.

2. Большие круги, проходящие через точку касания, отображаются как радиальные равномерно распределенные прямые (если мы рассмотрим несколько больших кругов, отстоящих друг от друга на равные углы), а точки, удаленные от точки касания на одинаковое расстояние, примут форму окружностей с центром в этой точке.

3. Форма и распределение меридианов и параллелей будут выглядеть так, как мы описали выше. Искажение в направлении меридианов будет равно μ = 1/sin2φ, в направлении параллелей — λ = 1/sin φ.

4. Гномоническая проекция сохраняет геодезические линии, но не сохраняет расстояния, площади и величины углов.

5. Искажение площадей, форм и углов, наименьшее в точке касания (в центре карты), будет увеличиваться по мере удаления от этой точки.

Доказать геометрическими методами, что гномоническая проекция сохраняет геодезические линии, очень просто. Геодезические линии сферы, большие круги, получаются сечением сферы плоскостью, проходящей через центр сферы. Следовательно, изображением большого круга в центральной проекции будет прямая, вдоль которой пересекаются плоскость, определяющая большой круг, и касательная плоскость, как показано на рисунке. Это доказывает, что гномоническая проекция преобразует геодезические линии сферы (ее большие круги) в геодезические линии плоскости (прямые).



Гномоническая проекция сохраняет геодезические линии и преобразует большие круги сферы в прямые на плоскости.


Кроме того, можно доказать, что это по сути единственная картографическая проекция, обладающая подобным свойством. Если говорить о сохранении площадей или углов, то этим свойством обладает множество проекций.

Чтобы определить, сохраняет ли гномоническая проекция площади и (или) углы, вычислим искажения, возникающие при ее использовании на меридианах и параллелях. Для этого построим индикатрису Тиссо для произвольной точки сферы, то есть рассмотрим окружность достаточно малого размера (в действительности она будет бесконечно малой, поэтому можно считать, что окружность располагается на плоскости, касающейся сферы в этой точке) и рассчитаем размеры эллипса, в который преобразуется эта окружность в гномонической проекции.

Представим Землю как сферу единичного радиуса. Рассмотрим плоскость проекции Т, которая касается сферы (допустим, точка касания расположена в Северном полушарии). На эту плоскость мы спроецируем часть полусферы, при этом центр проекции будет совпадать с центром сферы. Пусть А — точка сферы с широтой φ, D — диск достаточно малого радиуса r, который касается сферы в точке А.

Построим проекцию этого диска на плоскость проекции Т в два этапа. На первом этапе диск D преобразуется в диск D', который лежит в плоскости, параллельной D. Центром этого диска является точка А' — отображение точки А, полученное с помощью гномонической проекции. В силу подобия треугольников (по теореме Фалеса), как вы можете видеть на следующем рисунке, радиус r' диска D' удовлетворяет соотношению


По правилам элементарной тригонометрии

sinφ = 1/|OA'|

Имеем:


Первый этап построения гномонической проекции.


Искомым отображением будет проекция диска D' на касательную плоскость Т — уже не диск, а эллипс. В направлении «запад — восток» диск D' пересекает плоскость Т, следовательно, проекция не изменит его размеров, и длина соответствующей полуоси эллипса будет равна уже вычисленному радиусу:

r' = r/sinφ

Итак, искажение вдоль параллели будет равно:

λ = 1/sinφ

Посмотрим, как изменится диск в направлении «север — юг», и рассчитаем искажение вдоль меридиана. Так как радиус r' очень мал по сравнению с расстоянием между А' и центром проекции О, угол А'ВС (см. след, рисунок) будет очень близок к прямому углу. Так как r достаточно мал, этот угол можно считать прямым. Как следствие, проекцией отрезка длиной r', лежащего в направлении «север — юг», будет отрезок на плоскости Т длиной r":

r" = r'/sinφ = r/sin2φ

согласно правилам элементарной тригонометрии. Искажение вдоль меридиана будет равно:


Второй этап построения гномонической проекции.


Как следствие, отображением D" окружности радиуса r в центральной проекции будет эллипс, а длины его полуосей равны:

r' = r/sinφ и r" = r/sin2φ

Можно сделать вывод: центральная проекция не сохраняет площади, поскольку, как мы уже отмечали, искажение вдоль меридианов

μ = 1/sin2φ

должно быть обратным искажению вдоль параллелей

λ = 1/sinφ

Это соотношение не выполняется:


Гномоническая проекция также не сохраняет углы, поскольку искажение вдоль меридианов и параллелей отличается.


Азимутальные проекции

В зависимости от того, какая вспомогательная поверхность используется в проекции: плоскость, цилиндр или конус — геометрические проекции делятся на азимутальные, цилиндрические (о них мы рассказали в прошлой главе) и конические. Использование цилиндра и конуса обусловлено тем, что эти поверхности являются развертывающимися, то есть их можно развернуть на плоской поверхности без изменения метрических свойств.



Проекции делятся на азимутальные, цилиндрические и конические в зависимости от того, какая поверхность используется в качестве вспомогательной: плоскость, цилиндр или конус.



Помимо этих основных поверхностей, могут использовать и другие, необязательно развертывающиеся: так, в проекции «броненосец» (Эрвин Райш, 1943) сфера проецируется на поверхность тора (напомним, что тор — поверхность в форме бублика), после чего строится ее ортогональная проекция на плоскость.

Хотя алгоритмические проекции описываются математическими формулами и не имеют геометрической интерпретации, они, как правило, также делятся на азимутальные, цилиндрические и конические в зависимости от своих свойств.

Но вернемся к азимутальным проекциям. Живительно, что они не называются просто «планарными» или «плоскими». Откуда взялось слово «азимутальный»?

Для данной точки А земной поверхности и других двух точек, В и С, азимут, взятый из точки В на точку С, — это угол, образованный кривыми наименьшей длины, соединяющими точки А и В и А и С. Этими кривыми наименьшей длины, как известно, будут дуги больших кругов сферы. Иными словами, азимут — это угол, на который наблюдатель, находящийся в точке А и смотрящий в точку В, должен повернуться, чтобы увидеть точку С, как показано на рисунке.



Понятие азимута возникло в астрономии и навигации и обозначает угол, или длину дуги математического горизонта, измеренный от точки севера (или точки юга) до вертикальной проекции небесного тела на горизонт наблюдателя. Следовательно, по своей сути азимутальные проекции — это проекции, сохраняющие азимут, взятый из фиксированной точки отсчета, которой является центр карты. Как следствие, эти проекции сохраняют направления до других произвольных точек, но необязательно сохраняют расстояния. Проекции, которые мы хотели назвать «планарными», называются азимутальными потому, что получаются путем прямой проекции на касательную плоскость земного шара (также можно рассмотреть вариант с секущей плоскостью).

Все азимутальные проекции, центры которых совпадают с Северным или Южным полюсом, обладают следующими свойствами.

1. Меридианы изображаются равномерно распределенными прямыми (если рассматривается сетка меридианов, отстоящих друг от друга на равные углы), проходящими через центр карты.

2. Параллели изображаются концентрическими окружностями с центром в точке касания. Следовательно, различные азимутальные проекции определяются тем, как распределяются окружности параллелей.



Сравнение расположения параллелей в полярных разновидностях различных азимутальных проекций.


В этой проекции радиальные прямые, исходящие из центра карты, являются отображениями дуг больших кругов, проходящих через точку касания земного шара и плоскости. Однако в общем случае расстояния от этой точки не сохраняются (за исключением азимутальной равнопромежуточной проекции). Остальные геодезические линии, не проходящие через точку касания, как правило, также не сохраняются, за исключением рассматриваемого частного случая.

* * *

КАРТЫ ДЛЯ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЙ НА МЕККУ

Мусульмане должны молиться пять раз в день, обратившись в сторону Каабы — священного куба, расположенного в Мекке и символизирующего дом Бога. Мечети также должны располагаться соответствующим образом. Но как мусульманин или строитель мечети в любой точке мира может узнать, в каком направлении находится Мекка? Можно построить карту в стереографической проекции, в центре которой будет изображена Мекка. Так как эта проекция является азимутальной и конформной, на карте можно будет провести прямую между мечетью и Меккой, затем вычислить угол между этой прямой и меридианом. До начала молитвы мусульманин должен будет встать лицом к северу, а затем повернуться на этот угол. Один из недостатков карты заключается в том, что меридианы изображены кривыми линиями, а это усложняет вычисление угла.